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Outline

• Gene Function Prediction (GFP)

• The Gene Ontology

• Computational approaches to GFP

• Hierarchical Ensemble methods for GFP

• Two examples of Hierarchical ensembles:

- A Bayesian approach (Barutcouglu et al, 2006)

- True Path Rule ensembles (Valentini, 2011)
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Gene function prediction

Data about 

genes
Predictor Gene 

functions

Gene function prediction can be formalized 

as a supervised machine learning problem
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Motivation

• Novel high-throughput biotechnologies accumulated a 
wealth of data about genes and gene products

• Manual annotation of gene function is time consuming and 
expensive and becomes infeasible for growing amount of 
data.

• For most species the functions of several genes are 
unknown or only partially known: “in silico”
methodsrepresent a fundamental tool for gene function 
prediction at genome-wide and ontology-wide level 
(Friedberg, 2006).

• Computational analysis provide predictions that can be 
considered hypotheses to drive the biological validation of 
gene function (Pena-Castillo et al. 2008).
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Computational prediction supports 

biological gene function prediction

Biological genome-wide 

gene function prediction 

through direct experimental 

assays is costly and time-

consuming

Computational 

prediction methods

Computational prediction methods assist the biologist to:

•Suggest a restricted set of candidate functions that can be 

experimentally verified

•Directly generate new hypotheses

•Guide the exploration of promising hypotheses
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Characteristics of the Gene Function Prediction (GFP) problem

• Large number of functional classes: hundreds (FunCat) or thousands (Gene 

Ontology (GO)) : large multi-class classification

• Multiple annotations for each gene: multilabel classification

• Different level of evidence for functional annotations: labels at different 
level of reliability

• Hierarchical relationships between functional classes (tree forest for FunCat, 
direct acyclic graph for GO): hierarchical relationships between classes 
(structured output)

• Class frequencies are unbalanced, with positive examples usually largely 
lower than negatives: unbalanced classification

• The notion of “negative example” is not univocally determined: different 
strategies to choose negative examples

• Multiple sources of data available: each type captures specific functional 
characteristics of genes/gene products: multi-source classification

• Data are usually complex (e.g. high-dimensional) and noisy:  classification 
with complex and noisy data
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Taxonomies of gene function

1. Gene Ontology (GO)

http://www.geneontology.org/

Fine grained: classes structured according to a directed 

acyclic graph

2. Functional Catalogue (FunCat)

http://www.helmholtz-muenchen.de/en/mips/projects/funcat/

Coarse grained: classes structured according to a tree
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The Gene Ontology

The Gene Ontology (GO) project began as a collaboration 

between three model organism databases, FlyBase

(Drosophila), the Saccharomyces Genome Database 

(SGD) and the Mouse Genome Database (MGD), in 1998. 

Now it includes several of the world's major repositories 

for plant, animal and microbial genomes.  

The GO project has developed three structured controlled 

vocabularies (ontologies) that describe gene products in 

terms of their associated biological processes, cellular 

components and molecular functions in a species-

independent manner 
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The Gene Ontology (GO) is 

actually three Ontologies

2) Biological Process
GO term: tricarboxylic acid 
cycle
Synonym: Krebs cycle
Synonym: citric acid cycle
GO id: GO:0006099

3) Cellular Component
GO term: mitochondrion
GO id: GO:0005739
Definition: A semiautonomous, self 
replicating organelle that occurs in 
varying numbers, shapes, and sizes in 
the cytoplasm of virtually all eukaryotic 
cells. It is notably the site of tissue 
respiration. 

1) Molecular Function
GO term: Malate dehydrogenase activity
GO id: GO:0030060

(S)-malate + NAD(+) = oxaloacetate + NADH.
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(Slide downloaded from www.geneontology.org)
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Relationships 

between GO terms 

are structured 

according to a  

DAG
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Relationships between terms in the GO

The ontologies of GO are structured as a directed acyclic 

graph (DAG) G=<V,E>

V = {t | terms of the GO}          E= {(t, u) | t ε V and t ε V}

Relations between GO terms are also categorized and 

defined:

• is a   (subtype relations)

• part of (part-whole relations)

• regulates  (control relations)



G.Valentini, DSI - Univ. Milano 12

Is a relation

If we say A is a B, we mean that node A is a subtype of node 

B. 

For example, mitotic cell cycle is a cell cycle, or lyase 

activity is a catalytic activity. 

The is a relation is transitive, which means that if A is a B, 

and B is a C, we can infer that A is a C. 

E.g.:
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Part of relation

The relation part of represents part-whole relationships in 

the GO.

The part of relation is transitive:



G.Valentini, DSI - Univ. Milano 14

Regulates relation

If we say that A regulates B we mean that A directly affects the 

manifestation of B, i.e. the former regulates the latter.

For example, the target of the regulation may be another process—

for example, regulation of a pathway or an enzymatic reaction—

or it may be a quality, such as cell size or pH. 

Analogously to part of, this relation is used specifically to mean 

necessarily regulates:

In general regulates is not transitive
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GO D GO DAG of the BP ontology (S. cerevisiae)

1074 GO classes (nodes) connected by 1804 edges 

Graph realized through HCGene (Valentini, Cesa-Bianchi, Bioinformatics 24(5), 2008)
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The Functional Catalogue (FunCat)
http://www.helmholtz-muenchen.de/en/mips/projects/funcat
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The Functional Catalogue (FunCat)
http://www.helmholtz-muenchen.de/en/mips/projects/funcat

• The Functional Catalogue is an annotation scheme for the 
functional description of proteins of prokaryotic and eukaryotic
origin 

• Hierarchical tree like structure.

• Up to six levels of increasing specificity. FunCat version 2.1 
includes 1362 functional categories. 

• FunCat descriptive, but compact: classifies protein functions not 
down to the most specific level. 

• Comparable to parts of the ‘Molecular Function’ and ‘Biological 
Process’ terms of the GO system. 

• More compact and stable than GO, focuses on the functional 
process not describing the molecular function on the atomic level 
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Computational approaches to GFP

A very schematic taxonomy of computational GFP 

methods:

• Inference and annotation transfer through 

sequence similarity (BLAST)

• Network-based methods

• Kernel methods for structured output spaces

• Hierarchical ensemble methods
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Biological networks

S. Cerevisiae

4389 proteins

14319 interactions
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A network-based approach

From: Sharan et al. Mol. Sys. Biol. 2007
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Network based methods: predicting a specific 

functional term
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Several available methods:

• Guilt by association (Marcotte et al. 1999, Oliver et al. 2000)

• Label propagation (Zhu and Ghahramani, 2003, Zhou et al. 2004)

• Markov random walks (Szummer and Jaakkola, 2002, Azran et al 2007)

• Markov random fields (Deng et al. 2004)

• Graph regularization techniques (Belkin et al. 2004, Dellaleu et al 2005)

• Gaussian random fields (Tsuda et al. 2005, Mostafavi et al. 2010)

• Hopfield networks (Karaoz et al. 2004, Bertoni et al. 2011)

These different approaches  minimize a similar quadratic criterion to improve:

a) Consistency of the initial labeling

b) Topological consistency of the data

They exploit different types of relational data: physical and genetic interactions, 
similarities between protein domains or motifs, structural and sequence 
homologies,  correlations between expression profiels, …

-� need for network integration algorithms

Network-based methods
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Kernel methods

Kernel methods are largely applied to classification problems:

)()( xwx ϕTf =

1. Obtaining a non-linear classifier, through a non-linear mapping 

into the feature space, using an algorithm designed for linear 

discrimination : 

)()()()( xxxxw ϕϕαϕα T

i

i

ii

i

i f ∑∑ =⇒=

3. The discriminant function can be expressed through a suitable

kernel function:

),()( xxx i

i

iKf ∑= α

2. Whenever w can be expressed as a weighted sum over the 

images of the input examples:
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Kernel metods for binary classification problems

Non linear

kernel mapping

Original input space Transformed feature space

ϕ
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Kernel methods for structured output spaces

A binary classier can predict whether a protein performs a 

certain function:

iYXf →: { }1,0=iY

How to predict the full hierarchical annotation                 ?{ }kyyy ,...,, 21=y

ki ≤≤1

The main idea: using a kernel for structured output, that is a 

function:

ℜ→×YXf :

This classification rule chooses the label y that is most compatible 

with an input x.

Whereas in two-class classification problems the kernel depends 

only on the input (proteins), in the structured-output setting it is a 

joint function of inputs and outputs (set of the labels)
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Kernel methods for structured output spaces: 

a geometric view

The classifier is assumed to be linear in the joint input-output feature space:

),()|,( yxwwyx ϕTf =

From: Sokolov and Ben-Hur, 2010
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Structured output kernel methods 

for gene function prediction

• Sokolov and Ben-Hur (2010): a structured Perceptron,

and a variant of the structured support vector machine 

(Tsochantaridis et al. 2005), applied to the the prediction 

of GO terms in mouse and other model organisms 

• Astikainen et al. (2008) and Rousu et al. (2006): Structured 

output maximum-margin algorithms applied to the tree-

structured prediction of enzyme functions
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Hierarchical ensemble methods

They are in general characterized by a two-step strategy:

1. Flat learning of the protein function on a per-term basis (a 
set of independent classification problems)

2. Combination of the predictions by exploiting the 
relationships between terms that govern the hierarchy of 
the functional classes.

The term ensemble raises from the fact that a set of learning 
machines in someway combine their output.

In principle any supervised learning algorithm can be used for 
step 1.

Step 2 requires a proper combination of the predictions made 
at step 1.
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Hierarchical ensemble methods

• Bayesian network-based ensembles (Barutcuoglu et al. 

2006, Guan et al. 2008)

• Hierarchical renconciliation methods (Obozinski 

et al. 2008)

• Hierarchical Bayesian cost-sensitive ensembles 

(Cesa-Bianchi and Valentini, 2010)

• True Path Rule Ensembles (Valentini, 2011)

• Hierarchical decision trees (Vens et al. 2008, 

Schietgat et al 2010)
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Hierarchical Bayesian network-based 

prediction of gene function

(Barutcuoglu, Schapire and Troyanskaya, 2006)

Main ideas:

• Flat prediction of each term/class (possibly 

inconsistent)

• Bayesian hierarchical combination scheme to 

allow collaborative error-correction over all nodes

Basic notation:

iy

iŷ

:   binary membership to class i

:   classifier output for class i, Ni ≤≤1
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Bayesian correction of classifier outputs

Goal: given a set of (possibly inconsistent) iŷ

find the set of consistent that maximize:  iy

Direct solution is too hard … (exponential in time w.r.t to the 

number of nodes)

Proposed solution: a Bayesian network structure that exploits 

the relationships between functional classes.
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The proposed Bayesian network

1. nodes conditioned to their children (structure constraints)

2. nodes conditioned on their label      (Bayes rule)

3. are independent from both                and                given

iŷ

iy

iy

iŷ ijy j ≠,ˆ ijy j ≠, iy

This allows us to simplify the Bayesian equation: 

from 1:

from 2,3:
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Estimation of the probabilities

Estimation of

Estimation of

Can be inferred from training labels by counting

Can be inferred by validation during training, by modeling the 

distribution of      outputs over positive and negative examples.

E.g.: a parametric gaussian model:

iŷ
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Implementation of the method

• Bagged ensemble of SVMs (10 SVMs) trained at each node 

(see next slide …)

• Median values of their outputs on out-of-bag examples 

have been used to estimate means and variances for each 

class.

• Mean and variances have been used as parameters of the 

gaussian models used to estimate the conditional 

probabilities and )1|ˆ( =ii yyP )0|ˆ( =ii yyP

{ } Z

ychildyPyyP

yyyPy

N

j

iiij

Ni
y

i
i

∏
=

∈
== 1

1
1,0

*

))(|()|ˆ(

)ˆ,...,ˆ|(maxarg

The prediction of the label for each class i is then computed as follows:
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Bagging (Bootstrap aggregating)

Input: ),(),...,,( 11 mm yxyxZ = },...,1{ kYyi =∈ LearnAlg

Do for t=1 to T:

1. Bootstrap replicate Zt from Z 

(random sampling with replacement)

2. Get back an hypothesis ht:X ->Y

ht = LearnAlg(Zt )

end for

Output the final hypothesis by aggregation and majority voting:

∑
=

∈ 

 =

=
T

t

t

Yy
fin

otherwise

yxhif
xh

1 0

)(1
maxarg)(

• Effective with unstable algorithms
• It reduces the variance component of the error

(Breiman, 1996)
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Results on a sub-hierarchy of the BP GO ontology

• 105 terms/nodes of the GO BP (model organism S.cerevisiae)

• 4 types of data integrated through Vector Space Integration

• Hierarchical approach improves AUC results on 93 of the 105 

GO terms

• Darker blue: improvements; darker red: deterioration; white: no

change.
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An approach based on the “true path rule”
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True Path Rule ensembles (Valentini, 2011): 

an asymmetric flow of information
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TPR ensemble: basic notation
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The rules a TPR ensemble must obey
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The basic TPR ensemble (1)
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The basic TPR ensemble (2)
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The weighted hierarchical 

True Path Rule (TPR-w) ensemble
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An application of TPR ensembles to a genome and 

ontology-wide GFP problem
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Average F-score results
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Tuning precision and recall in TPR-w ensembles
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Synergy of multi-label hierarchical ensembles, data fusion, 

and cost-sensitive methods for gene functional inference

Effectiveness of hierarchical ensemble methods depend on the 

synergy between different learning strategies (Cesa-Bianchi, Re, 

Valentini, 2010):

(a) hierarchical strategies to take into account the relationships 

between classes; 

(b) data integration approaches to capture different functional 

characteristics of genes; 

(c) cost-sensitive methods to address the unbalance between 

positive and negative examples for each functional class.

(d) methods to choose negative examples and to take into account

the reliability of the annotations.
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Open problems

• Can we design scalable methods for massive biomolecular data 

integration in the context of GFP?

• Can we introduce active learning techniques in this context?

• Which is the “best” method for GFP? (it is likely that this is a 

“ill posed” problem …). Experimental work: comparison 

between different methods in the context of genome-wide gene 

function prediction (e.g. in the spirit of the MouseFunc project).

• Can we develop GFP based on comparative genomics 

techniques to exploit “cross-species” knowledge?

• Can we actually develop protocols for a joint “in silico” and 

“wet” GFP?
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