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Outline

Gene Function Prediction (GFP)

The Gene Ontology

Computational approaches to GFP
Hierarchical Ensemble methods for GFP

Two examples of Hierarchical ensembles:

- A Bayesian approach (Barutcouglu et al, 2006)
- True Path Rule ensembles (Valentini, 2011)
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Gene function prediction can be formalized
as a supervised machine learning problem
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Motivation

Novel high-throughput biotechnologies accumulated a
wealth of data about genes and gene products

Manual annotation of gene function is time consuming and
expensive and becomes infeasible for growing amount of
data.

For most species the functions of several genes are
unknown or only partially known: “in silico”
methodsrepresent a fundamental tool for gene function

prediction at genome-wide and ontology-wide level
(Friedberg, 2006).

Computational analysis provide predictions that can be
considered hypotheses to drive the biological validation of
gene function (Pena-Castillo et al. 2008).
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Computational prediction supports
biological gene function prediction
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Biological genome-wide
gene function prediction
through direct experimental
assays 1s costly and time-
consuming
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Computational
prediction methods
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Computational prediction methods assist the biologist to:

*Suggest a restricted set of candidate functions that can be

experimentally verified

*Directly generate new hypotheses

*Guide the exploration of promising hypotheses
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Characteristics of the Gene Function Prediction (GFP) problem

e Large number of functional classes: hundreds (FunCat) or thousands (Gene
Ontology (GO)) : large multi-class classification

« Multiple annotations for each gene: multilabel classification

o Different level of evidence for functional annotations: labels at different
level of reliability

« Hierarchical relationships between functional classes (tree forest for FunCat,
direct acyclic graph for GO): hierarchical relationships between classes
(structured output)

« C(lass frequencies are unbalanced, with positive examples usually largely
lower than negatives: unbalanced classification

* The notion of “negative example” is not univocally determined: different
strategies to choose negative examples

« Multiple sources of data available: each type captures specific functional
characteristics of genes/gene products: multi-source classification

« Data are usually complex (e.g. high-dimensional) and noisy: classification
with complex and noisy data
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Taxonomies of gene function

[. Gene Ontology (GO)

http://www.geneontology.org/

Fine grained: classes structured according to a directed

acyclic graph
2. Functional Catalogue (FunCat)

http://www .helmholtz-muenchen.de/en/mips/projects/funcat/

Coarse grained: classes structured according to a tree
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The Gene Ontology

The Gene Ontology (GO) project began as a collaboration
between three model organism databases, FlyBase
(Drosophila), the Saccharomyces Genome Database
(SGD) and the Mouse Genome Database (MGD), in 1998.
Now 1t includes several of the world's major repositories
for plant, animal and microbial genomes.

The GO project has developed three structured controlled
vocabularies (ontologies) that describe gene products in
terms of their associated biological processes, cellular
components and molecular functions 1n a species-
independent manner
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The Gene Ontology (GO) is
1) Molecular Function actually three Ontologies
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Relationships between terms in the GO

The ontologies of GO are structured as a directed acyclic
graph (DAG) G=<V,E>

V = {t| terms of the GO} E={tu)|teVandteV}

Relations between GO terms are also categorized and
defined:

e isa (subtype relations)
* part of (part-whole relations)

» regulates (control relations)
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Is a relation

If we say A is a B, we mean that node A is a subtype of node

B.

For example, mitotic cell cycle 1s a cell cycle, or lyase
activity 1s a catalytic activity.

The 1s a relation 1s transitive, which means that if A 1s a B,
and B 1s a C, we can infer that A 1s a C.

E.g.

[ mitochondricn j isa »Eltracellular Drganella ica { organelle J
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Part of relation

The relation part of represents part-whole relationships in
the GO.

The part of relation 1s transitive:

L mitnchondrinn ] par- of [ cvtnplasm J nart nf L rell

part o’
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Regulates relation

If we say that A regulates B we mean that A directly affects the
manifestation of B, i.e. the former regulates the latter.

For example, the target of the regulation may be another process—
for example, regulation of a pathway or an enzymatic reaction—
or it may be a quality, such as cell size or pH.

Analogously to part of, this relation 1s used specifically to mean
necessarily regulates:

rALL FEQUH[ESﬁ

[ cell eycle j Eell cycle checkpoinJ

SOME regulated by

In general regulates is not transitive
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GO DAG of the BP ontology (S. cerevisiae)

1074 GO classes (nodes) connected by 1804 edges

Graph realized through HCGene (Valentini, Cesa-Bianchi, Bioinformatics 24(5), 2008)
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The Functional Catalogue (FunCat)

http://www.helmholtz-muenchen.de/en/mips/projects/funcat
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The Functional Catalogue (FunCat)

http://www.helmholtz-muenchen.de/en/mips/projects/funcat

The Functional Catalogue 1s an annotation scheme for the
functional description of proteins of prokaryotic and eukaryotic
origin

Hierarchical tree like structure.

Up to six levels of increasing specificity. FunCat version 2.1
includes 1362 functional categories.

FunCat descriptive, but compact: classifies protein functions not
down to the most specific level.

Comparable to parts of the ‘Molecular Function’ and ‘Biological
Process’ terms of the GO system.

More compact and stable than GO, focuses on the functional
process not describing the molecular function on the atomic level
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Computational approaches to GFP

A very schematic taxonomy of computational GFP

methods:

 Inference and annotation transfer through

sequence similarity (BLAST)
* Network-based methods
» Kernel methods for structured output spaces

o Hierarchical ensemble methods
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Biological networks

¥ S. Cerevisiae
4389 proteins
1 14319 interactions

G.Valentini, DSI - Univ. Milano
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A network-based approach

21
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Network based methods: predicting a specific
functional term

Gene function prediction

Chosen class ¢

V = genes
W, = "similarity” of genes
and |

S’ = positive examples
S- = negative examples
U = unlabeled genes

Data source (network) Prediction
G=<V, W, S, S> U
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Network-based methods

Several available methods:

«  Guilt by association (Marcotte et al. 1999, Oliver et al. 2000)

« Label propagation (Zhu and Ghahramani, 2003, Zhou et al. 2004)

. Markov random walks (Szummer and Jaakkola, 2002, Azran et al 2007)
«  Markov random fields (Deng et al. 2004)

«  Graph reqgularization techniques (Belkin et al. 2004, Dellaleu et al 2005)
«  Gaussian random fields (Tsuda et al. 2005, Mostafavi et al. 2010)

»  Hopfield networks (Karaoz et al. 2004, Bertoni et al. 2011)

These different approaches minimize a similar quadratic criterion to improve:
a) Consistency of the initial labeling
b) Topological consistency of the data

They exploit different types of relational data: physical and genetic interactions,
similarities between protein domains or motifs, structural and sequence
homologies, correlations between expression profiels, ...

--> need for network integration algorithms
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Kernel methods

Kernel methods are largely applied to classification problems:

1. Obtaining a non-linear classifier, through a non-linear mapping
into the feature space, using an algorithm designed for linear
discrimination :

f(x)=w o(x)

2. Whenever w can be expressed as a weighted sum over the
images of the mput examples:

W= a0(x)= f(X)=2 ap((x) p(x)

3. The discriminant function can be expressed through a suitable
kernel function:

f(X) — ZaiK(Xia X)
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Kernel metods for binary classification problems

.
e

Original input space

Non linear

_

kernel mapping *

— -

Transformed feature space
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Kernel methods for structured output spaces

A binary classier can predict whether a protein performs a
certain function:

f:X->Y v={0]1 1<i<k
How to predict the full hierarchical annotation y = {yl s Vo senns yk}

The main idea: using a kernel for structured output, that 1s a
function:

f:XxY >R

This classification rule chooses the label y that 1s most compatible
with an input x.

Whereas 1n two-class classification problems the kernel depends
only on the input (proteins), in the structured-output setting it 1s a
joint function of inputs and outputs (set of the labels)

G.Valentini, DSI - Univ. Milano

?



Kernel methods for structured output spaces:
a geometric view

hlix, vy More
compatible

&

Less

compatible _

o O Margin
© ® (x.¥/
D I}':iJ_'!"ITI.:F..I
From: Sokolov and Ben-Hur, 2010 w' ¢l x, vI=const

The classifier is assumed to be linear in the joint input-output feature space:

f(xy|w)=w o(x,y)

G.Valentini, DSI - Univ. Milano
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Structured output kernel methods
for gene function prediction

» Sokolov and Ben-Hur (2010): a structured Perceptron,

and a variant of the structured support vector machine
(Tsochantaridis et al. 2005), applied to the the prediction

of GO terms in mouse and other model organisms

o Astikainen et al. (2008) and Rousu et al. (2006): Structured
output maximum-margin algorithms applied to the tree-

structured prediction of enzyme functions
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Hierarchical ensemble methods

They are in general characterized by a two-step strategy:

1. Flat learning of the protein function on a per-term basis (a
set of independent classification problems)

2. Combination of the predictions by exploiting the
relationships between terms that govern the hierarchy of
the functional classes.

The term ensemble raises from the fact that a set of learning
machines in someway combine their output.

In principle any supervised learning algorithm can be used for
step 1.

Step 2 requires a proper combination of the predictions made
at step 1.
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Hierarchical ensemble methods

« Bayesian network-based ensembles (Barutcuoglu et al.
2006, Guan et al. 2008)

« Hierarchical renconciliation methods (Obozinski
et al. 2008)

« Hierarchical decision trees (Vens et al. 2008,
Schietgat et al 2010)

» Hierarchical Bayesian cost-sensitive ensembles
(Cesa-Bianchi and Valentini, 2010)

* True Path Rule Ensembles (Valentini, 2011)

G.Valentini, DSI - Univ. Milano



Hierarchical Bayesian network-based
prediction of gene function

(Barutcuoglu, Schapire and Troyanskaya, 2006)
Main 1deas:

« Flat prediction of each term/class (possibly
inconsistent)

* Bayesian hierarchical combination scheme to
allow collaborative error-correction over all nodes

Basic notation:

V. . binary membership to class i

)A/l- . classifier output for class i, 1<i<N

G.Valentini, DSI - Univ. Milano



Bayesian correction of classifier outputs

Goal: given a set of (possibly inconsistent)
find the set of consistent y, that maximize:

Direct solution 1s too hard ... (exponential in time w.r.t to the
number of nodes)

Proposed solution: a Bayesian network structure that exploits
the relationships between functional classes.
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The proposed Bayesian network

1. J; nodes conditioned to their children (structure constraints)
2. ¥, nodes conditioned on their label y, (Bayes rule)

3. ), are independent from both J;, j #i and y 1> J #1 given ),

This allows us to simplify the Bayesian equation:

from 1: Py,.....yy) = HP (v; | ch(y;))

fI'OIIl 2,3: P({‘ R .._{'N.. _‘I-'l - _1|"1_-"'|.|") = HP({‘I }.1“.)

G.Valentini, DSI - Univ. Milano
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Estimation of the probabilities

N
Estimation of P(y,.....Vy) = HF (v; | ch(y,))
=1
Can be inferred from training labels by counting
N
Estimation of Py ..... Vx| Voo oa¥y) = HF (vi | v:)
=1
Can be inferred by validation during training, by modeling the
distribution of J; outputs over positive and negative examples.

E.g.: a parametric gaussian model:

G.Valentini, DSI - Univ. Milano
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Implementation of the method

* Bagged ensemble of SVMs (10 SVMs) trained at each node
(see next slide ...)

* Median values of their outputs on out-of-bag examples

have been used to estimate means and variances for each
class.

* Mean and variances have been used as parameters of the
gaussian models used to estimate the conditional

probabilities P(y, |y, =1) and P(y, |y, =0)

The prediction of the label for each class i 1s then computed as follows:

N
HP@ S YOP(y; | child(y,))
yi = darg max P(yz |J/1> ayN)_

y,;€{0,1} 7
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Bagging (Bootstrap aggregating)
(Breiman, 1996)

Input:  Z =((x,3,)ses(x,,, 1)) ¥, €Y ={L...,k} LearnAlg
Do for t=1 to T:
1. Bootstrap replicate Z, from Z
(random sampling with replacement)
2. Get back an hypothesis h:X ->Y
h, = LearnAlg(Z, )
end for
Output the final hypothesis by aggregation and majority voting:

51 if ht(x):y
h,,(x)=arg nylgVXZ{

= |0 otherwise

e Effective with unstable algorithms
* [t reduces the variance component of the error
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Results on a sub-hierarchy of the BP GO ontology

@%@(@@ e L2

CDICIMCOICOICTS

105 terms/nodes of the GO BP (model organism S.cerevisiae)
* 4 types of data integrated through Vector Space Integration

 Hierarchical approach improves AUC results on 93 of the 105
GO terms

 Darker blue: improvements; darker red: deterioration; white: no
change.

G.Valentini, DSI - Univ. Milano
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An approach

The “true path ru

based on the “true path rule”

e.--.

D D D CD G G -

“An annotation for a class in the hierarchy is automatically
transferred to its ancestors, while genes unannotated for a
class cannot be annotated for its descendants”.

G.Valentini, DSI - Univ. Milano
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True Path Rule ensembles (Valentini, 2011):
an asymmetric flow of information

OOOOOOOOOODOOOTOD |

OO O OO0 O O Y
From bottom to top : positive predictions influence ancestor

nodes/classifiers

From top o boftom : negative predictions influence descendant
nodes/classifiers
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TPR ensemble: basic notation

m A gene/gene product x can be assigned to one or more
functional classes:

C={c.c,....Cn}
m Assignments can be coded through a vector of multilabels

Y=<Vyi,¥Vo,....,¥m>€ {0,1}".
If x belongs to class ¢;, then y; = 1, otherwise y; = 0.

m Nodes corresponding to the class ¢; can be simply
denoted by /.

m child(/) represents the set of children nodes of i;
par(/) the set of its parents.

m The TPR ensemble classifier D : X — {0,1}" computes
the multilabel associated to each gene x € X

m di(x) € {0,1} is the label predicted by the TPR classifier at
node /. If there is no ambiguity we represent d;(x) simply
b}t’ dj.

G.Valentini, DSI - Univ. Milano
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The rules a TPR ensemble must obey

Considering the parents of a given node 1i:

{ d=1 = dpar[f}:1

Considering the children of a given node i:

{ di=1 # depig(i) =1
0 =0 = depigiy =0

Example: (black d; = 1, white d; = 0)

o d N PN X

G.Valentini, DSI - Univ. Milano
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The basic TPR ensemble (1)

m Base classifiers estimate local probabilities p;(x) that a

given example x belongs to class ¢;

m The ensemble provides an estimate of the “consensus”

global probability p;(x)

The “consensus” global probability p;(x) is estimated in two

steps:

Bottom-up step p;(x) is computed by averaging the local
probabilities of the “positive” predictions of
computed at node i and child(/)

Top-down step If pj(x) < 1/2 then the subtree "is set to 0":

Vj € desc(i), dj(x) =0

G.Valentini, DSI - Univ. Milano
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The basic TPR ensemble (2)

Given the set ¢;(x) of all the children nodes of node 7 for which
we have a positive prediction for the gene X:

”r {jLJ' = thld( = 1}

The consensus pmbabmry pi(x) that a gene x belongs to the
node/class / is:

JE®(x)

m The p;j(x) are computed in a bottom-up fashion, visiting
"per-level" the tree from bottom to top, starting from the
leaves, and continuing up to the root.

m At each level and for each node we have an asymmetric
flow of information: bottom-up “positive” information, and
top-down “negative” information.

G.Valentini, DSI - Univ. Milano
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The weighted hierarchical
True Path Rule (TPR-w) ensemble

TPR-w is a variant of the basic TPR: we can modulate the role
of the local predictor w.r.t. the predictions of its children and
descendants.

We introduce a parent weight wp, 0 < wp < 1, such that the
prediction is shared proportionally to w, and 1 — w, between

respectively the local parent predictor and the set of its children:

1—w
pi(x) = wp - Pi(X ‘} Z pi(x

JE@(X

This learning behaviour is recursively reproduced from the
leaves up to the root of the overall taxonomy.

G.Valentini, DSI - Univ. Milano
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An application of TPR ensembles to a genome and
ontology-wide GFP problem

& & -] & L o [ 4R e a e

8 A8 o Reehhooipl & & O Sag HHOD ShG Qi - L. B0 8 484804000000
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SRIQDE AR - TR

m Genome-wide gene function prediction in S. cerevisiae
m About 200 FunCat classes (5 hierarchical levels)

m About 6000 genes to be classified (1000 unknown)
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Average F-score results

Average per-class F-score results

Flat HTD TPR | TPR-w
0.1489 | 0.2222 | 0.1824 | 0.2414
Hierarchical F-score results
Data set HTD TPR | TPR-w
Pfam-1 0.4123 | 0.3080 | 0.4131
Pfam-2 | 0.3406 | 0.2684 | 0.3700
Phylo 0.0497 | 0.2010 | 0.2174
Expr 0.1166 | 0.1696 | 0.1784
PPI-BG | 0.3226 | 0.2670 | 0.3485
PPI-VM | 0.3977 | 0.2796 | 0.4000
SP-sim | 0.4251 | 0.2398 | 0.4472
Average | 0.2949 | 0.2468 | 0.3392
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Tuning precision and recall in TPR-w ensembles

Brrea m A single global
R e parameter can regulate
precision/recall
characteristics (useful
for different types of
gene function prediction
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Synergy of multi-label hierarchical ensembles, data fusion,
and cost-sensitive methods for gene functional inference

Effectiveness of hierarchical ensemble methods depend on the
synergy between different learning strategies (Cesa-Bianchi, Re,
Valentini, 2010):

(a) hierarchical strategies to take into account the relationships

between classes;
(b) data integration approaches to capture different functional

characteristics of genes;

(c) cost-sensitive methods to address the unbalance between
positive and negative examples for each functional class.

(d) methods to choose negative examples and to take into account
the reliability of the annotations.
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Open problems

Can we design scalable methods for massive biomolecular data
integration in the context of GFP?

Can we 1ntroduce active learning techniques in this context?

Which 1s the “best” method for GFP? (it 1s likely that this is a
“11l posed” problem ...). Experimental work: comparison
between different methods 1n the context of genome-wide gene

function prediction (e.g. in the spirit of the MouseFunc project).

Can we develop GFP based on comparative genomics
techniques to exploit “cross-species” knowledge?

Can we actually develop protocols for a joint “in silico” and
“wet” GFP?

G.Valentini, DSI - Univ. Milano
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