Investigations on Automata and Languages over a Unary Alphabet

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

> CIAA 2014 – Gießen, Germany July 30 – August 2, 2014

Unary or Tally Languages

- ▶ One letter alphabet $\Sigma = \{a\}$
- ► Many differences with the general case have been discovered First example:

Theorem [Ginsurg&Rice '62]

Each unary context-free languages is regular

- Structural complexity: classes of tally sets
 - ► Hartmanis, 1972
 - Book, 1974, 1979

Space complexity:

- Alt&Mehlhorn, 1975
- ▶ Geffert, 1993
- **.** . . .

Unary or Tally Languages

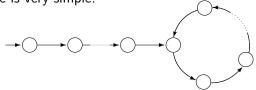
This talk:

- Focus mainly on descriptional complexity aspects
 - Optimal simulations between variants of unary automata
 - Unary two-way automata: connection with the question L ? NL
 - Unary context-free grammars and pushdown automata
- Devices accepting nonregular languages

Unary Automata

Unary One-Way Deterministic Automata (1DFAs)

The structure is very simple!



Theorem

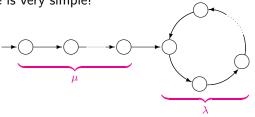
 $L \subseteq \{a\}^*$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

 $\forall n \geq \mu : a^n \in L \text{ iff } a^{n+\lambda} \in L$

When $\mu = 0$ the language L is said to be *cyclic*

Unary One-Way Deterministic Automata (1DFAs)

The structure is very simple!



Theorem

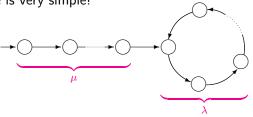
 $L \subseteq \{a\}^*$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

$$\forall n \geq \mu : a^n \in L \text{ iff } a^{n+\lambda} \in L$$

When $\mu = 0$ the language L is said to be cyclic

Unary One-Way Deterministic Automata (1DFAs)

The structure is very simple!



Theorem

 $L \subseteq \{a\}^*$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

$$\forall n \geq \mu : a^n \in L \text{ iff } a^{n+\lambda} \in L$$

When $\mu = 0$ the language L is said to be cyclic

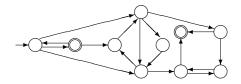
Unary One-Way Nondeterministic Automata (1NFAs)

The structure can be very complicate!

Each direct graph with

- ► a vertex selected as initial state
- some vertices selected as final states

is the transition diagram of a unary 1NFA!



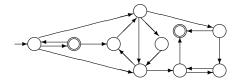
Unary One-Way Nondeterministic Automata (1NFAs)

The structure can be very complicate!

Each direct graph with

- ► a vertex selected as initial state
- some vertices selected as final states

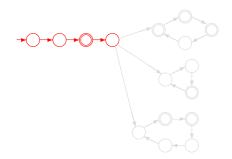
is the transition diagram of a unary 1NFA!



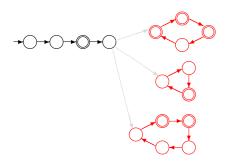
However, we can always obtain an equivalent 1NFA with a

- simple and
- not too big

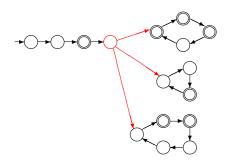
transition graph



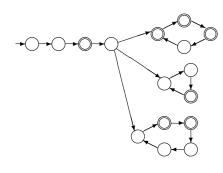
- ► An initial deterministic path
- Some disjoint deterministic loops
- Only one nondeterministic decision



- ► An initial deterministic path
- ► Some disjoint deterministic loops
- Only one nondeterministic decision



- ► An initial deterministic path
- Some disjoint deterministic loops
- Only one nondeterministic decision



- ► An initial deterministic path
- Some disjoint deterministic loops
- Only one nondeterministic decision

Theorem ([Chrobak '86])

Each unary n-state 1NFA can be converted into an equivalent 1NFA in Chrobak normal form with

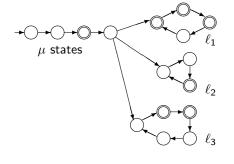
- ▶ an initial path of $O(n^2)$ states
- ▶ total number of states in the loops $\leq n$

- ► Subtle error in the original proof fixed by To (2009)
- ▶ Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms
 by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- ► From the results by Geffert and Gawrychowski:
 - length of the initial path $\leq n^2 n$
 - total number of states in the loops $\leq n-1$ (except when the given 1NFA is the trivial loop of n states

- ▶ Subtle error in the original proof fixed by To (2009)
- ▶ Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms
 by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- ► From the results by Geffert and Gawrychowski:
 - length of the initial path $\leq n^2 n$
 - total number of states in the loops $\leq n-1$ (except when the given 1NFA is the trivial loop of n states

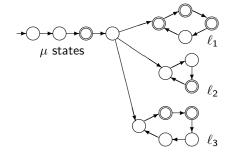
- ► Subtle error in the original proof fixed by To (2009)
- ▶ Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms
 by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- ► From the results by Geffert and Gawrychowski:
 - length of the initial path $\leq n^2 n$
 - total number of states in the loops $\leq n-1$ (except when the given 1NFA is the trivial loop of n states

- ► Subtle error in the original proof fixed by To (2009)
- ▶ Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms
 by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- ► From the results by Geffert and Gawrychowski:
 - length of the initial path $\leq n^2 n$
 - total number of states in the loops $\leq n-1$ (except when the given 1NFA is the trivial loop of n states)

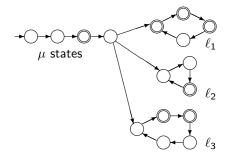


► Keep the same initial path

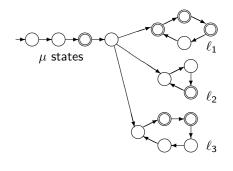
- ► Simulate all the loops "in parallel"
- A loop of lcm $\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$



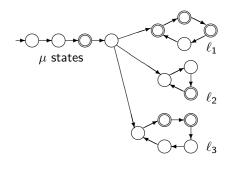
- Keep the same initial path
- ► Simulate all the loops "in parallel"
- A loop of $lcm\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$



- ► Keep the same initial path
- Simulate all the loops "in parallel"
- ▶ A loop of lcm $\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

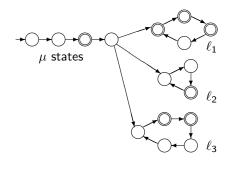


- Keep the same initial path
- Simulate all the loops "in parallel"
- A loop of lcm $\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$



- Keep the same initial path
- Simulate all the loops "in parallel"
- A loop of lcm $\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

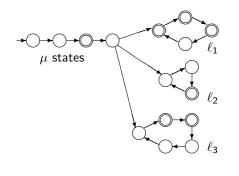
How large can be $lcm\{\ell_1, \ell_2, \ldots\}$?



- Keep the same initial path
- Simulate all the loops "in parallel"
- A loop of lcm $\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

How large can be $lcm{\{\ell_1, \ell_2, \ldots\}}$?

$$F(n) = \max\{\operatorname{lcm}\{\ell_1, \ell_2, \dots, \ell_s\} \mid s \ge 1 \land \ell_1 + \ell_2 + \dots + \ell_s \le n\}$$



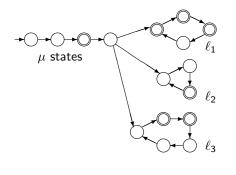
- Keep the same initial path
- Simulate all the loops "in parallel"
- A loop of lcm $\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

How large can be $lcm\{\ell_1, \ell_2, \ldots\}$?

$$F(n) = \max\{ \text{lcm}\{\ell_1, \ell_2, \dots, \ell_s\} \mid s \ge 1 \land \ell_1 + \ell_2 + \dots + \ell_s \le n \}$$

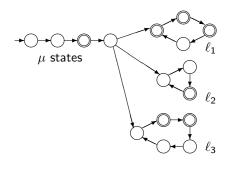
Landau's function (1903)

$$F(n) = e^{\Theta(\sqrt{n \ln n})}$$
 [Szalay'80]



- Keep the same initial path
- Simulate all the loops "in parallel"
- A loop of lcm $\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

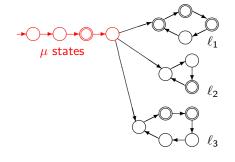
ightharpoonup F(n) states are also necessary in the worst case [Chrobak '86]



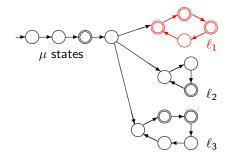
- Keep the same initial path
- ► Simulate all the loops "in parallel"
- A loop of lcm $\{\ell_1, \ell_2, \ldots\}$ many states is enough
- ► Total number of states $\leq \mu + \text{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$
- ightharpoonup F(n) states are also necessary in the worst case [Chrobak '86]

Theorem ([Ljubič '64, Chrobak '86])

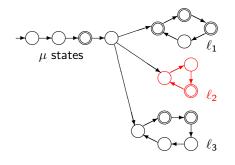
The state cost of the simulation of unary n-state 1NFAs by equivalent 1DFAs is $e^{\Theta(\sqrt{n \ln n})}$



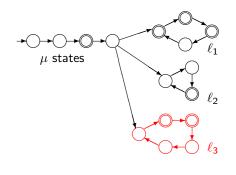
- Check if the input is "short" and accepted on the initial path $\mu+1$ states
- Check if the input is accepted on the first loop ℓ_1 states
- ► Check if the input is accepted on the second loop ℓ_2 states
- ► Check if the input is accepted on the third loop ℓ₃ states



- Check if the input is "short" and accepted on the initial path $\mu+1$ states
- ► Check if the input is accepted on the first loop ℓ_1 states
- ► Check if the input is accepted on the second loop ℓ_2 states
- ► Check if the input is accepted on the third loop ℓ₃ states

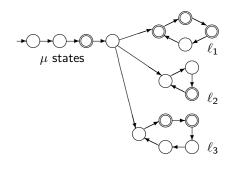


- $\begin{array}{c} {\color{red} \blacktriangleright} \ \, \text{Check if the input is "short"} \\ \text{and accepted on the initial path} \\ \mu+1 \ \, \text{states} \end{array}$
- Check if the input is accepted on the first loop ℓ_1 states
- ► Check if the input is accepted on the second loop ℓ₂ states
- ► Check if the input is accepted on the third loop
 ℓ₃ states



- Check if the input is "short" and accepted on the initial path $\mu+1$ states
- Check if the input is accepted on the first loop ℓ_1 states
- ► Check if the input is accepted on the second loop ℓ₂ states
- ► Check if the input is accepted on the third loop ℓ₃ states

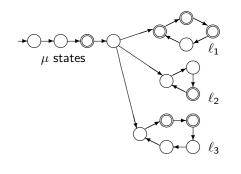
$$\mu + \ell_1 + \ell_2 + \cdots + 2$$
 states are sufficient!



- Check if the input is "short" and accepted on the initial path $\mu+1$ states
- ► Check if the input is accepted on the first loop ℓ_1 states
- ► Check if the input is accepted on the second loop ℓ₂ states
- ► Check if the input is accepted on the third loop ℓ₃ states

$$\mu + \ell_1 + \ell_2 + \cdots + 2$$
 states are sufficient!

This number is also necessary in the worst case [Chrobak '86]



- Check if the input is "short" and accepted on the initial path $\mu+1$ states
- ► Check if the input is accepted on the first loop ℓ_1 states
- ► Check if the input is accepted on the second loop ℓ₂ states
- ► Check if the input is accepted on the third loop ℓ₃ states

$$\mu + \ell_1 + \ell_2 + \cdots + 2$$
 states are sufficient!

This number is also necessary in the worst case [Chrobak '86]

Theorem

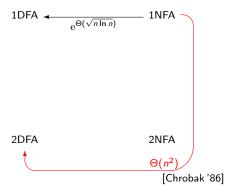
The state cost of the simulation of unary n-state 1NFAs by 2DFAs is $\Theta(n^2)$

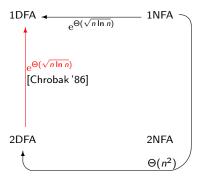
1DFA 1NFA

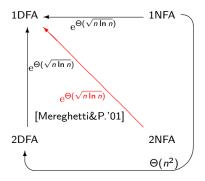
2DFA 2NFA

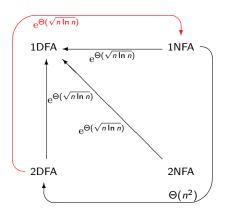
1DFA
$$\leftarrow$$
 [Chrobak '86] $= e^{\Theta(\sqrt{n \ln n})}$ 1NFA

2DFA 2NFA

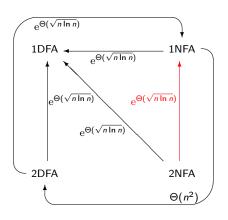




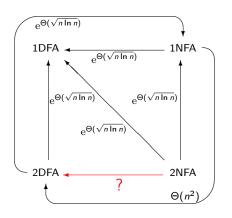




from 2DFA \rightarrow 1DFA

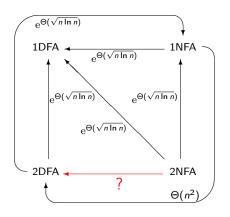


from 2NFA \rightarrow 1DFA



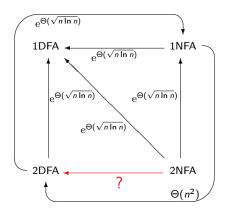
$2NFA \rightarrow 2DFA$ Open!

- upper bound $e^{\Theta(\sqrt{n \ln n})}$ (from 2NFA \rightarrow 1DFA)
- ▶ lower bound $\Omega(n^2)$ (from 1NFA \rightarrow 2DFA)



$2NFA \rightarrow 2DFA$ Open!

- upper bound $e^{\Theta(\sqrt{n \ln n})}$ (from 2NFA \rightarrow 1DFA)
- lower bound $\Omega(n^2)$ (from 1NFA \rightarrow 2DFA)



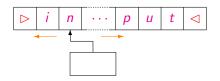
$2NFA \rightarrow 2DFA$ Open!

- upper bound $e^{\Theta(\sqrt{n \ln n})}$ (from 2NFA \to 1DFA)
- lower bound $\Omega(n^2)$ (from 1NFA \rightarrow 2DFA)

Better upper bound $e^{O(\ln^2 n)}$ [Geffert&Mereghetti&P.'03]

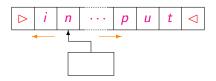
Unary Two-Way Automata

Two-Way Automata: Few Technical Details



- ▶ Input surrounded by the end-markers ▷ and ▷
- $w \in \Sigma^*$ is accepted iff there is a computation
 - with input tape ▷w <</p>
 - starting with the head on ▷ in the initial state
 - reaching a final state (with the head on ▷)

Two-Way Automata: Few Technical Details



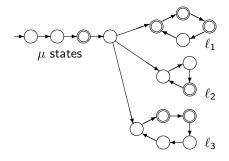
- ▶ Input surrounded by the end-markers ▷ and ▷
- ▶ $w \in \Sigma^*$ is accepted iff there is a computation
 - with input tape >w
 - starting with the head on ▷ in the initial state
 - reaching a final state (with the head on ▷)

Almost Equivalent Automata

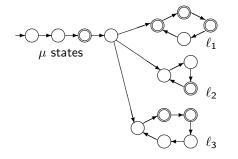
Definition

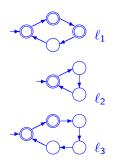
Two automata A and B are almost equivalent if L(A) and L(B) differ for finitely many strings

Chrobak Normal Form Revisited

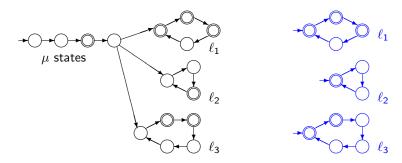


Chrobak Normal Form Revisited





Chrobak Normal Form Revisited



Each unary n-state 1NFA A is almost equivalent to a 1NFA B:

- ▶ s disjoint loops of lengths ℓ_1, \ldots, ℓ_s , with $\ell_1 + \cdots + \ell_s \leq n$
- ▶ at the beginning of the computation, B nondeterministically selects a loop $i \in \{1, \dots, s\}$
- ▶ then B counts the input length modulo ℓ_i
- ▶ L(A) and L(B) can differ only on strings of length at most $n^2 n$

Theorem ([Geffert&Mereghetti&P.'03])

For each unary n-state 2NFA A there exists an almost equivalent 2NFA M s.t.

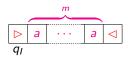
- M makes nondeterministic choices and changes the head direction only visiting the end-markers
- ▶ M has $N \le 2n + 2$ many states
- ▶ L(A) and L(M) can differ only on strings of length $\leq 5n^2$

- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - *q_F* accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i

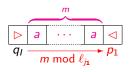
- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - q_F accepting state
 - **Q**_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i

- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i

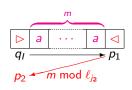
- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - q_F accepting state
 - **Q** Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i



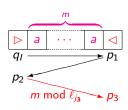
- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - q_F accepting state
 - **Q** Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i



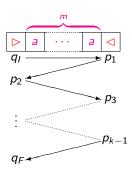
- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - \blacksquare q_F accepting state
 - **Q**_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i



- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - \blacksquare q_F accepting state
 - **Q**_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i

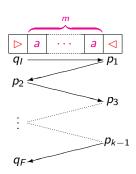


- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q₁ initial state
 - \blacksquare q_F accepting state
 - **Q**_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i



More details on M:

- ▶ State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q₁ initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_i



Remark

If a string is accepted by M then it is accepted by a computation which visits the left end-marker at most N times

[Geffert&Mereghetti&P.'03]

M unary N-state 2NFA in normal form a^m input string

► For $p, q \in Q$, $k \ge 1$, we consider the predicate $reachable(p, q, k) \equiv$

 \exists computation path on a^m which

- \blacksquare starts in the state p on \triangleright
- \blacksquare ends in the state q on \triangleright
- visits \triangleright at most k times

Then:

- ightharpoonup reachable(p, q, k) can be computed by a recursive procedure
- ▶ Implemented by a 2DFA with $e^{O(\ln^2 N)}$ states

[Geffert&Mereghetti&P.'03]

- M unary N-state 2NFA in normal form
- am input string
 - ► For $p, q \in Q$, $k \ge 1$, we consider the predicate $reachable(p, q, k) \equiv$

 \exists computation path on a^m which

- starts in the state p on ⊳
- \blacksquare ends in the state q on \triangleright
- visits \triangleright at most k times

Then:

- ightharpoonup reachable(p, q, k) can be computed by a recursive procedure
- ▶ Implemented by a 2DFA with $e^{O(\ln^2 N)}$ states

[Geffert&Mereghetti&P.'03]

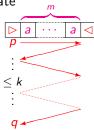
- M unary N-state 2NFA in normal form
- a^m input string
 - ▶ For $p, q \in Q$, $k \ge 1$, we consider the predicate

 $reachable(p, q, k) \equiv$

 \exists computation path on a^m which

- starts in the state *p* on ▷
- \blacksquare ends in the state q on \triangleright
- \blacksquare visits \triangleright at most k times

Then:



- ightharpoonup reachable(p, q, k) can be computed by a recursive procedure
- ▶ Implemented by a 2DFA with $e^{O(\ln^2 N)}$ states

[Geffert&Mereghetti&P.'03]

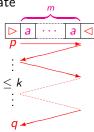
- M unary N-state 2NFA in normal form
- am input string
 - For $p, q \in Q$, $k \ge 1$, we consider the predicate

 $reachable(p,q,k) \equiv$

 \exists computation path on a^m which

- starts in the state *p* on ▷
- \blacksquare ends in the state q on \triangleright
- visits > at most k times

Then:



- ightharpoonup reachable(p, q, k) can be computed by a recursive procedure
- ▶ Implemented by a 2DFA with $e^{O(\ln^2 N)}$ states

[Geffert&Mereghetti&P.'03]

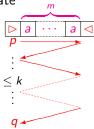
- M unary N-state 2NFA in normal form
- a^m input string
 - For $p, q \in Q$, $k \ge 1$, we consider the predicate

 $reachable(p,q,k) \equiv$

 \exists computation path on a^m which

- starts in the state *p* on ▷
- \blacksquare ends in the state q on \triangleright
- visits > at most k times

Then:



- ightharpoonup reachable(p, q, k) can be computed by a recursive procedure
- ▶ Implemented by a 2DFA with $e^{O(\ln^2 N)}$ states

[Geffert&Mereghetti&P.'03]

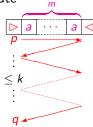
- M unary N-state 2NFA in normal form
- a^m input string
 - ▶ For $p, q \in Q$, $k \ge 1$, we consider the predicate

 $reachable(p,q,k) \equiv$

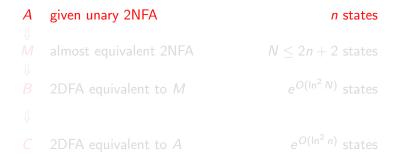
 $\exists \text{computation path on } a^m \text{ which }$

- starts in the state *p* on ⊳
- \blacksquare ends in the state q on \triangleright
- visits > at most k times

Then:



- ightharpoonup reachable(p, q, k) can be computed by a recursive procedure
- ▶ Implemented by a 2DFA with $e^{O(\ln^2 N)}$ states



n states Conversion into normal form $N \leq 2n + 2$ states

 $e^{O(\ln^2 N)}$ states

 $e^{O(\ln^2 n)}$ states

A given unary 2NFA
 ↓ M almost equivalent 2NFA
 ↓ B 2DFA equivalent to M
 ↓

n states Conversion into normal form $N \leq 2n+2$ states Deterministic simulation $e^{O(\ln^2 N)}$ states

 $e^{O(\ln^2 n)}$ states

Α	given unary 2NFA	n states
\Downarrow		Conversion into normal form
Μ	almost equivalent 2NFA	$N \leq 2n + 2$ states
\Downarrow		Deterministic simulation
В	2DFA equivalent to M	$e^{O(\ln^2 N)}$ states
1	Preliminary scan to accept/reject inputs of length $\leq 5n^2$	
₩	then simulation of B for longer inputs	
C	2DFA equivalent to A	$e^{O(\ln^2 n)}$ states

```
given unary 2NFA n states

Conversion into normal form

M almost equivalent 2NFA N \le 2n + 2 states

Deterministic simulation

B 2DFA equivalent to M e^{O(\ln^2 N)} states

Preliminary scan to accept/reject inputs of length \le 5n^2 then simulation of B for longer inputs

C 2DFA equivalent to A e^{O(\ln^2 n)} states
```

Theorem ([Geffert&Mereghetti&P.'03])

Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O(\ln^2 n)}$ many states

given unary 2NFA n states \Downarrow Conversion into normal form M almost equivalent 2NFA N < 2n + 2 states \Downarrow Deterministic simulation $\rho^{O(\ln^2 N)}$ states В 2DFA equivalent to M Preliminary scan to accept/reject inputs of length $< 5n^2$ \Downarrow then simulation of B for longer inputs $\rho^{O(\ln^2 n)}$ states 2DFA equivalent to A

Theorem ([Geffert&Mereghetti&P.'03])

Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O(\ln^2 n)}$ many states

Upper bound

- superpolynomial
- subexponential

given unary 2NFA n states \Downarrow Conversion into normal form M almost equivalent 2NFA N < 2n + 2 states \Downarrow Deterministic simulation $\rho^{O(\ln^2 N)}$ states В 2DFA equivalent to M Preliminary scan to accept/reject inputs of length $< 5n^2$ \Downarrow then simulation of B for longer inputs $\rho^{O(\ln^2 n)}$ states 2DFA equivalent to A

Theorem ([Geffert&Mereghetti&P.'03])

Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O(\ln^2 n)}$ many states

Can this upper bound be reduced to a polynomial?

Upper bound

- superpolynomial
- subexponential

L: class of languages accepted in logarithmic space by *deterministic* machines

Problem L ? NL

NL: class of languages accepted in logarithmic space by *nondeterministic* machines

L: class of languages accepted in logarithmic space by *deterministic* machines

NL: class of languages accepted in logarithmic space by *nondeterministic* machines

L: class of languages accepted in logarithmic space by *deterministic* machines

Problem

 $L \stackrel{?}{=} NL$

NL: class of languages accepted in logarithmic space by *nondeterministic* machines

L: class of languages accepted in logarithmic space by *deterministic* machines

Problem

 $L \stackrel{?}{=} NL$

NL: class of languages accepted in logarithmic space by *nondeterministic* machines

Graph Accessibility Problem GAP

- ▶ Given G = (V, E) oriented graph, $s, t \in V$
- ▶ Decide whether or not G contains a path from s to t

L: class of languages accepted in logarithmic space by *deterministic* machines

Problem

 $L \stackrel{?}{=} NL$

NL: class of languages accepted in logarithmic space by *nondeterministic* machines

Graph Accessibility Problem GAP

- ▶ Given G = (V, E) oriented graph, $s, t \in V$
- lacktriangle Decide whether or not G contains a path from s to t

Theorem ([Jones '75])

GAP is complete for NL

Hence $GAP \in L$ iff L = NL

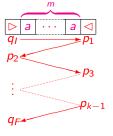
M unary 2NFA in normal form, with N states

- Accepting computation on a^m
 - sequence of traversals of the input
 - starting in q₁ on ⊳
 - ending in q_F on \triangleright
- ▶ Graph G(m)
 - vertices ≡ states
 - \blacksquare edges \equiv traversals on a^m
- ightharpoonup a^m is accepted iff G(m) contains a path from q_I to q_F

Reduction to GAP [Geffert&P.'11]

M unary 2NFA in normal form, with N states

- ▶ Accepting computation on *a*^{*m*}
 - sequence of traversals of the input
 - starting in q_I on \triangleright
 - ending in q_F on \triangleright
- ▶ Graph G(m)
 - vertices ≡ states
 - \blacksquare edges \equiv traversals on a^m

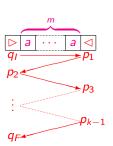


 $ightharpoonup a^m$ is accepted iff G(m) contains a path from q_I to q_F

Reduction to GAP [Geffert&P.'11]

M unary 2NFA in normal form, with N states

- ▶ Accepting computation on *a*^{*m*}
 - sequence of traversals of the input
 - starting in q_I on \triangleright
 - ending in q_F on \triangleright
- ▶ Graph G(m)
 - vertices ≡ states
 - edges \equiv traversals on a^m

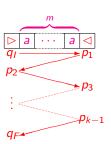


 $ightharpoonup a^m$ is accepted iff G(m) contains a path from q_I to q_F

Reduction to GAP [Geffert&P.'11]

M unary 2NFA in normal form, with N states

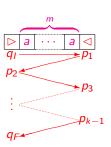
- ▶ Accepting computation on *a*^{*m*}
 - sequence of traversals of the input
 - starting in q_I on \triangleright
 - ending in q_F on ⊳
- ► Graph *G*(*m*)
 - vertices ≡ states
 - edges \equiv traversals on a^m



▶ a^m is accepted iff G(m) contains a path from q_I to q_F

M unary 2NFA in normal form, with N states

- Accepting computation on a^m
 - sequence of traversals of the input
 - starting in q_I on \triangleright
 - ending in q_F on ⊳
- ▶ Graph G(m)
 - vertices ≡ states
 - edges \equiv traversals on a^m



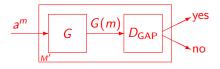
▶ a^m is accepted iff G(m) contains a path from q_I to q_F

To decide whether or not $a^m \in L(M)$ reduces to decide GAP for G(m)

D_{GAP} logspace bounded deterministic machine solving GAP

D_{GAP} logspace bounded deterministic machine solving GAP

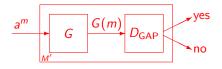
G(m) graph associated with a^m



D_{GAP} logspace bounded deterministic machine solving GAP

G(m) graph associated with a^m

M' resulting 2DFA



D_{GAP} logspace bounded *deterministic* machine solving GAP

- $O(\log N)$ space N=#states of the given 2NFA M
- poly(N) different configurations
- G(m) graph associated with a^m

D_{GAP} logspace bounded *deterministic* machine solving GAP

- $O(\log N)$ space N=#states of the given 2NFA M
- poly(N) different configurations

G(m) graph associated with a^m

- $O(N^2)$ bits
- = exp(N) different configurations

Too many!!!

M' resulting 2DFA

D_{GAP} logspace bounded *deterministic* machine solving GAP

- $O(\log N)$ space N=#states of the given 2NFA M
- poly(N) different configurations

G(m) graph associated with a^m

- $O(N^2)$ bits
- = exp(N) different configurations

Too many!!!

- bits computed on demand: an N-state 1DFA $A_{p,q}$ tests the existence of the edge (p,q)trying to simulate a traversal of M from p to q
- M' resulting 2DFA

D_{GAP} logspace bounded *deterministic* machine solving GAP

- $O(\log N)$ space N=#states of the given 2NFA M
- poly(N) different configurations

G(m) graph associated with a^m

- $O(N^2)$ bits
- = exp(N) different configurations

Too many!!!

• bits computed on demand: an *N*-state 1DFA $A_{p,q}$ tests the existence of the edge (p,q)trying to simulate a traversal of M from p to q

M' resulting 2DFA

<i>A</i>	given unary 2NFA	n states
	almost equivalent 2NFA	$N \le 2n + 2$ states
	2DFA equivalent to M	poly(N) states
	2DFA equivalent to A	poly(n) states

A given unary 2NFA n states M almost equivalent 2NFA $N \le 2n + 2$ states Deterministic simulation Deterministic simulation

```
given unary 2NFA n states

Conversion into normal form

M almost equivalent 2NFA N \le 2n + 2 states

Deterministic simulation

B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length \le 5n^2

then simulation of B for longer inputs

C 2DFA equivalent to A poly(n) states
```

```
given unary 2NFA n states

Conversion into normal form

M almost equivalent 2NFA N \le 2n + 2 states

Deterministic simulation

B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length \le 5n^2
then simulation of B for longer inputs

C 2DFA equivalent to A poly(n) states
```

Theorem ([Geffert&P.'11])

If L = NL then each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

```
given unary 2NFA n states

Conversion into normal form

M almost equivalent 2NFA N \le 2n + 2 states

Deterministic simulation

B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length \le 5n^2 then simulation of B for longer inputs

C 2DFA equivalent to A poly(n) states
```

Theorem ([Geffert&P.'11])

If L = NL then each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

Proving that the best known upper bound $e^{O(\ln^2 n)}$ is tight would separate L and NL

given unary 2NFA n states \Downarrow Conversion into normal form M $N \leq 2n + 2$ states almost equivalent 2NFA \Downarrow Deterministic simulation В 2DFA equivalent to M poly(N) states Preliminary scan to accept/reject inputs of length $< 5n^2$ $\downarrow \downarrow$ then simulation of B for longer inputs 2DFA equivalent to A poly(n) states

Theorem ([Geffert&P.'11])

If L = NL then each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

Theorem ([Kapoutsis&P.'12])

 $L/poly \supseteq NL$ iff each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

- (i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]
- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs
 Inductive counting argument [Geffert&Mereghetti&P.'07]

- (i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]
- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs
 Inductive counting argument [Geffert&Mereghetti&P.'07]

- (i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]
- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs
 Inductive counting argument [Geffert&Mereghetti&P.'07]

- (i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]
- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs
 Inductive counting argument [Geffert&Mereghetti&P.'07]

Pushdown Automata and Other Devices

Unary Context-Free Languages

Theorem [Ginsurg&Rice '62]

Each unary context-free languages is regular

How large should be a finite automata equivalent to a given unary context-free grammar or pushdown automaton?

Unary Context-Free Languages

Theorem [Ginsurg&Rice '62]

Each unary context-free languages is regular

How large should be a finite automata equivalent to a given unary context-free grammar or pushdown automaton?

Unary Pushdown Automata

From PDAs of size s, accepting regular languages, to equivalent 1DFAs

	unary input	general input
PDAs	2 ^{poly(s)} [P.&Shallit&Wang '02]	

All the bounds are tight!

Unary Pushdown Automata

From PDAs of size s, accepting regular languages, to equivalent 1DFAs

	unary input	general input
PDAs	2 ^{poly(s)} [P.&Shallit&Wang '02]	non recursive [Meyer&Fischer'71]

All the bounds are tight!

Unary Pushdown Automata

From PDAs of size s, accepting regular languages, to equivalent 1DFAs

	unary input	
PDAs	2poly(s)	
	[P.&Shallit&Wang '02]	
deterministic PDAs	2 ^{O(s)} [P.'09]	

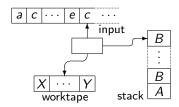
general input non recursive [Meyer&Fischer '71] [Valiant '75]

All the bounds are tight!

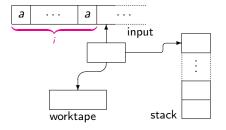
Auxiliary Pushdown Automata (AuxPDAs)

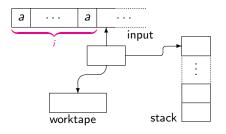
PDAs augmented with an auxiliary worktape

 ${}^{\iota}\mathsf{SPACE'} \equiv \mathsf{worktape}$

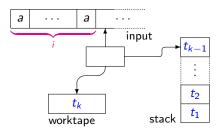


1AuxPDAs: How to Count the Input Length



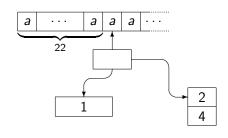


$$i = (1 \ 1 \ 0 \ \cdots \ 1 \ 0 \ 0 \ 1 \ 0)_2$$



$$i = (110 \cdots 100010)_2 = 2^{t_1} + 2^{t_2} + \cdots + 2^{t_{k-1}} + 2^{t_k}$$
$$t_1 t_2 \qquad t_{k-1} \qquad t_k$$

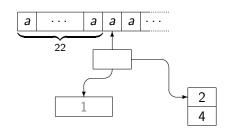
$$22 = 2^4 + 2^2 + 2^1$$

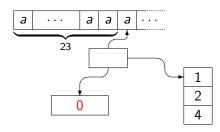


$$23 = 2^4 + 2^2 + 2^1 + 2^0$$

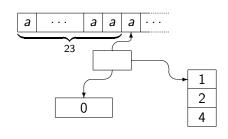
$$22 = 2^4 + 2^2 + 2^1$$

$$23 = 2^4 + 2^2 + 2^1 + 2^0$$





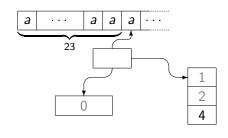
$$23 = 2^4 + 2^2 + 2^1 + 2^0$$

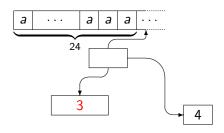


$$24 = 2^4 + 2$$

$$23 = 2^4 + 2^2 + 2^1 + 2^0$$

$$24 = 2^4 + 2^3$$





Example: $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$

$ightharpoonup \mathcal{L}_p$ is nonregular

- \blacktriangleright \mathcal{L}_p is accepted by a 1AuxPDA M which:
 - scans the input while counting its length
 - accepts iff the pushdown store is empty
 i.e., the binary representation of the input length contains
 exactly one digit 1
- ► On input a^n the largest integer stored on the worktape is $\lfloor \log_2 n \rfloor$ which is represented in $O(\log \log n)$ space

Example: $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$

- $ightharpoonup \mathcal{L}_p$ is nonregular
- $ightharpoonup \mathcal{L}_p$ is accepted by a 1AuxPDA M which:
 - scans the input while counting its length
 - accepts iff the pushdown store is empty i.e., the binary representation of the input length contains exactly one digit 1
- ► On input a^n the largest integer stored on the worktape is $\lfloor \log_2 n \rfloor$ which is represented in $O(\log \log n)$ space

Example: $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$

- $ightharpoonup \mathcal{L}_p$ is nonregular
- \triangleright \mathcal{L}_p is accepted by a 1AuxPDA M which:
 - scans the input while counting its length
 - accepts iff the pushdown store is empty i.e., the binary representation of the input length contains exactly one digit 1
- ► On input a^n the largest integer stored on the worktape is $\lfloor \log_2 n \rfloor$, which is represented in $O(\log \log n)$ space

Example:
$$\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$$

- $ightharpoonup \mathcal{L}_p$ is nonregular
- \triangleright \mathcal{L}_p is accepted by a 1AuxPDA M which:
 - scans the input while counting its length
 - accepts iff the pushdown store is empty i.e., the binary representation of the input length contains exactly one digit 1
- On input aⁿ the largest integer stored on the worktape is ⌊log₂ n⌋, which is represented in O(log log n) space

$$\mathcal{L}_p \in 1$$
AuxPDASpace $(\log \log n)$

Space Bounds on 1AuxPDAs

 \mathcal{L}_p is accepted using the *minimum amount of space* for nonregular languages recognition:

Theorem ([P.&Shallit&Wang '02])

If a unary language L is accepted by a 1AuxPDA in $o(\log \log n)$ space then L is regular

In contrast

- with a binary alphabet,
- and space measured on the 'less' expensive accepting computation:

Theorem ([Chytil '86])

For each $k \geq 2$ there is a non context-free language L_k accepted by a 1AuxPDA in $O(\log ... \log n)$ space

Space Bounds on 1AuxPDAs

 \mathcal{L}_p is accepted using the *minimum amount of space* for nonregular languages recognition:

Theorem ([P.&Shallit&Wang '02])

If a unary language L is accepted by a 1AuxPDA in $o(\log \log n)$ space then L is regular

In contrast

- with a binary alphabet,
- and space measured on the 'less' expensive accepting computation:

Theorem ([Chytil'86])

For each $k \ge 2$ there is a non context-free language L_k accepted by a 1AuxPDA in $O(\log ... \log n)$ space

Two-way Pushdown Automata (2PDAs)

- ▶ More powerful than PDAs, e.g., $\{a^nb^nc^n \mid n \ge 0\}$
- ▶ 2DPDAs can be simulated by RAMs in *linear time* [Cook '71]

Main open problems:

- ▶ Power of nondeterminism, i.e., 2DPDAs vs 2PDA
- ▶ 2DPDAs vs linear bounded automata

Two-way Pushdown Automata (2PDAs)

- ▶ More powerful than PDAs, e.g., $\{a^nb^nc^n \mid n \ge 0\}$
- ▶ 2DPDAs can be simulated by RAMs in *linear time* [Cook '71]

Main open problems:

- ▶ Power of nondeterminism, i.e., 2DPDAs vs 2PDA
- 2DPDAs vs linear bounded automata

Very powerful models, even in the deterministic version

Theorem ([Monien '84])

The unary encoding of each language in P is accepted by a 2DPDA

- ► With a *constant number* of input head reversals they accept only regular languages [Liu&Weiner '68]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2DPDA making $\approx \log_2 n$ reversals

Very powerful models, even in the deterministic version

Theorem ([Monien '84])

The unary encoding of each language in P is accepted by a 2DPDA

- ▶ With a *constant number* of input head reversals they accept only regular languages [Liu&Weiner '68]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2DPDA making $\approx \log_2 n$ reversals

Very powerful models, even in the deterministic version

Theorem ([Monien '84])

The unary encoding of each language in P is accepted by a 2DPDA

- ► With a *constant number* of input head reversals they accept only regular languages [Liu&Weiner '68]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2DPDA making $\approx \log_2 n$ reversals

Very powerful models, even in the deterministic version

Theorem ([Monien '84])

The unary encoding of each language in P is accepted by a 2DPDA

- ▶ With a *constant number* of input head reversals they accept only regular languages [Liu&Weiner '68]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2DPDA making $\approx \log_2 n$ reversals

Problem

Does there exist a unary nonregular language accepted by a 2PDA making $o(\log n)$ head reversals?

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., $\{a^nb^n \mid n \geq 0\}$
- Unary case:
 with a constant number of head reversals
 they accept only regular languages [Sudborough '74]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2-head automaton making $\approx \log_2 n$ reversals

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., $\{a^nb^n \mid n \geq 0\}$
- Unary case:
 with a constant number of head reversals
 they accept only regular languages [Sudborough '74]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2-head automaton making $\approx \log_2 n$ reversals

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., $\{a^nb^n \mid n \geq 0\}$
- Unary case:
 with a constant number of head reversals
 they accept only regular languages [Sudborough '74]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2-head automaton making $\approx \log_2 n$ reversals

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., $\{a^nb^n \mid n \geq 0\}$
- Unary case:
 with a constant number of head reversals
 they accept only regular languages [Sudborough '74]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2-head automaton making $\approx \log_2 n$ reversals

Problem

Does there exist a unary nonregular language accepted by a multi-head automaton making $o(\log n)$ head reversals?

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., $\{a^nb^n \mid n \geq 0\}$
- Unary case:
 with a constant number of head reversals
 they accept only regular languages [Sudborough '74]
- ▶ $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$ accepted by a 2-head automaton making $\approx \log_2 n$ reversals

Problem

Does there exist a unary nonregular language accepted by a multi-head automaton making $o(\log n)$ head reversals?

▶ Unary multi-head 2PDAs making *O*(1) input head reversals accept only regular languages [Ibarra '74]

Conclusion

Final Remarks

Unary Automata and Languages

- Interesting properties and differences with respect to the general case
- ► Special methods (e.g., from number theory)
- Important relationships with the general case
- Several open problems

Thank you for your attention!