

Corso di Visione Artificiale

Laurea Magistrale in Informatica (F94)

Docenti: Raffaella Lanzarotti Federico Pedersini

Dipartimento di Informatica Università degli Studi di Milano

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Filtraggio lineare di immagini

- * Filtraggio lineare nel dominio dello spazio
 - convoluzione 2D
 - > esempi di filtraggio lineare (blurring, sharpening)

Filtraggio nel dominio delle frequenze

- > trasformata di Fourier 2D, spettro di un'immagine
- > filtraggio nel dominio delle frequenze
- > campionamento spaziale 2D / spettro / aliasing / Moiré
- > Applicazione: sotto-/sovra-campionamento

(Forsyth/Ponce: Capitolo 4)

Slide credits: varie sorgenti (citate)

Definizione di immagine

Dip. Informatica, Università degli studi di Milano

Definizione di immagine

Visione Artificiale – F. Pedersini

• **Immagine:** funzione definita sul **piano immagine**:

- ▶ Posizione $(x, y) \rightarrow f(x, y)$: **intensità** in posizione $(x, y) \quad f: \mathbb{R}^2 \rightarrow \mathbb{R}$
- > Piano immagine: dominio rettangolare, finito:
- > Immagine a **colori**: 3 componenti in ogni punto:

Immagine digitale: immagine campionata e quantizzata

- Campionamento: dominio spaziale discretizzato:
- > Quantizzazione: valore della funzione discretizzato: I : f(i, j), $f \in \{I_{min}, I_{max}\} \subset \mathbb{N}$

1

				<i>I</i> :	f(i,j)		
		62	79	23	119	120	105
		10	10	9	62	12	78
		10	58	197	46	46	0
		176	135	5	188	191	68
		2	1	1	29	26	37
J	,	0	89	144	147	187	102
1	r -						

Dip. Informatica, Università degli studi di Milano

I:f(i i)

 $\langle x \in [X_{MIN}, X_{MAX}] , y \in [Y_{MIN}, Y_{MAX}] \rangle$ $\mathbf{I}_{RGB}(x, y) = \begin{bmatrix} I_R(x, y) \\ I_G(x, y) \\ I_B(x, y) \end{bmatrix}$

 $I: f(i,j), i,j \in \mathbb{N}$

credits: S. Seitz

Filtraggio lineare di immagini

Filtraggio lineare di immagini digitali:

filtraggio lineare su un dominio (spaziale) discreto

elaborazione dell'immagine descrivibile come una trasformazione applicata all'immagine da un sistema lineare e spazio-invariante, detto **filtro lineare**.

> filtraggio: descrivibile mediante l'operazione di convoluzione, nel dominio dell'immagine

 $\rightarrow I_{out}(i, j)$

> oppure come prodotto, nel dominio delle frequenze spaziali

Nel dominio delle frequenze:

trasformata di Fourier su un dominio 2D → FFT-2D

Visione Artificiale – F. Pedersini	Dip. Informatica, Università degli studi di Milano

 $I_{in}(i,j) \longrightarrow S[\cdot]$

Esempi applicativi: riduzione del rumore

Noise reduction:

come posso ridurre il rumore in immagini di una scena statica?

Dip. Informatica, Università degli studi di Milano

- 1. acquisisco tante (N) immagini uguali
 - ...e faccio la media:

Come posso ridurre il rumore, da immagini di una scena statica?

6 fotogrammi ripetuti...

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Motivazioni: riduzione del rumore

Come posso ridurre il rumore, da immagini di una scena statica?

…e sommati
E se non dispongo di immagini multiple?

Motivazioni: ridimensionamento

✤ L'immagine è troppo grande. Come possiamo ridurla (ad es. di un fattore 2)?

Proposta: prendiamo un pixel ogni 2

Va bene?

Riduzione del rumore

Visione Artificiale – F. Pedersini

source: S. Seitz

Approccio: sostituiamo il valore di ogni pixel con la media dei suoi vicini ✤ Media pesata (1D):

Riduzione del rumore in un'immagine

Approccio:

sostituiamo il valore di ogni pixel con la media dei suoi vicini

- Media pesata (1D):
- * pesi uniformi:

Dip. Informatica, Università degli studi di Milano

Riduzione del rumore: media pesata

Riduzione del rumore in un'immagine

Approccio:

sostituiamo il valore di ogni pixel con la media dei suoi vicini

Media pesata (1D):

Visione Artificiale – F. Pedersini

pesi non uniformi: [1, 4, 6, 4, 1] / 16

source: S. Marschner

Convoluzione

Approccio:

sostituiamo ogni campione (pixel) con una media pesata dei suoi vicini

La descrizione analitica di questa operazione è la

Convoluzione (discreta):

$$(f * g)(x) = f(x) * g(x) = \sum_{k} f(x - k) g(k)$$

Convoluzione in 2D

Cas	0	bi-	dir	nei	nsi	ona	ale						_							
				F	[2	c,	y	pes]	si:	1 1 1	1 1 1	1 1 1	/	9	G	*[]	r,	y]		
	0	0	0	0	0	<u>_</u>	0	0	0	0			7							
	0	0	0	U	0	0	0	0	0	0			0							
	0	0	0	90	90	90	90	90	0	0										
	0	0	0	90	90	90	90	90	0	0										
	0	0	0	90	90	90	90	90	0	0										
	0	0	0	90	0	90	90	90	0	0										
	0	0	0	90	90	90	90	90	0	0										
	0	0	0	0	0	0	0	0	0	0										
	0	0	90	0	0	0	0	0	0	0										
	0	0	0	0	0	0	0	0	0	0										

source: S. Seitz

Caso bi-dimensionale:

			F	[] []	c,	y	pes	si:	1 1 1	l 1 l 1 l 1	/	9	G	[]	r,	y]		
0	0	0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	0	0		0	10						
0	0	0	90	90	90	90	90	0	0									
0	0	0	90	90	90	90	90	0	0									
0	0	0	90	90	90	90	90	0	0									
0	0	0	90	0	90	90	90	0	0									
0	0	0	90	90	90	90	90	0	0									
0	0	0	0	0	0	0	0	0	0									
0	0	90	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	0	0									

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

1

1 1

/9

Convoluzione in 2D

Caso bi-dimensionale:

							-			
							nes	si.	1	1
							pot		1	1
						-	1		1	1
			\boldsymbol{F}	\Box	c,	\boldsymbol{y}_{\cdot}				
0	0	0	0		0	0	0	0	0	1
0	Ŭ	Ŭ	0		Ŭ	0	U	Ŭ	Ŭ	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

Caso bi-dimensionale:

							pes	si:	1	1	1									
									1	1	1	/	9							
			F	'[J	r,	y]		1	1	1			G	f[3	r,	y			
0	0	0	0	0	0	0	0	0	0											
0	0	0	0	0	0	0	0	0	0			0	10	20	30					
0	0	0	90	90	90	90	90	0	0							ľ				
0	0	0	90	90	90	90	90	0	0											
0	0	0	90	90	90	90	90	0	0											
0	0	0	90	0	90	90	90	0	0											
0	0	0	90	90	90	90	90	0	0											
0	0	0	0	0	0	0	0	0	0											
0	0	90	0	0	0	0	0	0	0											
0	0	0	0	0	0	0	0	0	0											
																			sourc	ce: S. Seitz

Т

Т

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Convoluzione in 2D

Caso bi-dimensionale:

-	din	nei	nsi	ona	ale							
						- nes	si.	1	1	1		
						pot	<i>.</i>	1	1	1	/	9
			F			-		1	1	1		
		F'	J	c,	y_{\cdot}							
	0	0	0	0	0	0	0	0				
	0	0	0	0	0	0	0	0			0	10
	0	90	90	90	90	90	0	0				
	0	90	90	90	90	90	0	0				
	0	90	90	90	90	90	0	0				
	0	90	0	90	90	90	0	0				
	0	90	90	90	90	90	0	0				
	0	0	0	0	0	0	0	0				
	90	0	0	0	0	0	0	0				

0	10	20	30	30		

G[x, y]

Convoluzione in 2D

			F	[]	r,	y	pe:	si:	1 1 1	1 1 1	1 1 1	/	9	G	[]	r,	y]			
0	0	0	0	0	0	0	0	0	0											
0	0	0	0	0	0	0	0	0	0			0	10	20	30	30	30	20	10	
0	0	0	90	90	90	90	90	0	0			0	20	40	60	60	60	40	20	
0	0	0	90	90	90	90	90	0	0			0	30	60	90	90	90	60	30	
0	0	0	90	90	90	90	90	0	0			0	30	50	80	80	90	60	30	
0	0	0	90	0	90	90	90	0	0			0	30	50	80	80	90	60	30	
0	0	0	90	90	90	90	90	0	0			0	20	30	50	50	60	40	20	
0	0	0	0	0	0	0	0	0	0			10	20	30	30	30	30	20	10	
0	0	90	0	0	0	0	0	0	0			10	10	10	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0											

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Convoluzione in 2D

La descrizione analitica di questa operazione è la

Convoluzione 2D (discreta):

$$(f * g)(i,j) = f(i,j) * g(i,j) = \sum_{h,k} g(h,k)f(i-h,j-k)$$

20

La convoluzione (filtri lineari)

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Proprietà della convoluzione

Sistemi lineari spazio-invarianti: Filtri lineari

- Se un sistema $S[\cdot]$ gode delle proprietà di: $\dot{\mathbf{v}}$
- Linearità: S(f(i,j) + g(i,j)) = S*
- $S(f(i,j)) = h(i,j) \rightarrow S(f(i j))$ h ; 1->> Spazio-invarianza: \div

Ogni operatore lineare spazio-invariante può essere definito come una o dell'ingresso con la sua **risposta all'impulso** h(i, j):

Proprietà della convoluzione:

- commutativa: a * b = b * a•••
 - Non c'è differenza concettuale tra immagine e filtro
- a * (b * c) = (a * b) * cassociativa: •••
 - > Applicare filtri in cascata è equivalente a un filtro costituito dalla cascata di tutti

$$\left(\left((a * b_1) * b_2\right) * b_3\right) = a * (b_1 * b_2 * b_3)$$

- distributiva: •••
- linearità: *

*

ka * b = a * kb = k (a * b)identità: impulso unitario: $\delta = [\dots, 0, 0, 1, 0, 0, \dots] \rightarrow a * \delta = a$

a * (b + c) = (a * b) + (a * c)

$$I_{in}(i,j) \longrightarrow S[\cdot] \longrightarrow I_{out}(i,j)$$

$$S(f(i,j)) + S(g(i,j))$$

$$\rightarrow S(f(l - n, j - \kappa)) = h(l - n, j - \kappa)$$

ere definito come una convoluzione

$$I_{out}(i,j) = h(i,j) * I_{in}(i,j)$$

Visione Artificiale – F. Pedersini

1

 $\rightarrow g(i,j)$

Risposta all'impulso

Data un'immagine f(i, j)

e un sistema con risposta all'impulso h(i,j), la risposta del sistema all'immagine (risultato del filtraggio): g(i,j)

$$(f * h)(i,j) = \sum_{h,k} h(h,k)f(i-h,j-k)$$

✤ h(i, j): risposta all'impulso del sistema (filtro)

Box filter: convoluzione con risposta all'impulso "box"

Smoothing - raffinamento

g(i,j) = h(i,j) * f(i,j)

credits: D.Forsyth

24

 $f(i,j) \longrightarrow \left[\begin{array}{c} \text{filtro} \\ h(i,j) \end{array}\right] \longrightarrow g(i,j)$

g(i,j) = h(i,j) * f(i,j)

Operatori di convoluzione 2D in MATLAB:

\$ conv2(f, g, 'shape')

$$C(i,j) = \sum_{h,k} f(i-h,j-k) \cdot g(h,k)$$

\$ filter2(f, g, 'shape') xcorr2(f, g)

$$C(i,j) = \sum_{h,k}^{n,k} f(i+h,j+k) \cdot g(h,k)$$

★ se g(i,j) è simmetrico \rightarrow conv2() e filter2() coincidono

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Convoluzione 2D: effetti di bordo

Operatori di convoluzione 2D in MATLAB:

```
conv2(f, g, `shape')
```

```
filter2(f, g, `shape')
```

- che dimensione ha l'immagine (matrice) risultante?
 - > shape = 'full': output size is sum of sizes of f and g
 - > shape = 'same': output size is same as f (default)
 - > shape = 'valid': output size is difference of sizes of f and g

26

Smoothing – defocusing

Defocusing

Lo smoothing del box filter **non** si comporta esattamente come uno 'sfuocamento' della lente

- Lo sfuocamento della lente corrisponde alla ٠ convoluzione con la **MTF** (Modulation Transfer Function) della lente
- MTF Modulation Transfer Function: risposta all'impulso della lente

A(x, y): lens aperture

A(x, y)

MTF(x, y) = A(x, y) * A(x, y)

→ MTF assomiglia molto a una Gaussiana 2D!

MTF – circular aperture

Visione Artificiale – F. Pedersini

A(x, y)

29

source: L. Cinque

Filtraggio gaussiano

Risposta all'impulso: gaussiana 2D

✤ il coefficiente rende unitaria l'area della gaussiana \rightarrow la convoluzione non "amplifica" l'immagine

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Filtraggio con kernel gaussiano

kernel: Gaussiana 2D

Mean vs. Gaussian filtering

Gaussian filters

Proprietà del filtraggio gaussiano:

- Buon filtro "passa-basso"
 - > decadimento veloce della risposta in frequenza
- * Convoluzione del kernel con se stesso ancora Gaussiano
 - > Due convoluzioni in cascata con un kernel gaussiano di dev. std.: σ è equivalente a convolvere una volta con un kernel di dev. std.: $\sqrt{2} \sigma$

* Kernel separabile:

- Kernel 2D separabile in due kernel 1D!
- > 1 convoluzione 2D \rightarrow 2 convoluzioni 1D in cascata (righe \rightarrow colonne)
- Complessità di calcolo si riduce (da N² M² a 2N M²)

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

Source: K. Grauman

Separability example

Gaussian filters

Filtraggio gaussiano 2D *con kernel* 1D

immagine: MxM

filtro: NxN

Complessità:

- kernel 2D: N² M²
- * kernel 1D: 2N M²

MATLAB LIVE Script: GaussianFiltering

Filtraggio 1D verticale

Filtraggio 1D orizzontale

Original

0	0	0
0	1	0
0	0	0

source: D. Lowe

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Esempi di filtraggio lineare

		-		
	100			
	- CO			
	100	0.000		
	-	1000		
		100	 1000	
			 -	
		St. 19		

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

source: D. Lowe

37

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Esempi di filtraggio lineare

		1000		
	1000			
	1000			
		H EREN		
		1000		
		1000	1000	
	8 F 1			
			and the second s	
and the second second				

Original

0	0	0
0	0	1
0	0	0

Shifted left by 1 pixel

Original

1	1	1
1	1	1
1	1	1

source: D. Lowe

39

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Esempi di filtraggio lineare

Esempi di filtraggio lineare

Visione Artificiale – F. Pedersini

source: D. Lowe

before

after

Sharpening revisited

What does blurring take away?

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Sharpening filter – kernel

Filtraggio lineare di immagini

- Filtraggio lineare nel dominio dello spazio
 - > convoluzione 2D
 - > esempi di filtraggio lineare (blurring, sharpening)

Filtraggio nel dominio delle frequenze

- > trasformata di Fourier 2D, spettro di un'immagine
- > filtraggio nel dominio delle frequenze
- campionamento spaziale 2D / spettro / aliasing / Moiré
- > Applicazione: sotto-/sovra-campionamento

(Forsyth/Ponce: Capitolo 4)

Slide credits: varie sorgenti (citate)

 $S(f) = \int s(x) e^{-j2\pi f x} dx$

Visione Artificiale – F. Pedersini

Trasformata di Fourier:

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Richiami: trasformata di Fourier

Trasformata di Fourier

può essere vista come un "cambio di base": •••

Sintesi: dallo spettro alla funzione

$$s(x) = \int_{-\infty}^{+\infty} S(f) e^{+j2\pi f x} df$$

f: frequenza – dimensione reciproca a quella del dominio:

tempo [s] \rightarrow frequenza [Hz] spazio [m] \rightarrow frequenza spaziale [m⁻¹]

Immagine: funzione su dominio spaziale 2D

$$f: \mathfrak{R}^2 \to \mathfrak{R} \quad \mapsto \quad x, y \to f(x, y) \quad x, y: [m | pixel | ...]$$

* Spettro: funzione su dominio delle frequenze spaziali

$$x, y \rightarrow f(x, y) \xleftarrow{\Im} u, v \rightarrow F(u, v) \quad u, v \colon [m^{-1} | pixel^{-1} | ...]$$

Trasformata di Fourier 2D:

$$f(x,y) \quad \longleftrightarrow \quad \Im\left[f(x,y)\right] = F(u.v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy$$

- > *u*, *v* : frequenze spaziali [cicli/m, cicli/pixel]
- > $e^{-j2\pi(ux_vy)}$: esponenziale complesso (fasore)

$$e^{-j2\pi(ux_vy)} = \cos 2\pi(ux + vy) - j\sin 2\pi(ux + vy)$$

Operatore inverso: antitrasformata di Fourier 2D:

$$F(u,v) \quad \stackrel{\mathfrak{S}^{-1}}{\longleftrightarrow} \quad \mathfrak{S}^{-1}\left[F(u,v)\right] = f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Trasformata di Fourier 2D

Trasformata di Fourier 2D:

 rappresentazione di una funzione 2D come combinazione lineare di sinusoidi/cosinusoidi

Sinusoide **2D** –
$$S_{u,v}(x, y)$$

$$S_{u,v}(x,y) = e^{-j2\pi(ux+vy)} = \cos(2\pi(ux+vy)) + j\sin(2\pi(ux+vy))$$

49

Trasformata di Fourier 2D – frequenze spaziali

Funzioni-base (cosinusoidi)

Trasformata di Fourier 2D

		Function	Fourier transform	
pairs (2D): Proprietà e	orm	g(x,y)	$\int_{-\infty}^{\infty} g(x,y) e^{-i2\pi(ux+vy)} dx dy$	
coppie notevoli		$\int_{-\infty}^{\infty} \mathcal{F}(g(x,y))(u,v)e^{i2\pi(ux+vy)}dudv$	$\mathcal{F}(g(x,y))(u,v)$	
trasformata/	impulso:	$\delta(x,y)$	1	
antitrasionnata	derivata:	$rac{\partial f}{\partial x}(x,y)$	$u\mathcal{F}(f)(u,v)$	
	coseno:	$0.5\delta(x+a,y) + 0.5\delta(x-a,y)$	$\cos 2\pi a u$	
	Gaussiana:	$e^{-\pi(x^2+y^2)}$	$e^{-\pi(u^2+v^2)}$	
box – ((rect() in 2D):	$box_1(x,y)$	$\frac{\sin u}{u} \frac{\sin v}{v}$	
scalatu		f(ax, by)	$rac{\mathcal{F}(f)(u/a,v/b)}{ab}$	
'pettin	ne' di impulsi:	$\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x-i, y-j)$	$\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(u-i, v-j)$	
convoluzi	one/prodotto:	(f**g)(x,y)	$\mathcal{F}(f)\mathcal{F}(g)(u,v)$	
	traslazione:	f(x-a,y-b)	$e^{-i2\pi(au+bv)}\mathcal{F}(f)$	
	rotazione:	$f(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$	$\mathcal{F}(f)(u\cos\theta - v\sin\theta, u\sin\theta + v\cos\theta)$	

Fourier Transform pairs (2D): Coppie notevoli trasformata/antitrasformata

✤ Box 2D (versione 2D di: rect(x)):

$$f(x,y) = box\left(\frac{x}{a}, \frac{y}{b}\right) = \begin{cases} 1 & |x| < \frac{a}{2}, |y| < \frac{b}{2} \\ 0 & altrove \end{cases}$$

Sinc 2D:

$$F(u, v) = \operatorname{sinc}(a \, u) \cdot \operatorname{sinc}(b \, v)$$

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Trasformata di Fourier 2D

Fourier Transform pairs (2D):

Coppie notevoli trasformata/antitrasformata

53

Trasformata di Fourier 2D

Fourier Transform pairs (2D):

Coppie notevoli trasformata/antitrasformata

• **Gaussiana 2D** – varianza σ^2 :

$$f(x, y) = \frac{1}{2\pi\sigma^2} e^{\frac{x^2 + y^2}{2\sigma^2}}$$

• Gaussiana 2D – varianza $1/\sigma^2$:

$$F(u, v) = e^{-2\pi^2 \sigma^2 (x^2 + y^2)}$$

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Trasformata di Fourier 2D

Campionamento 2D: discretizzazione del dominio

- Immagini digitali: dominio discreto
 - $f(x,y) \rightarrow f(i,j)$

Campionamento: discretizzazione del dominio

In 1D:

$$f_{S}(i) = f\left(x = i\Delta_{X}\right) = \sum_{h} f(x) \cdot \delta\left(x - h\Delta_{X}\right)$$
$$= f(x)\sum_{h} \delta\left(x - h\Delta_{X}\right)$$

* In 2D:

$$f_{s}(i,j) = f\left(x = i\Delta_{x}, y = j\Delta_{y}\right)$$
$$= \sum_{h}\sum_{k} f(x,y)\delta\left(x - h\Delta_{x}, y - k\Delta_{y}\right)$$
$$= f(x,y)\sum_{h}\sum_{k}\delta\left(x - h\Delta_{x}, y - k\Delta_{y}\right)$$

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Campionamento e ricostruzione

57

Come rappresento la trasformata di Fourier dell'immagine campionata?

L'immagine digitale f(i, j) è campionata, quindi a dominio discreto e limitato
 → ha trasformata su un dominio continuo e illimitato nelle frequenze

f(i,j): dominio discreto e limitato $\rightarrow F(u,v)$: dominio continuo e illimitato

 \succ F(u, v) non è rappresentabile numericamente!

Soluzione: periodicizzo l'immagine digitale Immagine digitale discreta e periodica → spettro periodico e discreto f(i, i): dominio discreto o limitato (1 periodo) → F(u, n): dominio discreto o limitato

f(i,j): dominio discreto e limitato (1 periodo) $\rightarrow F(u,v)$: dominio discreto e limitato

DFT/FFT: Discrete/Fast Fourier Transform

- Immagine: MxN punti (pixel)
- ✤ Spettro: MxN punti

$$f(i,j) \iff F(u,v) = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} f(i,j) e^{-j2\pi \left(\frac{iu}{M} + \frac{jv}{N}\right)}, \quad \begin{cases} 0 \le u \le M-1 \\ 0 \le v \le N-1 \end{cases}$$

$$F(u,v) \iff f(i,j) = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} F(u,v) e^{j2\pi \left(\frac{iu}{M} + \frac{jv}{N}\right)}, \quad \begin{cases} 0 \le i \le M-1 \\ 0 \le j \le N-1 \end{cases}$$

Frequenze spaziali

♦ frequenza orizzontale u , u/M: $0 \le u \le M - 1 \left[\frac{cicli}{immagine h.} \right]$ $0 \le \frac{u}{M} \le \frac{M - 1}{M} \left[\frac{cicli}{pixel h.} \right]$ ♦ frequenza verticale v , v/M: $0 \le v \le N - 1 \left[\frac{cicli}{immagine v.} \right]$ $0 \le \frac{v}{N} \le \frac{N - 1}{N} \left[\frac{cicli}{pixel v.} \right]$

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Trasformata di Fourier 2D – frequenze spaziali
$$\diamond$$
 Funzioni-base (cosinusoidi): u, v : cicli/immagine $(M, N=64)$ $u = 0, v = 0$ $u = 0, v = 1$ $u = 1, v = 0$ $u = 2, v = 0$ $u = 0, v = 1$ $u = 1, v = 0$ $u = 2, v = 1$ $u = 3, v = 3$ $u = 8, v = 1$ $u = 2, v = 1$ $u = 3, v = 3$ $u = 8, v = 1$

Visione Artificiale – F. Pedersini

59

Esempi: filtraggio nel dominio delle frequenze

Applicazioni: filtraggi lineari, nel dominio della frequenza (spaziale)

Filtraggi nel dominio delle frequenze

Nel dominio degli spazi

Risposta g(i,j) in uscita dal filtro h(i,j): • h(i,j): risposta all'impulso del filtro

Nel dominio delle frequenze spaziali

Spettro G(u,v) in uscita dal filtro H(u,v):

filtro

h(i,j)

Spazi:Convoluzione:
$$O(N^2 M^2)$$
Frequenze:Trasformata \Rightarrow Prodotto \Rightarrow Antitrasformata: $O(N^2 + 2 N^2 \log(N^2)) = O(N^2 (1 + 4 \log(N)))$

$$F(u,v) \longrightarrow G(u,v) = H(u,v) F(u,v)$$

f(i,j) -

$$g(i,j) = f(i,j) * h(i,j)$$
$$= \sum_{h,k} h(h,k) f(i-h,j-k)$$

$$G(u,v) = F(u,v) \cdot H(u,v)$$

[F -1

→ g(i,j) = h(i,j) * f(i,j)

Esempi: filtraggio nel dominio delle frequenze

Filtraggio passa-basso in frequenza

Complessità: FFT: N² log(N²)

prodotto: N²

 $= 2 256^2 16$

 $= 256^{2*}33$ ≈ **2**10⁶

 $+ 256^{2}$

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Esempi: filtraggio nel dominio delle frequenze

Filtraggio passa-basso in frequenza

- ♦ Analoga operazione negli spazi:
- Convoluzione con

Complessità:

convoluzione: N² M² $= 256^2 \ 128^2$ = 2³⁰ ≈ 10⁹

kernel di convoluzione (128 x 128 punti)

$$H(u,v) = box\left(\frac{u,v}{16}\right)$$

$$\Downarrow$$

 $h(i, j) = \operatorname{sinc}(16 i) \cdot \operatorname{sinc}(16 j)$

Esempi: filtraggio nel dominio delle frequenze

Esempi: applicazione forense Rimozione pattern periodico del background

Esempi: filtraggio nel dominio delle frequenze

Esempi: elaborazione immagini

Immagine da modulo orbitante intorno alla Luna (1966)

Campionamento 2D: discretizzazione del dominio

In 2D:
$$f_{S}(i,j) = f\left(x = i\Delta_{X}, y = j\Delta_{Y}\right) = f(x,y)\sum_{h}\sum_{k}\delta\left(x - h\Delta_{X}, y - k\Delta_{Y}\right)$$

Nel dominio delle frequenze:
 ripetizione periodica (periodo: 1/Δ) dello spettro originale:

$$F_{S}(u,v) = F(u,v) * \sum_{h} \sum_{k} \delta\left(u - \frac{h}{\Delta_{X}}, y - \frac{k}{\Delta_{Y}}\right) = \sum_{h} \sum_{k} F\left(u - h f_{X}, y - k f_{Y}\right)$$

• dove: $f_X = \frac{h}{\Delta_X}, f_X = \frac{k}{\Delta_Y}$

Teorema del campionamento (Nyquist):

se lo spettro è limitato in banda a $(f_U/2, f_V/2)$, è possibile ricostruire la funzione (immagine) originale a partire dai suoi campioni.

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Aliasing - esempio

0	ø	o	0	0	0	0	0	¢	¢.	¢	¢
0	ð	0	D	o	o	٩	0				
a	٥	Ô	٥	D	٥	٥	٥	0	σ	o	o
a	0	¢	٥	Þ	0	¢	¢				
σ	¢	0	D	o	0	o	0	o	0	o	0
0	o	o	0	0	0	0	o				
0	٥	o	0	0	0	0	Đ	Þ	¢	ò	¢
٩	٥	ø	٥	0	0	٥	¢				
~				~							~
Š				Ĭ)
						۰.					
								0	0		0
Ċ.				~							
•				0							
								0	0		o

67

Resample the checkerboard by taking one sample at each circle.

Top left and top right: reasonable results.

Bottom left is all black and bottom right has checks that are too big.

source: D. Forsyth

Campionamento - aliasing

Aliasing

 Se il teorema del campionamento non è rispettato, non posso ricostruire l'immagine originale:

Filtraggio anti-Aliasing

 Applico un filtro passa-basso, che azzeri tutte le frequenze al di fuori del rettangolo:

$$H(u,v) = 0$$
, $|u| \ge \frac{f_U}{2}$ oppure $|v| \ge \frac{f_V}{2}$

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Campionamento - aliasing

Sottocampionamento e aliasing

- Sottocampionamento: 1 campione ogni N
- Nelle frequenze: frequenze spaziali si riducono di 1/N
- ♦ le repliche spettrali si avvicinano di N volte → si può generare ALIASING!

КÇ

Campionamento - aliasing

Sottocampionamento e aliasing

- Soluzione: filtraggio passa-basso → subsampling
- in genere si utilizza un kernel Gaussiano
 - separabile (calcolo efficiente)

MATLAB LIVE Script: Subsampling

> qualità visiva del filtraggio (assenza di 'ringing')

1/16 subsampling

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

128x128

Motivazioni: ridimensionamento

 L'immagine è troppo grande. Come possiamo ridurla (ad es. di un fattore 2)?

Proposta:

prendiamo un pixel ogni 2

Va bene?

Sottocampionamento (sub-sampling)

Image subsampling (50%): Eliminazione di una riga e una colonna ogni 2 → 1/2 righe, 1/2 colonne

1/4

1/8

1/2

Visione Artificiale – F. Pedersini

source: S. Seitz

Sottocampionamento

Image subsampling (senza prefiltraggio)

Dip. Informatica, Università degli studi di Milano

1/4 (2x zoom) 1/8 (4x zoom)

Gaussian (low-pass) pre-filtering

Solution: filter the image, *then* subsample

• Filter size should double for each 1/2 size reduction

Gaussian $\rightarrow 1/2$

 $G \rightarrow 1/4$

 $G \rightarrow 1/8$

	•	source: S. Seitz
Visione Artificiale – F. Pedersini	Dip. Informatica, Università degli studi di Milano	75

Sottocampionamento

✤ con prefiltraggio mediante kernel gaussiano

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Piramide Gaussiana

Piramide Gaussiana (Gaussian pyramid)

 A partire dall'immagine originale, generazione di layer multipli, ogni volta di dimensioni dimezzate

Subsampling:

 ogni volta applico un filtro gaussiano con funzione anti-aliasing

Visione Artificiale – F. Pedersini

Dip. Informatica, Università degli studi di Milano

Applicazione: Pattern Detection mediante correlazione

Pattern Detection mediante correlazione

- * La convoluzione con h(x, y) è il modo ottimo per rivelare il pattern h(x, y) in immagini rumorose (rumore bianco)
- Tecnica ottima per rivelare un pattern di forma nota immerso in rumore gaussiano bianco

correlazione con h(x, y) = convoluzione con $\overline{h}(x, y)$

$$f * g = \sum_{h,k} f(h,k)g(i-h,j-k) \iff xcorr(f,g) = \sum_{h,k} f(h,k)g(i+h,j+k)$$

 Tecnica utilizzata (in 1D) nei radar per rivelare l'eco del segnale trasmesso: la posizione dell'eco mi dice la distanza dell'oggetto rilevato

