
TCP Westwood:
congestion control with faster recovery

UCLA CSD TR #200017
S. Mascolo, C. Casetti, M. Gerla, S. S. Lee, M. Sanadidi

Computer Science Department - UCLA
Los Angeles, CA, 90024

Abstract

In this paper we propose a new version of the TCP protocol, called TCP Westwood, which enhances the per-
formance of TCP window congestion control by using as feedback the end-to-end measurement of the bandwidth
available along a TCP connection. The available bandwidth is estimated at the TCP source by measuring and low-pass
filtering the returning rate of acknowledgments. The estimated bandwidth is then used to properly set the congestion
window and the slow start threshold after a congestion episode, that is after a timeout or 3 duplicate acknowledgments.
The rationale of this strategy is simple: TCP Westwood sets a slow start threshold and a congestion window which are
consistent with the network capacity measured at the time congestion is experienced. In particular, TCP Westwood
introduces a mechanism of faster recovery to avoid overly conservative reduction of the congestion window after a
congestion episode by taking into account the end-to-end estimation of available bandwidth. The advantage of the
proposed mechanism is that the TCP sender recovers faster after losses especially over connections with large round
trip times, or running over wireless links where sporadic losses are due to unreliable links rather than congestion. The
proposed modifications follow the end-to-end design principle of TCP. They require only slight modifications at the
sender side and are backward-compatible. Simulation results show a considerable throughput increment in comparison
with TCP Reno and TCP SACK over wired networks and even more over wireless networks.

I. INTRODUCTION

The Transmission Control Protocol (TCP) is designed to offer an end-to-end connection-oriented packet
switching service using IP over heterogeneous networks. It was originally designed to provide reliable
data delivery over conventional (wired) networks for a limited range of transmission rates and propagation
delays. One of TCP strengths lies in its congestion control mechanism proposed in the cornerstone work
by Van Jacobson [1]. Nowadays, data transfers over communication paths with ever-larger bandwidth/delay
products, quality of service (QoS) requirements for interactive traffic and communication over wireless
links, are shifting the domain for which TCP was originally engineered. As a consequence, active research
is in progress to extend the domain of TCP operability [2], [3], [4], [5], [6].

The congestion control algorithm used in the TCP/IP protocol is a sliding window mechanism that uses
packet loss to detect congestion. In particular, the end-systems probe the network state by gradually increas-
ing the window of packets that are outstanding in the network until the network becomes congested and
drops packets. Initially, the increase is exponential during the Slow Start phase. This phase is intended to
quickly grab the available bandwidth. When the window size reaches a slow start threshold (ssthresh), the
increase becomes linear, thus allowing for a gentler probing of the available capacity. Clearly, it is desirable
to set the threshold to a value that approximates the connection’s ”fair share”. The optimal value for the
slow start threshold is the one that corresponds to the segments in flight in a pipe when TCP rate equal to
the available bandwidth [8], i.e. when its transmission window is equal to the available bandwidth–delay
product.

When a loss is detected either through duplicate acknowledgements, or through a coarse timeout expi-
ration, the connection backs off by shrinking its congestion window. If the loss is indicated by duplicate
ACKs, TCP Reno attempts to perform a ”fast recovery” by retransmitting the lost segments and halving
the congestion window. If the loss is followed by a coarse timeout expiration, the congestion window is
reset to 1. In either case, after the congestion window is reset, the connection needs several round-trip times

1



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 2

before the window-based probing is restored to near-capacity. This problem is exacerbated when random or
sporadic losses occur. Random losses are here defined as losses not caused by congestion at the bottleneck
link. They are common in the presence of wireless channels. In this case, a burst of lost segments is erro-
neously interpreted by a TCP source as an indication of congestion, and dealt with by shrinking the sender’s
window. Such action, clearly, does not alleviate the random loss condition and it merely results in reduced
throughput. The larger the bandwidth-delay product, the larger the degradation caused by such action.

A similar situation occurs in presence of bursty sources that may be responsible for small, sporadic losses
due to a flurry of UDP packets shortly congesting intermediate routers. Although a smaller transmission
window can help lowering the congestion in the short run, it will affect the source’s ability to regain speed
in the long run. Random or sporadic losses (or a combination of the two) cannot be efficiently handled by
conventional TCP algorithms that use packet drop (rather than bandwidth availability) information to set
their congestion window.

This paper builds on the guidelines set forward in [7]. It proposes a simple scheme for the TCP source to
estimate the available bandwidth and use the bandwidth estimation to recover faster, thus achieving higher
throughput. The proposed scheme exploits two basic concepts: the end-to-end estimation of the available
bandwidth, and the way such estimate is used to set the slow start threshold and the congestion window. It is
worth underscoring that our scheme is in tune with the fundamental TCP design principle that the feedback
is merely end-to-end and does not rely upon explicit information from intermediate nodes at the network
level.

The paper is organized as follows: Section II details the bandwidth measurement process included in TCP
Westwood; in Section III, we discuss the guidelines of the new algorithm and present implementation details
in Section IV; experimental test results and comparisons with other versions of the TCP protocol are shown
in Section V; Section VI concludes the paper.

II. END-TO-END BANDWIDTH MEASUREMENT

A basic assumption of TCP design is that the network is a “black box”. As a consequence, a TCP
source cannot receive any explicit congestion feedback from the network and has to rely only on implicit
feedback such as timeouts, duplicate acknowledgments, round trip measurements. It is thus said that TCP
must perform an “end-to-end” control. In this work, we introduce a new implicit feedback to be used for
congestion avoidance. We propose that a source perform an end-to-end estimate of the bandwidth available
along a TCP connection by measuring the rate of returning acknowledgments. For such an estimate to
be meaningful, the source must be able to infer the amount of data delivered to the receiver over time.
The TCP protocol provides for the receiver to notify the sender of the reception of a segment by means
of an acknowledgement (ACK), carrying an indication as to what segment was received. When an ACK
is received by the source, it conveys the information that an amount of data corresponding to a specific
transmitted packet was delivered to the destination. If the transmission process is not affected by losses,
simply averaging the delivered data count over time yields a fair estimation of the bandwidth currently used
by the source.

When duplicate ACKs (DUPACKs), indicating an out-of-sequence reception, reach the source, they
should also count toward the bandwidth estimate, and a new estimate should be computed right after their
reception. However, the source is in no position to tell for sure which segment triggered the DUPACK
transmission, and it is thus unable to update the data count by the size of that segment. An average of the
segment size sent thus far in the ongoing connection should therefore be used, allowing for corrections when
the next cumulative ACK is received. For the sake of simplicity, though, in this paper we will assume all
TCP segments as having the same size. Following this assumption, we will further assume that sequence
numbers are incremented by one per segment sent, although the actual TCP implementation keeps track of
the number of bytes instead: the two notations are interchangeable if segments have all the same size.

It is important to notice that, immediately after a congestion episode, followed either by a timeout or n
duplicate ACKs, the bandwidth used by the connection is exactly equal to the maximum bandwidth available
to that connection. This is confirmed by the fact that packets have been dropped, a clear indication that



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 3

buffers are at (or near) saturation. Before a congestion episode, the used bandwidth is less or equal to the
available bandwidth because the TCP source is still probing the network capacity. It is important to employ
a low-pass filter to obtain the low-frequency components of the available bandwidth. In fact it is known [8]
that congestion occurs whenever the low-frequency input traffic rate exceeds the link capacity. Therefore it
is useful to track only low-frequency components of the available bandwidth. In our scheme, the bandwidth
estimation is performed using a low-pass filter, as described by the following pseudocode:

if (ACK is received)
sample_BWE[k] = (acked*pkt_size*8)/

(now - lastacktime);
BWE[k] = (19/21)*BWE[k-1] + (1/21)*

(sample_BWE[k]+ sample_BWE[k-1]);
endif

where acked indicates the number of segments acknowledged by the latest ACK, pkt size indicates
the segment size in bytes, now indicates the current time, lastacktime the time the previous ACK was
received, k and (k-1) indicate the current and the previous value of the variable, and BWE is the low-pass
filtered measurement of the available bandwidth. The filter is obtained by discretizing a first-order low-pass
filter using the trapezoidal rule 1 and by assuming a time constant to sampling-time ratio 2 equal to 10.

The estimated bandwidth is eventually translated into the appropriate windows size as cwin = BWE �

RTTmin, where RTTmin is the smallest round-trip time routinely computed by the TCP source (and used
to set the coarse timeout).

As a final remark, in this paper we focus on estimating the available bandwidth at the TCP source in order
to minimize and localize modifications of TCP at the sender side. It is clear that the bandwidth available
along a TCP connection can be evaluated at the receiver side using the same filtering procedure. Then, this
feedback could be delivered back to the source via ACKs by setting the AdvertisedWindow field equal
to min(AdvertisedWindow;RTTmin � BWE)). On the one hand, this choice has the major advantage
of robust bandwidth estimation with respect to losses of ACKs along the returning path. Indeed, losses
of ACKs, i.e., along asymmetric TCP connections, could negatively affect the bandwidth estimation at the
source. On the other hand, it would require modifications of the TCP receiver, whereas our choice of placing
the bandwidth estimation at the sender favors a sender-side-only implementation of the new protocol.

A. On the effects of delayed and cumulative ACKs on BWE

As previously stated, DUPACKs should count toward the bandwidth estimation, since their arrival in-
dicates a successfully received segment, albeit in the wrong order. As a consequence, a cumulative ACK
should only count as one segment’s worth of data since duplicate ACKs ought to have already been taken
into account. However, the matter is further complicated by the issue of delayed ACKs. The standard TCP
implementation provides for an ACK being sent back once every other segment received, or if a 200-ms
timeout expires after the reception of a single segment [9].

The combination of delayed and cumulative ACKs can potentially disrupt the bandwidth estimation pro-
cess, as pointed out by the following example. Suppose a connection has successfully delivered every
segment up to no. 99, and no. 100 through 109 are lost due to sudden congestion. If the transmitter window
at that point is sufficiently large to send 20 more segments, and the congestion has been relieved, segments
ranging from no. 110 to 129 will be successfully delivered and will elicit a flurry of 20 duplicate acknowl-
edgements. According to our bandwidth estimation algorithm, each DUPACK received should trigger a
BWE update. On receiving three DUPACKs, the TCP will enter the ’Faster Retransmit’ phase, and will
resend packets from no. 100 onwards. Assuming no losses occur, the receiver will counter these resent seg-
ments by issuing 5 delayed ACKs (one for each pair of segments from 100 through 109) and 1 cumulative

1The trapezoidal rule is also known as bilinear transformation or Tustin rule
2In a further research, we are going to explore filters that take into account the fact that the sampling time, i.e. the interarrival

time of ACKs, is not constant



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 4

ACK (acknowledging segments from 110 through 129, which it originally received and stored). Clearly, if
the above pseudocode is applied verbatim, the bandwidth estimation would surge upward as the source re-
ceives back-to-back ACKs, one of which single-handedly acknowledges 20 segments. The value of acked
in the pseudocode must therefore be carefully chosen. This example stresses two important aspects of the
bandwidth estimation process:
� the source must keep track of the number of DUPACKs it has received before new data is acknowledged;
� the source should be able to detect delayed ACKs and act accordingly.

The approach we have chosen to take care of these two issues is detailed by the AckedCount procedure,
detailed below, showing the set of actions to be undertaken upon the reception of an ACK, for a correct deter-
mination of acked. The key variable is accounted for, which keeps track of the received DUPACKs.
When an ACK is received, the number of segments it acknowledges is first determined (cumul ack). If
cumul ack is equal to 0, then the received ACK is clearly a DUPACK and counts as 1 segment towards
the BWE; the DUPACK count is also updated. If cumul ack is larger than 1, the received ACK is either
a delayed ACK or a cumulative ACK following a retransmission event; in that case, the number of ACKed
segments is to be checked against the segments already accounted for (accounted for). If the received
ACK acknowledges fewer or the same number of segments than expected, it means that the ”missing” seg-
ments were already accounted for when DUPACKs were received, and they should not be counted twice.
If the received ACK acknowledges more segments than expected, it means that although part of them were
already accounted for by way of DUPACKs, the rest are cumulatively acknowledged by the current ACK;
therefore, the current ACK should only count as the cumulatively acknowledged segments. It should be
noted that the last condition correctly estimates the delayed ACKs (cumul ack = 2 and accounted for
= 0).

PROCEDURE AckedCount

cumul_ack = current_ack_seqno - last_ack_seqno;

if (cumul_ack = 0)
accounted_for=accounted_for+1;
cumul_ack=1;

endif

if (cumul_ack > 1)
if (accounted_for >= cumul_ack)
accounted_for=accounted_for-cumul_ack;
cumul_ack=1;

else if (accounted_for < cumul_ack)
cumul_ack=cumul_ack-accounted_for;
accounted_for=0;

endif
endif

endif

last_ack_seqno=current_ack_seqno;
acked=cumul_ack;

return(acked);

END PROCEDURE

III. TCP WESTWOOD: ALGORITHM GUIDELINES

In this section we describe how the bandwidth estimation can be used by the congestion control algorithm
executed at the sender side of a TCP connection in order to accomplish a faster recovery after a congestion
event. First, we outline the algorithm in the most general form. Then, we describe the specific form we



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 5

have implemented. As will be explained, the congestion window dynamics during slow start and congestion
avoidance are unchanged, that is they increase exponentially and linearly, respectively, as in current TCP
Reno.

The general idea is to use the estimated bandwidth BWE to set the congestion window (cwin) and the slow
start threshold (ssthresh) after a congestion episode. Recall that the basic role played by cwin and ssthresh
in TCP congestion control is that cwin is increased and decreased to track the available bandwidth–delay
product that should be represented by ssthresh.

A major, additional advantage of using BWE as an implicit feedback to set cwin and ssthresh comes
from the fact that network routers can easily enforce fair queueing on FIFO queues by implementing simple
queueing policies such as RED, WRED or FRED. In the past, several researchers [10], [11] have proposed
droppers to allocate available bandwidth to different flows according to specific queueing policies. While
TCP Westwood does not rely on information from intermediate nodes, it can nonetheless exploit these
queueing strategies, if present, thanks to the resulting accurate flow-by-flow bandwidth allocation. Overall,
TCP Westwood performance improves if some form of fair sharing is implemented in the network, although
this aspect will be discussed in a different work.

We start by describing the general algorithm behavior after n duplicate ACKs and after a coarse timeout
expiration.

A. Algorithm after n duplicate ACKS

The pseudocode of the algorithm is the following:

if (n DUPACKs are received)
if (cwin>ssthresh) /* congestion avoid. */

ssthresh = f1(BWE*RTTmin);
cwin = ssthresh;

endif
if (cwin<ssthresh) /*slow start */
ssthresh= f2(BWE*RTTmin)
if (cwin > ssthresh)

cwin = ssthresh
endif

endif
endif

The rationale of the algorithm is simple. During the congestion avoidance phase we are probing for extra
available bandwidth. Therefore, when n DUPACKS are received, it means that we have hit the network
capacity (or that, in the case of wireless links, one of more segments were dropped due to sporadic losses).
Thus, the slow start threshold is set equal to the available pipe size, which is BWE � RTTmin, the con-
gestion window is set equal to the ssthresh and the congestion avoidance phase is entered again to gently
probe for new available bandwidth. Function f1 introduces one degree of freedom that can be used to tune
the algorithm. In this paper we have chosen an identity function for f1, i.e. f1(�) = (�). During the slow
start phase we are still probing for the available bandwidth. Therefore the BWE we obtain after n duplicate
ACKs is used to set the slow start threshold. After ssthresh has been set, the congestion window is set equal
to the slow start threshold only if cwin>ssthresh. In other words, during slow start, cwin still features
an exponential increase as in the current implementation of TCP Reno. Function f2 introduces one more
degree of freedom that we can use to tune the algorithm.

B. Algorithm after coarse timeout expiration

The pseudocode of the algorithm is

if (coarse timeout expires)
if (cwin>ssthresh) /* congestion avoid. */



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 6

ssthresh = f3(BWE*RTTmin);
if (ssthresh < 2)

ssthresh = 2;
cwin = 1;

else
cwin = f4(BWE*RTTmin);

endif
endif
if (cwin<ssthresh) /* slow start */
ssthresh = f5(BWE*RTTmin)
if (ssthresh < 2) ssthresh = 2;

cwin = 1;
else

cwin = f6(BWE*RTTmin)
endif

endif
endif

The rationale of the algorithm is again simple. After a timeout the cwin and the ssthresh are set according
to one of the functions fi, i=3,6 depending on the phase the algorithm is in when a timeout is experienced.
Notice that using the general functions fi, i=1,6 provides six degree of freedom to tune the algorithm. In
the next Sections, we will investigate and simulate a sample selection of these functions, and provide default
values.

IV. TCP WESTWOOD: ALGORITHM IMPLEMENTATION

In this section, we illustrate an implementation obtained choosing simple fi functions.

A. Algorithm after 3 duplicate ACKS

The pseudocode of the algorithm is as follows:

if (3 DUPACKs are received)

if (cwin<ssthresh) /* slow start */
a = a + 0.25;
if (a > 4)

a = 4;
endif

endif

if (cwin>ssthresh) /* congestion avoid. */
a = 1;

endif

ssthresh = (BWE*RTTmin)/(pkt_size*8*a);

/* reset cwin to ssthresh, if larger */

if (cwin>ssthresh)
cwin = ssthresh;

endif

endif

By inspecting the code, it can be seen that during congestion avoidance, f1 is simply chosen as an
identity function, i.e. f1(x) = x. Conversely, during slow start, f2 is chosen as f2(x) = x=a. Notice that
a increases from 1 to 4, in steps of 0.25, every time 3 DUPACKs are received in slow start, while a is set to
1 when 3 DUPACK are received in congestion avoidance. At connection setup, a is initialized as 1.



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 7

The purpose of the threshold reduction factor a is to dampen a possible overestimation of the available
bandwidth, an occurrence which is rather common during prolonged periods of congestion. Indeed, the
more frequently a triple DUPACK is received during slow start (an indication that ssthresh was set too
high), the bigger the reduction factor becomes. Following the same line of reasoning, a is restored to 1 if
congestion is detected in congestion avoidance: clearly, ssthresh was set correctly and there is no need to
reduce the impact of BWE.

B. Algorithm after coarse timeout expiration

Following a coarse timeout expiration, a set of actions similar to the triple DUPACK case is triggered:

if (coarse timeout expires)

if (cwin<ssthresh) /* slow start */
a = a + 1;
if (a > 4)

a = 4;
endif

endif

if (cwin>ssthresh) /* congestion avoid. */
a = 1;

endif

ssthresh = (BWE*RTTmin)/(pkt_size*8*a);

if (ssthresh > 2)
ssthresh = 2;
cwin = 1;

endif

endif

In this case, function f3, which is used to set ssthresh when a timeout occurs during congestion avoidance,
is chosen as f3(x) = x. Function f4 is chosen equal to one, i.e. f4(x) = 1. Function f5, which is used to
set ssthresh when a timeout happens during slow start phase, is chosen as f5(x) = x=a where a increases
from 1 to 4, in steps of 1 (as opposed to 0.25 in the triple DUPACK case) every time a timeout happens, and
a is set to 1 when a timeout occurs in congestion avoidance. Also f6 is set equal to 1.

Notice the congestion window is reset to 1 after a timeout, as is done by TCP Reno. This choice is
conservative because it does not take full advantage of the BWE information to avoid the shrinking of the
congestion window to 1 in the presence of sporadic losses due to wireless links interference rather than to
congestion. There is a reason for this choice: fairness. We think that with drop-tail FIFO queuing it is
important to preserve the cyclic behavior of TCP, allowing traffic load fluctuations on each TCP connec-
tion. Indeed, this behavior ensures the fair sharing of bandwidth resources between different connections
bottlenecked at the same FIFO queue without affecting the stability of the algorithm. Different settings may
be proposed for cwin and ssthresh after a timeout when network nodes implement RED or WRED, but this
issue is left for further research. Also, new mechanisms can be devised to switch between congestion avoid-
ance and slow start, i.e., a strategy to increase ssthresh, by using a filter designed for bandwidth estimation
during underutilization of the network.

V. SIMULATION ANALYSIS OF TCP WESTWOOD

In this section, we present several simulation experiments that aim both at exemplifying the behavior
of TCP Westwood and at comparing it with other well-established versions of TCP, such as Reno and
Sack [12]. All simulations results presented in this paper were run using the LBL network simulator, ’ns’
ver.2. [13]. New simulation modules for TCP Westwood were written and they are available at [14], while



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 8

existing modules for simulations involving TCP Reno and TCP Sack were used. All simulated TCP receivers
implement a delayed-ACKs policy, consistent with correct TCP implementations. Each scenario, involving
different capacity, RTT or number of concurrent connections, is designed as a single-bottleneck network.
The intermediate node buffer is always supposed to hold a number of packets equal to the bandwidth-delay
product for that scenario.

A. The transient behavior of TCP Westwood

The first set of simulations aims at gaining a better understanding of the transient behavior of TCP West-
wood in changing network conditions. The scenario features a 45 Mb/s bottleneck with a one-way end-to-
end delay of 100ms. One TCP connection shares a FIFO bottleneck with two ON/OFF UDP connections,
with the same priority as TCP traffic. Each UDP connection transmits at a constant bit rate of 9 Mb/s while
ON. Both UDP connections start in the OFF state; after 50 s, the first UDP connection is turned ON, joined
by the second one at 100 s; the second connection follows and OFF-ON-OFF pattern at times 150 s, 250 s
and 350 s; at time 400 s the first UDP connection is turned off too. They remain silent until the end of
the simulation, except for a brief 2-second ON burst around time 460 s. The TCP connection sends data
throughout the simulation.

Although hardly realistic, this network setup can provide us with an insight as to the step and pulse
responses of the control algorithm implemented by TCP Westwood. These responses will be compared to
those of TCP Reno.

Figure 1 shows the behavior of the bandwidth estimation process. A dotted line identifies the theoretical
available bandwidth (left over by the UDP connections). It can be seen that the bandwidth estimation keeps
track rather easily of downward transitions (e.g., at times 50 s, 100 s and 250 s, as well as at 460 s), although
some “overestimate” spikes can be spotted. The upward transitions show a slower convergence to the right
estimate. The reason is that when the available bandwidth increases, TCP takes time to reach an input rate
equal to the available bandwidth. Therefore the ACK rate is less or equal than the bandwidth estimation.
For this reason we have already remarked that BWE is used only after congestion episodes, i.e., downward
transitions. The interference between the estimation process and the transmission window mechanism,
which forces the TCP source to stop when the window is closed, explains the fluctuations.

0
5

10
15
20
25
30
35
40
45
50

0 100 200 300 400 500 600

B
an

dw
id

th
 E

st
im

at
io

n

Time (sec)

actual BW
BW estimate

Fig. 1. TCP Westwood with concurrent UDP traffic - bandwidth estimation

Figures 2 and 3 allow a comparison between the congestion windows dynamics of Westwood and Reno:
while the latter’s ssthresh is forced back further and further after each burst of losses, TCP Westwood
estimates the bandwidth to reset the ssthresh compatibly with the available bandwidth.

The next three plots depict the transient behavior of Westwood over lossy links. The scenario being the
same as described above (including 100 ms end-to-end delay), the bottleneck link is now subject to random



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 9

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600
Se

gm
en

ts

Time (sec)

ssthresh
cwin

Fig. 2. TCP Westwood with concurrent UDP traffic - congestion window and ssthresh

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

Se
gm

en
ts

Time (sec)

ssthresh
cwnd

Fig. 3. TCP Reno with concurrent UDP traffic - congestion window and ssthresh

losses, mimicking the behavior of a wireless link. Loss events are characterized by dropped segments
between the source and the intermediate node. In our simulations, the probability of a ’loss event’ is 10�4.

Again, the comparison of cwin and ssthresh for TCP Westwood and Reno connections (Figures 4 and 5)
provides the most telling evidence of Westwood’s “faster recovery” features. Indeed, while repeated losses
floor Reno’s attempts at regaining transmission speed, Westwood exploits its bandwidth estimation capabil-
ities to resume transmission almost unhindered.

Figure 6 summarizes the test results shown so far by comparing throughputs of Westwood and Reno
connections over lossy and non-lossy links.

B. Losses caused by bursty traffic

Bursty UDP traffic is often the cause for TCP losses because of its uncontrolled nature. In our tests,
we compared the behavior of TCP connections in the presence of an ON/OFF UDP source. ON and OFF
periods are 60 seconds each, and the UDP source consumes 90% of the bottleneck during ON periods. The
UDP bursty source could represent a high-bandwidth, real-time scientific application (e.g., virtual reality,
visualization of scientific experiments, etc.). All tests lasted 600 simulated seconds. Results are reported on
graphs showing the average goodput (i.e., the delivered data rate) attained by connections using either TCP
Westwood, Reno or Sack.



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 10

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600
Se

gm
en

ts

Time (sec)

ssthresh
cwin

Fig. 4. TCP Westwood with concurrent UDP traffic on lossy link - congestion window and ssthresh

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

Se
gm

en
ts

Time (sec)

ssthresh
cwin

Fig. 5. TCP Reno with concurrent UDP traffic on lossy link - congestion window and ssthresh

Figure 7 compares the scalability of each TCP version running over a 45 Mb/s bottleneck with a 500-
ms end-to-end delay (e.g., a scenario featuring a satellite hop): results point out the versatility of TCP
Westwood, which achieves a very high goodput when few other connections are present, while managing to
provide an acceptable performance when more connections share the same bottleneck.

The average goodput of 10 connections is shown in Figure 8 for increasing values of the bottleneck
capacity (again the end-to-end delay was 500 ms). At the highest tested capacity (150 Mb/s) TCP Westwood
outperforms the standard TCP versions because its aggressiveness pays off especially for long, fat pipes,
where it is important to send the largest amount of data (when feasible) in the shortest time.

Westwood performs better than Reno under all tested RTTs, and is only slightly outperformed by Sack
if the end-to-end delay is smaller than 0.2 seconds, as depicted in Figure 9 (10 connections, 45 Mb/s link
capacity). Indeed, for small RTTs, Sack manages to recover fast enough so as to make up for its inherent
lack of aggressiveness (when compared to Westwood). TCP Westwood, on the other hand, suffers from
being too aggressive for small RTTs, and the resulting poorly-accurate bandwidth estimation forces it into
slow start too often.



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600
T

hr
ou

gh
pu

t

Time (sec)

Westwood - lossy
Westwood

Reno - lossy
Reno

Fig. 6. TCP Westwood and Reno throughput comparison over non-lossy and lossy link

0

5

10

15

20

25

30

0 5 10 15 20 25 30

G
oo

dp
ut

 [
M

b/
s]

no. of connections

Westwood
Reno
Sack

Fig. 7. Goodput as a function of number of concurrent connections

0.1

1

10

0 20 40 60 80 100 120 140 160

G
oo

dp
ut

 [
M

b/
s]

Bottleneck bandwidth [Mb/s]

Westwood
Reno
Sack

Fig. 8. Goodput as a function of bottleneck bandwidth



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 12

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
G

oo
dp

ut
 [

M
b/

s]

end-to-end delay (s)

Westwood
Reno
Sack

Fig. 9. Goodput as a function of one-way end-to-end delay

C. Performance over lossy links

Bursty traffic experiments have shown that TCP Westwood constantly outperforms Reno, and has a clear
competitive edge over Sack in almost every test. However, it is the performance over lossy links, for which
TCP Westwood was originally designed, that shows the most promising results.

In Subsection V-A, we already showed the superiority of TCP Westwood in a dynamically changing
traffic environment. In this Section, we extend the experiments by considering the impact of the number of
connections, bandwidth and end-to-end delay. The scenarios are identical to the previous Section (including
the interfering On/Off UDP connection), but the link is “lossy” with the same probability as in Subsection V-
A.

As in previous experiments, we ran 600-second tests under several settings: Figure 10 compares results
for different number of connections (1 through 30); Figure 11 for different bottleneck bandwidths (2 through
150 Mb/s) and Figure 12 for different end-to-end delays (10ms through 1 sec). The results underscore that
TCP Westwood is particularly suited for lossy links, under almost all scenarios, as predicted.

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

G
oo

dp
ut

 [
M

b/
s]

no. of connections

Westwood
Reno
Sack

Fig. 10. Goodput as a function of number of concurrent connections



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 13

0.1

1

10

0 20 40 60 80 100 120 140 160
G

oo
dp

ut
 [

M
b/

s]

Bottleneck bandwidth [Mb/s]

Westwood
Reno
Sack

Fig. 11. Goodput as a function of bottleneck bandwidth

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
oo

dp
ut

 [
M

b/
s]

end-to-end delay (s)

Westwood
Reno
Sack

Fig. 12. Goodput as a function of one-way RTT

VI. CONCLUSIONS

In this paper we have proposed a new version of the TCP protocol, aimed at improving its performance
under random or sporadic losses. The new version has been tested through simulation, showing considerable
gain in terms of goodput in almost all scenarios.

Our modifications can be viewed as a further step in the evolution from TCP Tahoe to TCP Reno. TCP
Tahoe was modified to TCP Reno by introducing fast recovery, which is a way to shrink the congestion
window after 3 duplicate ACKs. TCP Tahoe resets cwin to one after a loss, whereas TCP RENO halves
cwin after three duplicate ACKs. Now, TCP Westwood introduces ”faster” recovery to avoid over-shrinking
cwin after three duplicate ACKs by taking into account the end-to-end estimation of the bandwidth avail-
able to TCP. Therefore, modifications required to implement TCP Westwood are comparable to the ones
implemented in the transition from TCP Tahoe to TCP Reno.

Further work is in progress, especially in regard to the friendliness toward other connections employing
TCP Tahoe or Reno. Also, further refinements of the bandwidth estimation process as well as of various
algorithm tuning parameters are under study.



TCP WESTWOOD: CONGESTION CONTROL WITH FASTER RECOVERY 14

REFERENCES

[1] V. Jacobson. Congestion Avoidance and Control. ACM Computer Communications Review, 18(4):314–329, August 1988.
[2] T. Bonald. Comparison of TCP Reno and TCP Vegas: Efficiency and Fairness. In Proceedings of PERFORMANCE’99,

Istanbul, Turkey, October 1999.
[3] U. Hengartner, J. Bolliger, and T. Gross. TCP Vegas Revisited. In Proceedings of IEEE INFOCOM’2000, Tel Aviv, Israel,

March 2000.
[4] M. Gerla, R. Lo Cigno, S. Mascolo, and W. Weng. Generalized Window Advertising for TCP Congestion Control. CSD-TR

990012, UCLA, CA, USA, February 1999.
[5] L. Kalampoukas, A. Varma, and K.K. Ramakrishnan. Explicit Window Adaptation: A Method to Enhance TCP Performance.

In Proceedings of IEEE INFOCOM’98, San Francisco, Ca, USA, March/April 1998.
[6] T. Goff, J. Moronski, D. S. Phatak, and V. Gupta. Freeze-TCP: a True End-to-end TCP Enhancement Mechanism for Mobile

Environments. In Proceedings of IEEE INFOCOM’2000, Tel Aviv, Israel, March 2000.
[7] C. Casetti, M. Gerla, S.S. Lee, S. Mascolo, and M. Sanadidi. TCP with Faster Recovery. To appear at IEEE MILCOM’2000,

Los Angeles, CA, USA, September 2000.
[8] J.C. Hoe. Improving the Start-up Behavior of a Congestion Control Scheme for TCP. In Proceedings of ACM SIGCOMM’96,

Stanford, CA, USA, August 1996.
[9] W.R. Stevens. TCP/IP Illustrated, vol. 1. Addison Wesley, Reading, MA, USA, 1994.
[10] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in

High Speed Networks. In Proceedings of the ACM SIGCOMM’98, Vancouver, Canada, September 1998.
[11] D. Lin and R. Morris. Dynamics of Random Early Detection. In Proceedings of the ACM SIGCOMM’97, Cannes, France,

September 1997.
[12] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgement Options. RFC 2018, April 1996.
[13] ns-2, network simulator (ver.2). LBL, URL: http://www-mash.cs.berkeley.edu/ns.
[14] TCP Westwood modules for ns-2: URL: http://www1.tcl.polito.it/casetti/tcp-westwood.


