Numerical Root-finding



Introduction to root-finding algorithms (112

Problem: Given three real numbers a, b, ¢ solve this
equation:
ax?+bx+c =0
We know a closed-form solution:
— b + +/b? — 4ac

2a

X, X, =

Now solve this other equation: e*=eb* (azb)
Again we can find a closed-form solution: x = O

However, let try to solve: x?+In(x)=0
We cannot find a closed-form solution to this
equation.
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x%+In(x)=0 f(x)=0
Let search for a solution by means of an iterative method:
* we graphically find the following interval: [1/e,1].

* f(1/€)<0; f(1)>0. Then there is a solution in this interval.
* let try a smaller subinterval: [(1+e)/(2¢e),1]

* this interval has an amplitude %2 the previous one

* a solution is still comprised between (1+e)/(2e) and 1

* we go further, each time subdividing the last interval
By doing so, we never get a precise solution, but each
time we reduce the interval the solution is included In.
This is the concept of the bisection method.



The bisection method

f(b) >0

f(a) <0
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Bisection algorithm

f(a)<0 and f(b)>0 (or f(a)>0 and f(b)<0)
FIRST STEP:
a,=a; by=b
if f((a,+b,)/2)f(a,)>0
then a,=((a,*+by)/2); b,=b,
else
as=ay; by=((ap+b,)/2)

GENERIC STEP:
if £((a,.1+b,.1)/2)f(a,,4)>0
then an=((an-1+bn-1)l2); bn=bn-1
else
Ap=an.1; bn=((an-1+bn-1)l2)



Error in the bisection method

Qgy Aqy Agyunny Apyene by, by, by,...; b ...

are two convergent sequences.

They both converge to the solution of the equation
f(x)=0.

If we use either a, or b, as an approximate solution for
f(x)=0 we introduce an error depending on the
amplitude of the [a ,b,] interval, according to the
following relationship: ‘ ‘
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Bisection method: number of steps
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Bisection method: decimal precision

_a‘

b
E < o

< precision

From this equation we see that we need four
consecutive steps to get a further correct decimal
digit ( (1/2)4<1/10).

This property classifies the bisection method as a

slowly convergent one.
On the positive side, the method is guaranteed to

converge.



The Newton’s method

y=f(x)




Approximation in the Newton’s method

Xgs X1y Xoyerey Xppyers

is a sequence of approximate values.

X, Is an initial guess that should not be too far from
the solution.

This sequence converges to the solution of the
equation f(x)=0.

The convergence is quadratic: at each step the error
is basically squared.

Under this aspect, the Newton’s method is faster than
the bisection method (it requires less steps). The
bisection method’s convergence is linear (at each
step the error is multiplied by a constant factor).
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Newton’s method: caveats and practical considerations

If X, is not sufficiently close to the solution, the
method can fail to converge.

For this reason, most practical implementations put
an upper limit on the number of iterations.

By contrast, the bisection method always converges.
Given a required precision, the number of iterations
cannot be determined a priori.

At each step one must evaluate not only the function,
but also its derivative.

If the root being sought has multiplicity greater than
one, the method’s convergence is linear.
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Integration Problems
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Area of a flat zone in plane xy

1 y=f(x)
y
(b
>
X=a x=b X
Dfetermine the area of the plane portion b
of the xy-plane delimited by:
-curve y=f(x); A= jf(X)dX
*X-axis;
straight lines x=a, x=b, a

=



Area of a plane zone: example #1

Determine the area of the plane zone
comprised between curves:

y=(e-1)sin(n/2x)+1;
oyzex

A - f((e 1) sin( %x)+1—e")dx

1

A = [— (e —1)3cos( §X)+ X — e"}

T

0

A=1—e+(e—1)3+1;0.3756
T




Area of a plane zone: example #2

Determine the area of the
zone bounded by curve
y=cos2x, the x-axis, straight
lines x=0 and x=x

A = jcos 2 xdx
0

How can we compute
this integral?




Numerical Integration
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Numerical Integration (1/3)

Problem:

Evaluate the following expression
b
j f(x)dx
d

where a and b are constants and f(x) is a
continuous function.

(continu?g)



Numerical Integration (2/3)

Not all times we can find an antiderivative of the integrand
function.

Even if we know it, frequently its computation is very
complicated. Moreover, in any case we need to get a
numerical value at the end of the process.

Our problem is then to translate the symbolic model of the
definite integral into an appropriate numerical model (i.e. a
computational procedure).

(continu?g)



Numerical Integration (3/3)

The numerical method is based on the following steps:

1. We select some values x; (knots) and build a table of
n+1 pairs (x;,f(x;)) i=0,1,...,n where f(x;) are values of
the integrand.

2. We determine a polynomial interpolating the n+1
pairs (x;,f(x;))

3. We calculate the definite integral of the interpolating
polynomial, assumed as an approximation of the
integrand function.

4. We use this integral as an approximation of the wanted
integral and estimate the error.

Which polynomial do we use?
The polynomial in its Lagrangian form (Lagrange polynomial).

T



Lagrange polynomials (1/4)

Given two points in he plane (i.e. two pairs), e.g. (1,2) and (3,4)

The first-degree polynomial:

f(x) = x+1is such that:  f(1)=2, f(3)=4

Then we say that f(x) interpolates the two given pairs, their
abscissas are also called interpolation knots

We note that the function f(x) = x+1 may be replaced by an
equivalent function (that is by another polynomial that still
interpolates the two given pairs), like for instance:

-(x-3) + 2(x-1)

We say that we changed the polynomial basis.

(continusg)



Lagrange polynomials (2/4)

In general: given n+1 pairs we can determine a unique
n-degree polynomial interpolating the given n+1 pairs.

A frequently used expression for such a generic polynomial is
the Lagrangian form: this is a combination of some specific base
polynomials, named base Lagrange polynomials

Given a set of n+1 values x,, X4, ..., X,,, we define a base
Lagrange polynomial the following expression:

L(x) = (X = % )(x = %)...(x = x;_ )X — %,1)...(x — x;)
BT (% = X )% — %) (% — X )% - %) (% — X,)

(continugﬁi)



Lagrange polynomials (3/4)

L(x) = (X = % )(% = X;)...(x = x_ (X — x;,1)...(x — x,)
a (%, — %, )% — %,)...(% — %x_ )% — x,,)...(x, — x,)

* is an n-degree polynomial
* it is such that:

Li(xj) =1 | = J
L(x;)=0 i=]

If we now take the n+1 function values we define an n-degree
polynomial as follows:

f (x) = Zn: L.(x)f(x.)

i=0

(continusg)



Lagrange polynomials (4/4)

n

f,(x) = Z L;(x)f(x;)

i=0

It follows that:
f.(x)=f(x) i=01,.,n
The function £, (x)

* is an n-degree polynomial,
* interpolates the (n+1) pairs (x:; ,f(x)) i=0,1,...,n

i



Example (Lagrange polynomial) (1/2)

(X — X )(X — Xy )oue(X — X4 )(X — X ,4)0(X — X))

L;(x)=
(Xi _ XO)(Xi _ X1)'"(Xi — Xi—1)(xi _ xi+1)'"(xi _ Xn)

We are given the three pairs (-1,2),(4,3),(1,-2)

(x-4)(x-1) (x—-4)(x-1)

L= 20c-)™ 10
C(x+D)(x-1)  (x+1)(x-1)

S YT/ S T
_(x+)(x-4) (x+1)(x-4)

LX) =" i) - 6

(continusg)



Example (Lagrange polynomial) (2/2)

n

f.(x)= Z Li(x)y;

i=0

(_1!2)! (453)5(1!_2)

Now we build the second-degree Lagrange polynomial:

f,(x) =

(x—4)(x—1)2+ (x+1)(x—1)3_(x+1)(x—4)
10 15 6

(—2)

i



Error introduced by the polynomial interpolation

By definition, the polynomial gives an exact value when

evaluated in the knots.
What happens outside these values?

It can be shown that, if I is the interval comprising all knots:

E,F(x) = F(x)~f,(x) =T LT (x - x
Eel

N.B. The error depends not only on the number of knots,
but also on their distribution




Numerical Integration through interpolation (1/2)

Given the integral jf(x)dx
(x;,f(x;)) i=01,..,n

£(x)=3 L(x)f(x;)

i=0

jf (X )dx = jZL(x)f(x Jax

alo

— Zf(x,. ) j L (x )dx

i



Numerical Integration through interpolation (2/2)
b n b
jf,,(x)dx — Zf(x,.)j L (x )dx
a i=0 a

ffn(x)dx = Zn:f(x,.)w,.

X;: integration knots
w:: integration weights
This expression is called a quadrature rule

_Lffn(x)dngf(x)dx

i



The trapezoidal rule (1/2)

As a particular case we use two knots:
the integration limits a and b.

Lagrange polynomial interpolating the two pairs
(a,f(a)); (b,f(b)):

f,(x)=L,(x)f(a)+L,(x)f(b)

L(X):(x—b) L(x )_(x a)

(x b) (x-a)
—-f(a)+——=f(b)

f(x)=

‘I‘aﬁ(x)dx = if(xi)jl'i(x)dx = if(xi)wi

(continugg)



The trapezoidal rule (2/2)
[ - if(x,-) JLi(x)ax - if(x,-)w,-

jL(x)dx_j(x b) 4 {(x b)} b-a

2(a—-b) 2
ZIL(X)dXZI(X_a) (X a) b—a
) ' b-a 2(b-a)| 2

and finally:

fﬂ(x)dx =3 f(x, w, = 2=

This is the trapezoidal quadrature rule.




Exercise on the trapezoidal rule (1/2)

Integrand function: f(x) = 1 _ 1

x x?

In this case the antiderivative of f(x) is known, it is:

F(x):j(%dx—%)dx: In\x\+%+c

In order to determine the definite integral we should
numerically compute the function In(x), e.g.

4

j 1 1 1
(———)dx =|In|x|+—+C | = 0.4431
X X X ,

trying to obtain it with the highest precision

(continued)
31



Exercise on the trapezoidal rule (2/2)

As an alternative, we directly compute the definite
integral by means of the trapezoidal rule

(- a)dx = 2o2(F(a)+£(2)) -

X
1 1 1 1
- - ——— =
4 16 2 4
_4-1+8-4 7 _0.4375
16 16

T



Geometrical interpretation of the trapezoidal rule

, (@.f(a)) b
j f(x)dx

T=b

;a (f(a)+F(b))

If we assume, as in the figure, that the sign of the integrand
does not change in [a,b], then the definite integral is equal to

the filled area.
The trapezoidal rule gives the area of a trapezoid whose height

is (b-a) and parallel sides are f(a) e f(b).
We approximate the true value with the area of the trapezoid.

T



Error introduced by the trapezoidal rule

If we calculate the integral of the error due to the
Lagrange interpolation, the error introduced by the
trapezoidal rule results:

_(b-a)’
12

E; = f"(n) nela,b]

where 7 is a unpredictable value inside [a,b].

T



Simpson’s rule (1/2)

In order to improve the accuracy it is possible to use a second
degree polynomial over the [a,b] interval.
We use therefore the three following knots:

*First end a;

Last end b;

‘Midpoint of [a,b].

The Lagrange polynomial interpolating the pairs
(a,f(a)); (b,f(b)); ((a+b)/2,f((a+b)/2)) is as follows:

f,(x) = Ly(x)f(a) + L(x)F(2E2) o L(x)f(b)

2

(continuggl)



Simpson’s rule (2/2)

(x-b)(x-31P) (x-a)(x-272)
e e il
(a-b)(a-2%2) a : (222 -a) 22 -b)

By determining the definite integral
of this polynomial, we obtain the
Simpson’s quadrature rule:

b — a+b

ffz(x)dx - )+f(b))




Error introduced by the Simpson’s rule

It can be shown that, by integrating the expression of
the Lagrange interpolation error, the Simpson'’s rule

error is:
b-a\ fV(n)
E.=- a,b
S ( 2 j 90 776[ ]

Note:
If we increase the number of the (evenly spaced) knots and the

corresponding polynomial degree, we obtain a family of rule
called Newton Cotes rules. This rules are not convergent.
An interesting and very simple case of Newton Coétes rule is
the one base on a single knot: the rectangle rule.

.



The rectangle rule

In this case the approximating expression is:

a+b

jf (x)dx = (b-a)f( )

giving raise to error: E,, = (b;4a) f(n) nela,b]

The rectangle rule does not use integrand values
computed in the interval ends and for this reason is said
an open quadrature rule.

It is therefore used to evaluate integrals having
singularities in the integration ends.

T



Geometrical interpretation of the rectangle rule

A
y

(a,f(a))

a Ya(a+b) b X

Assuming f(x) is positive in the integration interval, then the
area of the shaded figure is approximated by the rectangle
having base (b-a) and height f((a+b)/2).

(.



An application of the rectangle rule

sin x
Determining the integral j—dx

We note that the integrand, even if can be integrated over the
interval [0,0.8], is not defined in 0.
Therefore we apply the rectangle rule.

b in0.
970, _ 0.88'324;0.77884

jf (x)dx =(b—a)f(

—_ 3 i
with error: E = (b24a) f (n) nela,b]

E, <6.74-10°




The composite trapezoidal rule (1/2)

Basic idea: since the error of the trapezoidal rule is strongly
dependent on the integration interval (we cannot modify this)
we subdivide this interval into many subintervals and we
apply the rule to those smaller subintervals.

In this way we obtain a result dependent on the number of
subintervals (we can modify this).

Namely:

Be n>1, h=(b-a)/n, x;=a+jh j=0,1,...,n, it follows

j+1

Jrodx =3 [roodx =32 (r0x,)+F(x,.)-

J=0 x; J=0

:%(f(xo)+f(x,,))+hzf(xj)

(continutz(]i)



The composite trapezoidal rule (2/2)

The error now has the following expression:

_ (b-a) .
ETc_ 12"2 f (ﬂ) ne[a!b]

From this expression it follows that:

 when n grows the error diminishes

* it is possible to calculate a number of subdivisions for [a,b],
in order to get a predetermined accuracy

- small errors on the input values have a moderate effect on the

final result .

]



Composite trapezoidal rule: Geometrical interpretation

y=f(x)

A

y

f(a) f(b)

Xy Xo X; X; -
a=x, 1 A2 X i+1 xn_b

The shaded area is approximated by the trapezoid whose
heights are (x;.4- X;) and parallel sides f(x;,,) and f(x;).

T



Exercise on the composite trapezoidal rule

4
Given the previous integral j( 1 _ 12 )dx
2 X X

For x>1 the integrand is positive

Y

=2

We apply the
trapezoidal rule over
two subintervals

X

2 3 4 x
(3_2) @ +f@) +(4_3)f(3);f(4):
1 1 1 1 1 1 1 1
GG G e 127 ) 44
2 288

]



