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Numerical Root-finding
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Introduction to root-finding algorithms (1/2)

Problem: Given three real numbers a, b, c solve this 

equation:

ax2+bx+c = 0

We know a closed-form solution:

a2

ac4bb
x,x

2

21

−±−
=

Now solve this other equation: eax=ebx (a≠b)

Again we can find a closed-form solution: 0x =
However, let try to solve: x2+ln(x)=0

We cannot find a closed-form solution to this 

equation.
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Introduction to root-finding algorithms (2/2)

x2+ln(x)=0 f(x)=0

Let search for a solution by means of an iterative method:

• we graphically find the following interval: [1/e,1].

• f(1/e)<0; f(1)>0. Then there is a solution in this interval.

• let try a smaller subinterval: [(1+e)/(2e),1]

• this interval has an amplitude ½ the previous one

• a solution is still comprised between (1+e)/(2e) and 1

• we go further, each time subdividing the last interval

By doing so, we never get a precise solution, but each 

time we reduce the interval the solution is included in.

This is the concept of the bisection method.
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xa b

a0 b0m0=1/2(a0+b0)

a1 b1
m1=1/2(a1+b1)

a2 b2
m2

a3 b3

a4b4

f(a) < 0

f(b) > 0

f(m0 )>0; f(a0 )<0 a1 = a0; b1 = m0

f(m1 )<0; f(b1 )>0 a2 = m1; b2 = b1

The bisection method
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Bisection algorithm

f(a)<0 and f(b)>0 (or f(a)>0 and f(b)<0)
FIRST STEP:

a0=a; b0=b
if f((a0+b0)/2)f(a0)>0
then a1=((a0+b0)/2); b1=b0

else
a1=a0; b1=((a0+b0)/2) 

GENERIC STEP:
if f((an-1+bn-1)/2)f(an-1)>0
then an=((an-1+bn-1)/2); bn=bn-1

else
an=an-1; bn=((an-1+bn-1)/2) 
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Error in the bisection method

a0, a1, a2,…, an,…          b0, b1, b2,…, bn,…

are two convergent sequences.

They both converge to the solution of the equation 

f(x)=0.

If we use either an or bn as an approximate solution for 

f(x)=0 we introduce an error depending on the 

amplitude of the [an,bn] interval, according to the 

following relationship:

nnn 2

ab
abE

−
=−≤



7

Bisection method: number of steps

precision
2
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Bisection method: decimal precision

From this equation we see that we need four 

consecutive steps to get a further correct decimal 

digit ( (1/2)4<1/10).

This property classifies the bisection method as a 

slowly convergent one.

On the positive side, the method is guaranteed to 

converge.

precision
2
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x

The Newton’s method

x0

x1
x2
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Approximation in the Newton’s method

x0, x1, x2,…, xn,…

is a sequence of approximate values.

x0 is an initial guess that should not be too far from 

the solution.

This sequence converges to the solution of the 

equation f(x)=0.

The convergence is quadratic: at each step the error 

is basically squared.

Under this aspect, the Newton’s method is faster than 

the bisection method (it requires less steps). The 

bisection method’s convergence is linear (at each 

step the error is multiplied by a constant factor).
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Newton’s method: caveats and practical considerations 

If x0 is not sufficiently close to the solution, the 

method can fail to converge.

For this reason, most practical implementations put 

an upper limit on the number of iterations.

By contrast, the bisection method always converges.

Given a required precision, the number of iterations 

cannot be determined a priori.

At each step one must evaluate not only the function, 

but also its derivative.

If the root being sought has multiplicity greater than 

one, the method’s convergence is linear. 



Integration Problems
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Area of a flat zone in plane xy

x

y

x=a

f(b)

y=f(x)

f(a)

x=b

∫=
b

a

dxxfA )(

Determine the area of the plane portion 
of the xy-plane delimited by:

•curve y=f(x);

•x-axis;

•straight lines x=a, x=b,
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Area of a plane zone: example #1

Determine the area of the plane zone 
comprised between curves:

•y=(e-1)sin(π/2x)+1;
•y=ex

∫ −+
π
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Area of a plane zone: example #2

Determine the area of the 
zone bounded by curve 
y=cos2x, the x-axis, straight 
lines x=0 and x=π

xdxA ∫
π

=
0

2cos

How can we compute 
this integral?
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Numerical Integration
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Numerical Integration (1/3)

∫
b

a

dx)x(f

Problem:

Evaluate the following expression

where a and b are constants and f(x) is a 

continuous function.

(continued)
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Numerical Integration (2/3)

Not all times we can find an antiderivative of the integrand 

function.

Even if we know it, frequently its computation is very 

complicated.  Moreover, in any case we need to get a 

numerical value at the end of the process.

Our problem is then to translate the symbolic model of the 

definite integral into an appropriate numerical model (i.e. a 

computational procedure).

(continued)
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Numerical Integration (3/3)

The numerical method is based on the following steps:

1. We select some values xi (knots) and build a table of 

n+1 pairs (xi,f(xi)) i=0,1,…,n where f(xi) are values of 

the integrand.

2. We determine a polynomial interpolating the n+1 

pairs (xi,f(xi))  

3. We calculate the definite integral of the interpolating 

polynomial, assumed as an approximation of the 

integrand function.

4. We use this integral as an approximation of the wanted 

integral and estimate the error.

Which polynomial do we use?

The polynomial in its Lagrangian form (Lagrange polynomial).
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Lagrange polynomials (1/4)

Given two points in he plane (i.e. two pairs), e.g. (1,2) and (3,4)

The first-degree polynomial: 

f(x) = x+1 is such that:     f(1)=2, f(3)=4

We note that the function f(x) = x+1 may be replaced by an 
equivalent function (that is by another polynomial that still 
interpolates the two given pairs), like for instance:

-(x-3) + 2(x-1)

Then we say that f(x) interpolates the two given pairs, their 
abscissas are also called interpolation knots

We say that we changed the polynomial basis.

(continued)
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Lagrange polynomials (2/4)

In general: given n+1 pairs we can determine a unique  

n-degree polynomial interpolating the given n+1 pairs. 

)xx)...(xx)(xx)...(xx)(xx(

)xx)...(xx)(xx)...(xx)(xx(
)x(L

ni1ii1ii1i0i

n1i1i10
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A frequently used expression for such a generic polynomial is 
the Lagrangian form: this is a combination of some specific base 
polynomials, named base Lagrange polynomials

Given a set of n+1 values x0 , x1 , …, xn, we define a base 
Lagrange polynomial the following expression:

(continued)
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Lagrange polynomials (3/4)

)xx)...(xx)(xx)...(xx)(xx(

)xx)...(xx)(xx)...(xx)(xx(
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• is an n-degree polynomial 

• it is such that:

ji0)x(L

ji1)x(L

ji

ji

≠=
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If we now take the  n+1 function values we define an n-degree 
polynomial as follows:

)x(f)x(L)x(f ii

n
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(continued)
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Lagrange polynomials (4/4)

The function fn(x)

• is an n-degree polynomial; 

• interpolates the (n+1) pairs (xi ,f(xi)) i = 0,1,…,n

It follows that:

fn( xi )=f(xi) i = 0,1,…,n

)()()(
0
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n

i
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Example (Lagrange polynomial) (1/2)

We are given the three pairs ),(),,(),,( 213421 −−
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(continued)
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Example (Lagrange polynomial) (2/2)

Now we build the second-degree Lagrange polynomial:

)(
)x)(x()x)(x()x)(x(

)x(f 2
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Error introduced by the polynomial interpolation

N.B. The error depends not only on the number of knots, 
but also on their distribution

It can be shown that, if I is the interval comprising all knots:

I

)xx(
)!n(
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By definition, the polynomial gives an exact value when 
evaluated in the knots.
What happens outside these values?
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∫
b

a

dx)x(fGiven the integral
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Numerical Integration through interpolation (1/2)
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dx)x(fdx)x(f
b

a

b

a

n ∫∫ ≅

xi: integration knots

wi: integration weights

This expression is called a quadrature rule

Numerical Integration through interpolation (2/2)
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The trapezoidal rule (1/2)

As a particular case we use two knots:

the integration limits a and b.

)b(f)x(L)a(f)x(L)x(f 101 +=

Lagrange polynomial interpolating the two pairs 

(a,f(a)); (b,f(b)):

dx)x(f
b

a

∫ 1

(continued)
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The trapezoidal rule (2/2)
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and finally:
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This is the trapezoidal quadrature rule.
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Exercise on the trapezoidal rule (1/2)

2x

1

x

1
)x(f −=Integrand function:

∫ =−= dx)
x

1
dx

x

1
()x(F

2

In this case the antiderivative of f(x) is known, it is:

C
x

xln ++
1

44310
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In order to determine the definite integral we should 

numerically compute the function ln(x), e.g.

trying to obtain it with the highest precision

(continued)
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As an alternative, we directly compute the definite 

integral by means of the trapezoidal rule
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Exercise on the trapezoidal rule (2/2)
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Geometrical interpretation of the trapezoidal rule

If we assume, as in the figure, that the sign of the integrand 

does not change in [a,b], then the definite integral is equal to 

the filled area.

The trapezoidal rule gives the area of a trapezoid whose height 

is (b-a) and parallel sides are f(a) e f(b).

We approximate the true value with the area of the trapezoid.

∫
b

a

dx)x(f
(a,f(a))

(b,f(b))
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Error introduced by the trapezoidal rule

If we calculate the integral of the error due to the 

Lagrange interpolation, the error introduced by the 

trapezoidal rule results:

],[)("
12

)( 3

baf
ab

ET ∈ηη
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−=

where η is a unpredictable value inside  [a,b].
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Simpson’s rule (1/2)

In order to improve the accuracy it is possible to use a second 

degree polynomial over the [a,b] interval.

We use therefore the three following knots:

•First end a;

•Last end b;

•Midpoint of [a,b].

The Lagrange polynomial interpolating the pairs 

(a,f(a)); (b,f(b)); ((a+b)/2,f((a+b)/2)) is as follows:

(continued)
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Simpson’s rule (2/2)

By determining the definite integral 

of this polynomial, we obtain the 

Simpson’s quadrature rule:
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Error introduced by the Simpson’s rule

It can be shown that, by integrating the expression of 

the Lagrange interpolation error, the Simpson’s rule 

error is:

]b,a[
)(fab

E
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Note:

If we increase the number of the (evenly spaced) knots and the 

corresponding polynomial degree, we obtain a family of rule 

called Newton Côtes rules. This rules are not convergent.

An interesting and very simple case of Newton Côtes rule is 

the one base on a single knot: the rectangle rule.
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The rectangle rule

In this case the approximating expression is:

)
ba

(f)ab(dx)x(f
b

a
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The rectangle rule does not use integrand values 

computed in the interval ends and for this reason is said 

an open quadrature rule. 

It is therefore used to evaluate integrals having 

singularities in the integration ends.
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Geometrical interpretation of the rectangle rule

(b,f(b))

y

xa b

(a,f(a))

((a+b)/2,f((a+b)/2))

½(a+b)

Assuming f(x) is positive in the integration interval, then the 

area of the shaded figure is approximated by the rectangle 

having base (b-a) and height f((a+b)/2).
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An application of the rectangle rule

Determining the integral

778840
40

40
80 .

.

.sin
. ≅=

dx
x

xsin
.

∫
80

0

We note that the integrand, even if can be integrated over the 

interval [0,0.8], is not defined in 0.

Therefore we apply the rectangle rule.

with error:
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The composite trapezoidal rule (1/2)

Basic idea: since the error of the trapezoidal rule is strongly 

dependent on the integration interval (we cannot modify this) 

we subdivide this interval into many  subintervals and we 

apply the rule to those smaller subintervals.

In this way we obtain a result dependent on the number of 

subintervals (we can modify this).

Namely:

Be n≥1, h=(b-a)/n, xj=a+jh j=0,1,…,n, it follows

∑

∑∑ ∫∫
−

=

=
+

=

++=

=+==
+

1

1

0

0

1

0

2

2

1

n

j

jn

n

j

jj

n

j

x

x

b

a

)x(fh))x(f)x(f(
h

)x(f)x(f(
h

dx)x(fdx)x(f
j

j

(continued)
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The composite trapezoidal rule (2/2)

The error now has the following expression:

From this expression it follows that:

• when n grows the error diminishes

• it is possible to calculate a number of subdivisions for [a,b], 

in order to get a predetermined accuracy

• small errors on the input values have a moderate effect on the 

final result . 

],[)(
12

)( ''

2

3

baf
n

ab
ETc ∈ηη

−
−=



43

Composite trapezoidal rule: Geometrical interpretation 

a=x0
b

f(a)

y=f(x)

x

y

x1 x2 xi

f(b)

xn=

d1

d2
di

dn

A1
A2

Ai
An

xi+1

The shaded area is approximated by the trapezoid whose 

heights are  (xj+1- xj) and parallel sides f(xj+1) and f(xj).
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Exercise on the composite trapezoidal rule
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We apply the 

trapezoidal rule over 

two subintervals


