Deep Generative Models



Supervised vs unsupervised learning

Supervised Learning

Data: (x,y)
X Is data, y Is label

Goal: Learn function to map
X =Yy

Examples: Classification,
regression, object detection,
semantic segmentation, etc.

Unsupervised Learning

Data: x
X 1s data, no labels!

Goal: Learn some hidden or
underlying structure of the data

Examples: Clustering, feature or
dimensionality reduction, etc.
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Generative modeling

Goal: Take as input training samples from some distribution
and learn a model that represents that distribution

Density Estimation Sample Generation

FF

samples ® T Input samples Generated samples
Training data ~ Pyqeq(x) Generated ~ Pp,0401 (%)

How can we learn P,y 5401 (%) similar to Pggeq(x)?
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| atent variable models

-

Autoencoders and Variational
Autoencoders (VAEs)

>

~

-

Generative Adversarial
Networks (GANSs)




What is alatent variable?
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) Myth of the Cave
Can we learn the true explanatory factors, e.g.latent variables, from only observed data?
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Autoencoders




Autoencoders: background

Unsupervised approach for learning a lower-dimensional feature
representation from unlabeled training data

Why do we care about a
low-dimensional z? /‘.‘ +

-

N

“Encoder’” learns mapping from the data, x, to a low-dimensional latent space, z
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"Decoder” learns mapping back from latent, z, to a reconstructed observation, X

Autoencoders: background

How can we learn this latent space?
Train the model to use these features to reconstruct the original data

| I
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Autoencoders: background

How can we learn this latent space?
Train the model to use these features to reconstruct the original data

| leII

L(x,X) =|lx — f”z Loss function doesn't
use any labels!!
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Dimensionality of latent space —

reconstruction quality

Autoencoding isaform of compression!
Smaller latent space will force alarger training bottleneck

5D latent space GroundTruth

2D latent space
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An example: simple autoencoder

Fully connected Fully connected
Image size Layer + Leaky RelLU Layer + Sigmoid Reshape
784 > 32 RelLU
28x28 > 784 784 > 28x28
g 32> 784 X
-1 Encoder I ‘ | - -’
Original

X
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An example: Convolutional autoencoder

] L]

Original

One or more
convolutional
layers

Encoder

One or more de-
convolutional
layers
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De-convolution

When managing image data, encoder and decoder are made of,
respectively, convolutional and de-convolutional layers

De-convolution (often referred to as transposed convolution because,
mathematically, deconvolution is in fact a different operation) allows to go
from a lower resolution image to a higher resolution image.
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Regular convolution (in the encoder)

e e S &

Figure 2.1: (No padding, unit strides) Convolving a 3 x 3 kernel over a 4 x 4
input using unit strides (i.e., 1 =4, k=3, s=1 and p = 0).

From https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15 autoencoder/L15 autoencoder slides.pdf and Dumoulin, Vincent,

and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv preprint (2016)
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https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/L15_autoencoder_slides.pdf

De-convolution (in the decoder)

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

From https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15 autoencoder/L15 autoencoder slides.pdf and Dumoulin, Vincent,

and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv preprint (2016)
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https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/L15_autoencoder_slides.pdf

Autoencoders for representation learning

Bottleneck hidden layer: forces network to learn a compressed
latent representation

Reconstruction loss: forces the latent representation to capture
(or encode)as much “information” about the data as possible

Autoencoding = Automatically encoding data



Variational Autoencoders (VA




VAEs: key difference with traditional autoencoder

4

I_1
X ”—Lz
o

,_t

standard deviation
vector

A

Variational autoencoders are a probabilistic twist on autoencoders!

Sample from the mean and standard dev.to compute latent sample
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VAE optimization

2]

Encoder computes: p¢ (Z I X) Decoder computes: (Jg (Xl Z)

J
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VAE optimization

Encoder computes: pg (z|x) Decoder computes:qg (x|2)

L(l,l x) = (reconstruction loss) + (regularization term)
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VAE optimization

e.g. |lx — %||?

i
ol

Z

J\\

Encoder computes: pg (z|x)

L8 x) =

Decoder computes:qg(x|2)

(reconstruction loss)|+ (regularization term)
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VAE optimization

Inferred latent

distribution _l

iy
, &

J\\

Fixed prior on

| latent distribution

D (py(@l) Il p(2))

Encoder computes: pg (z|x)

L((I),I, x) = (reconstruction loss) +

Decoder computes:qg(x|2)

(regularization term)
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Priors on the latent distribution

D (py(@l2) I p(2))

Inferred latent ‘ ‘ Fixed prior on

distribution latent distribution

Common choice of prior:

p(z) =N@=0,0°=1)

* Encourages encodings to distribute encodings evenly around
the center of the latent space

* Penalize the network when it tries to “cheat’” by clustering
points in specific regions (ie. memorizing the data)
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Priors on the latent distribution

D (pq) (le) ” p(Z)) KL-divergence between

k-1 the two distributions
1 /
—3 (0]+,u] —1—log0])

Jj=0

Common choice of prior:

p(z) =N@=0,0°=1)

* Encourages encodings to distribute encodings evenly around
the center of the latent space
N * Penalize the network when it tries to “cheat’” by clustering
points in specific regions (ie. memorizing the data)
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VAEs computation graph

Problem: We cannot backpropagate gradients through sampling layers!

gl
o

Encoder computes: pg, (z|x) Decoder computes:qg (X|2)

L(¢, 08, x) = (reconstruction loss) + (regularization term)
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Reparametrizing the sampling layer

Key Idea:
- 2N 6% -

Consider the sampled latent

vector as a sum of

» afixed u vector,

* and fixed o vector, scaled by
random constants drawn from
the prior distribution

>z=Uu+00OE¢

where e~N'(0,1)

H N Massachusetts i :
IlIII Institute of 6.5191 Introduction to Deep Learning

. . 1/29/19
Technology introtodeeplearning.com




Reparametrizing the sampling layer

¢

Deterministic node

z=g($ x¢)

Stochastic node

~V(0,1)

Original form Reparametrized form
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VAEs: Latent perturbation

Slowly increase or decrease a single latent variable
Keep all other variables fixed

Head pose

Different dimensions of z encodes different interpretable latent features
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VAEs: Latent perturbation

Ideally, we want latent variables that
are uncorrelated with each other

Enforce diagonal prior on the latent
variables to encourage
independence

Smile

Disentanglement

Head pose

Kingma+ ICLR 2014; Chen+ NeurlPS 2018. 1/28/20
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VAEs: Latent perturbation
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|. Compress representation of world to something we can use to learn
2. Reconstruction allows for unsupervised learning (no labels!)

4. Interpret hidden latent variables using perturbation

VAE summary

5. Generating new examples

A

A
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Generative Adversarial Networks (GANSs)




What if we just want to sample!?

Idea: don't explicitly model density, and instead just sample to generate new instances.

Problem: want to sample from complex distribution — can't do this directly!

Solution: sample from something simple (noise), learn a
transformation to the training distribution.

“fake” sample from the

noise 7 o A
training distribution

Generator Network G
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Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a way to make a generative
model by having two neural networks compete with each other.

N

Xreal

noise Z
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Intuition behind GANs

Generator starts from noise to try to create an imitation of the data.

Generator

Fake data
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Intuition behind GANs

Discriminator looks at both real data and fake data created by the generator.

Discriminator Generator

Fake data
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Intuition behind GANs

Discriminator looks at both real data and fake data created by the generator.

Discriminator Generator

— = e—

v
|
A

Real data Fake data
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Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

r D
Discriminator Generator
P(real) =1
-_——_- ————. - - > -— - »
\_ Y,
Real data Fake data
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Intuition behind GANs
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Intuition behind GANs

Discriminator tries to predict what's real and what's fake.
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Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

r N
Discriminator Generator
P(real) =1
-_—_— ————. - - > -— - »
N\ Y,
Real data Fake data
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Intuition behind GANs

Generator tries to improve its imitation of the data.

Discriminator

P(real) =1

e = e— =

(
Generator

v

— = ——— = =

\_

Real data Fake data
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Intuition behind GANs

Generator tries to improve its imitation of the data.

Discriminator

P(real) =1

e = e— =

(
Generator

v

— o — = -
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Real data Fake data
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Intuition behind GANs

Generator tries to improve its imitation of the data.

Discriminator

P(real) =1

e = e— =

(
Generator

|

Real data Fake data
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Intuition behind GANs

Discriminator tries to predict what's real and what's fake.
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Discriminator Generator
P(real) =1
— e — - = > — o — o = — >
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Real data Fake data
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Intuition behind GANs

Discriminator tries to predict what's real and what's fake.
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Intuition behind GANs

Generator tries to improve its imitation of the data.

Discriminator

P(real) =1

(
Generator
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Intuition behind GANs

Generator tries to improve its imitation of the data.

Discriminator

P(real) =1

(
Generator
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Real data Fake data
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Intuition behind GANs

Generator tries to improve its imitation of the data.

Discriminator

P(real) =1

(
Generator

v

\_

Real data Fake data
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Intuition behind GANs

Discriminator tries to identify real data from fakes created by the generator.
Generator tries to create imitations of data to trick the discriminator:

Discriminator Generator

P(real) =1

I
|
|
v
4

Real data Fake data
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Training set

Random
noise

Another example

Generator

Discriminator

h ] {Fa ke




Training GANs

Given the Generator: Given the Discriminator
G(2,0,),G:z > x, D(x,04),D:x = (0,1)

lts goal is: Its goal is:

max D(G(2)) max D(x), min D(G(z))

After training:
e G produces realistic synthetic data
* D is unable to distinguish real from fake



Training GANs

G* = argminmax v(G, D)

G D
1 n Input samples Input random noise samples
Vwy,— D llog(D(x:)) + log(1 — D(G(2:)))]
1=1
This predicts well This predicts well
on real images on fake images

Vie— 3 log (1= D(G(21))

This predicts badly on
fake images
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Training GANs

G* = arg min max v(G, D)

The optimization drives the discriminator to learn to correctly classify samples as real
or fake. Simultaneously, the generator attempts to fool the classifier

At convergence, the generator’s samples are indistinguishable from real data, and
the discriminator outputs 0.5 everywhere
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Training GANs

G* = arg min max v(G, D)

In other words the convergence is reached when the actions of one of the players do
not change depending on the actions of the other players

As you can imagine, training can be very slow
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Why GANs?
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more traditional max-likelihood approach GAN

X1

A. Courville, 651912018.
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Generating new data with GANs

After training, use generator network to create new data that's never been seen before.

noise 7
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GANSs: Recent Advances




Some Impressive application

https://machinelearningmastery.com/impressive-applications-
of-generative-adversarial-networks/
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Deep Generative Modeling: Summary

/" Autoencoders andVariational
Autoencoders (VAEs)

Learn lower-dimensional latent
space and sample to generate
Input reconstructions

\_ /

-

\_

Generative Adversarial
Networks (GANSs)

Competing generator and
discriminator networks

N
S

~
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