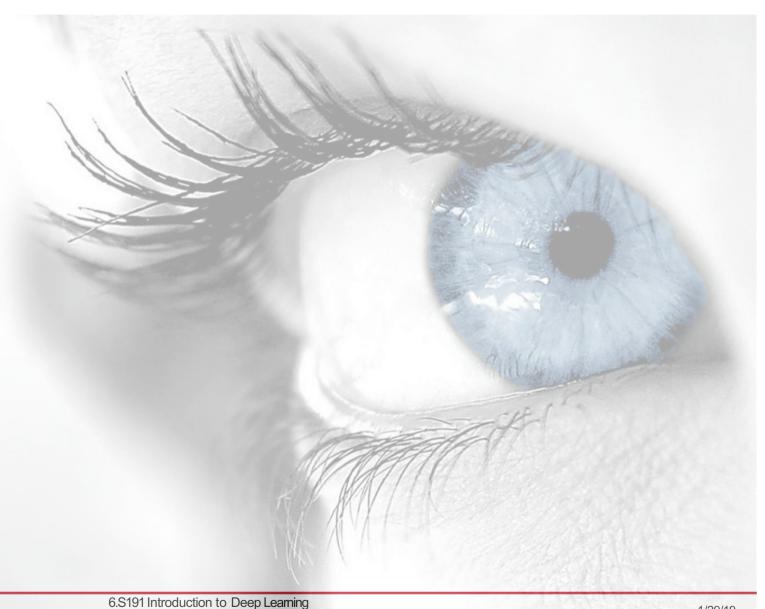
Deep Learning for Computer Vision

Vision:

Fundamental aspect of our life

Origin: 540 mln years ago



introtodeeplearning.com

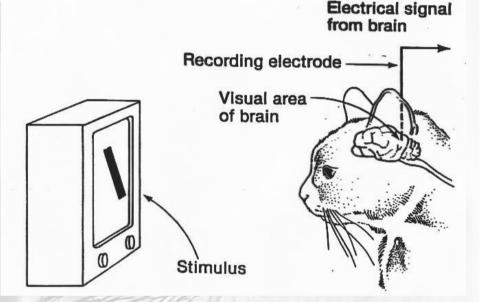
1/29/19

Vision:

1950s: David Hubel and Torsten Wiesel⁽¹⁾ experiments on the visual cortex of a cat

Findings:

- Certain neurons fire only to very specific patterns and orientation
- Neural mechanisms are spatio-invariant
- Neural layers are organized hierarchically



(1) "<u>Receptive fields of single neurons in the cat's striate cortex</u>"

Massachusetts Institute of Technology

Artificial Intelligence Vision:

The very first picture...

1826

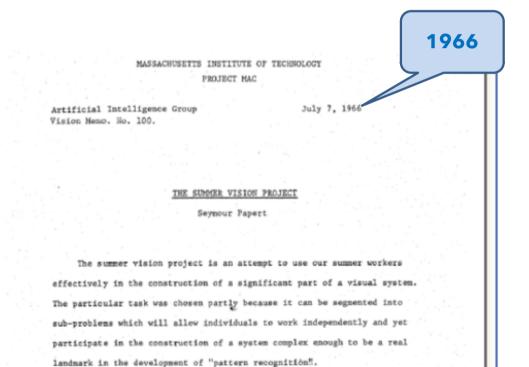
"View from the Window at Le Gras", France taken by Nicéphore Niepce

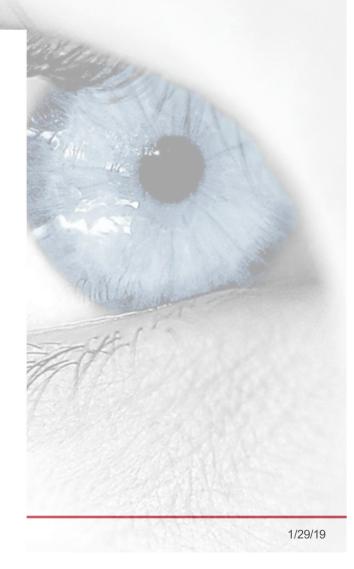
Obtained covering of bitumen a sheet Time of exposure: 8 hours!!!

Massachusetts Institute of Technology

Artificial Intelligence Vision:

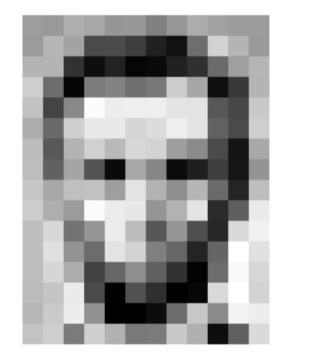
Origins of computer vision: an MIT undergraduate <u>summer project</u>





What Computers "See"

Images are Numbers



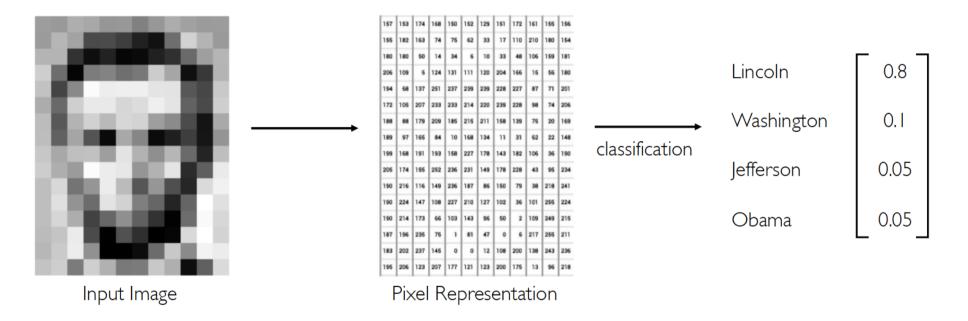
157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	45	105	159	181
206	109	5	124	191	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	1.99	75	20	169
189	97	165	84	10	168	134	n	\$1	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	296
195	206	123	207	177	121	123	200	175	13	96	218
		_									

What the computer sees

157	153	174	168	150	152	129	151	172	161	156	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

An image is just a matrix of numbers [0,255]! i.e., 1080x1080x3 for an RGB image

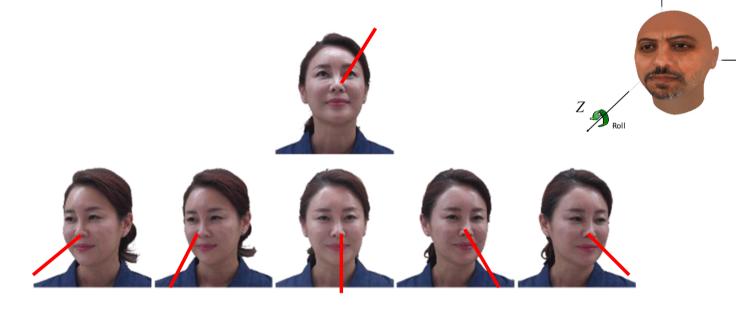
Tasks in Computer Vision Classification



- Classification: output variable takes class label. Can produce probability of belonging to a particular class
- In the example, classify which USA President is in the image

1417	Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeeplearning.com	1/29/19

Tasks in Computer Vision Regression



Yaw

 \mathbf{A}^X

Pitch

- **Regression**: output takes a continuous value
- In the example, the head rotation (3 angles: Yaw, Pitch, Roll)

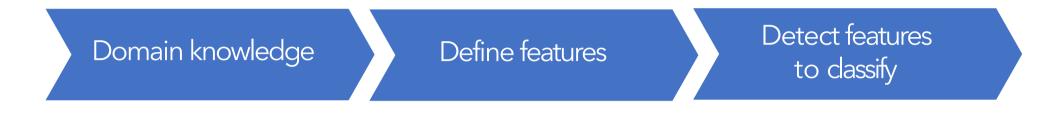
High Level Feature Detection

CLASSIFICATION: identify key features in each image category

Wheels, License Plate, Headlights

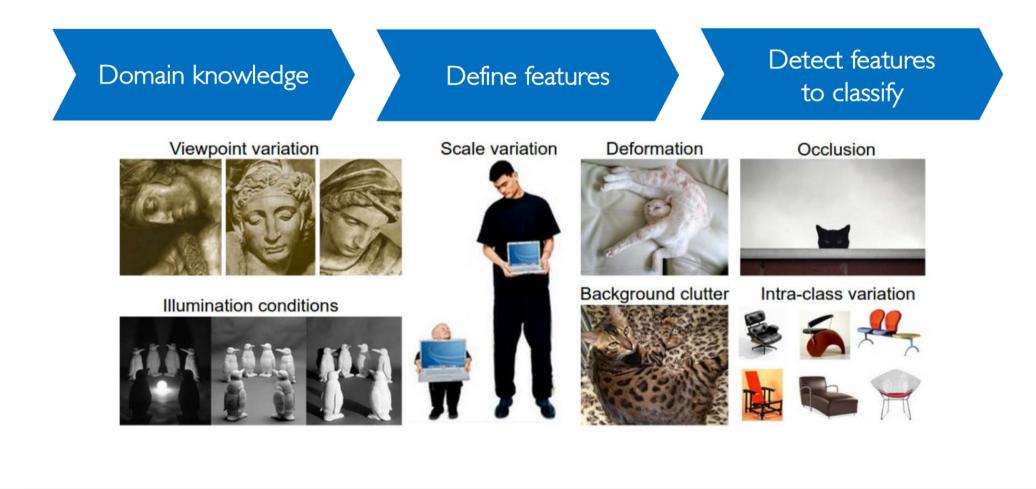
Door, Windows, Steps

Manual Feature Extraction



Problems?

Manual Feature Extraction



1417	Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning () introtodeeplearning.com) @MITDeepLearning	Li/Johnson/Yeung C231n. 1/28/20
	Technology		

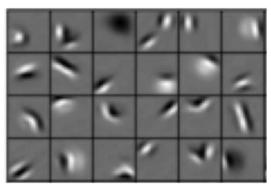
Manual Feature Extraction

14117	Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning () introtodeeplearning.com) @MITDeepLearning	Li/Johnson/Yeung C231n, 1/28/20
		÷ 1 0 - 1 0	

Learning Feature Representations

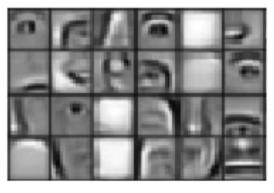
Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features



Edges, dark spots

Mid level features



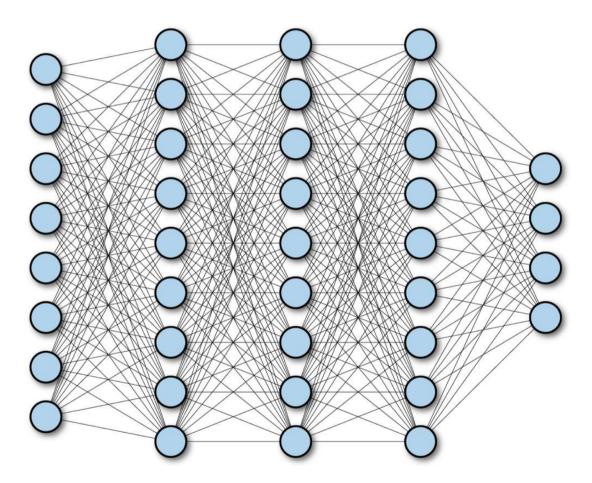
Eyes, ears, nose

High level features

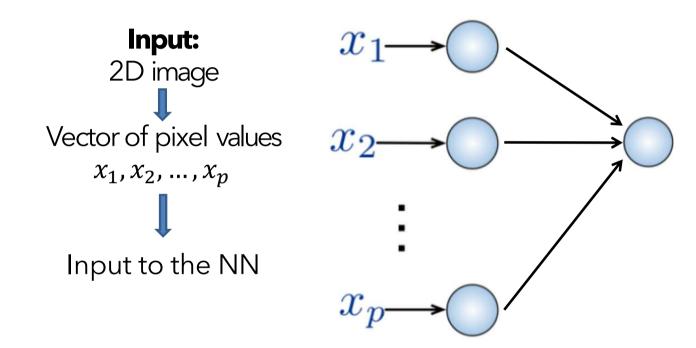
Facial structure

Learning Visual Features

Fully Connected Neural Network



Fully Connected Neural Network



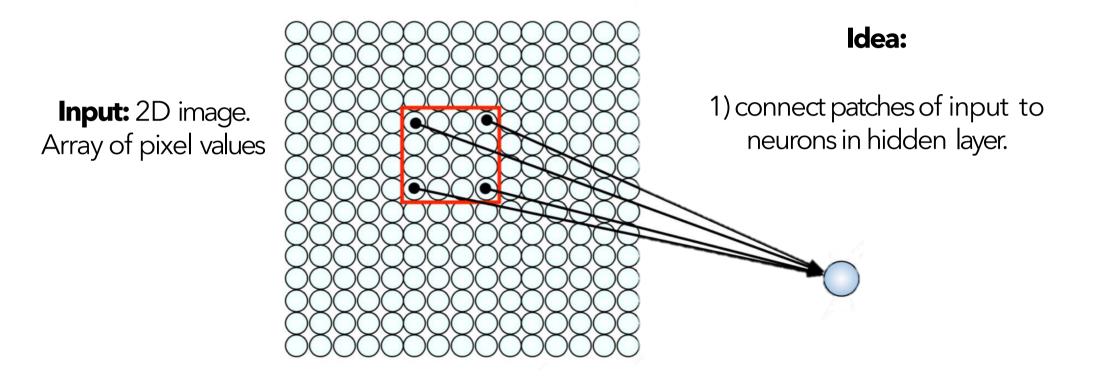
Fully Connected NN:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

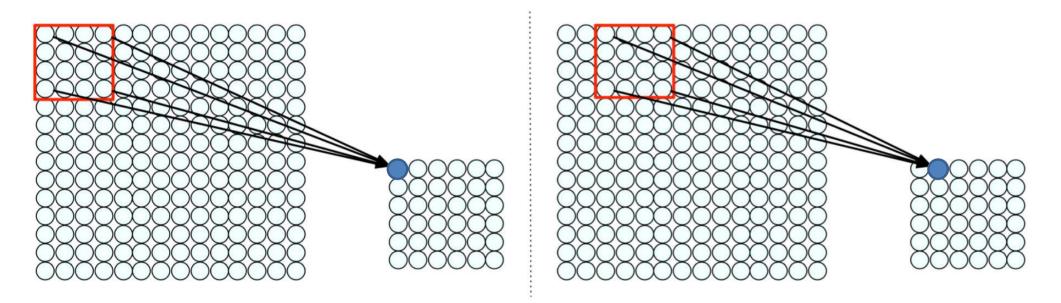
How can we use **spatial structure** in the input to inform the architecture of the network?

Spatial features

Using Spatial Structure



Using Spatial Structure



2) Slide the patch window across the image.

Different weights (filters) detect different features

Applying Filters to Extract Features

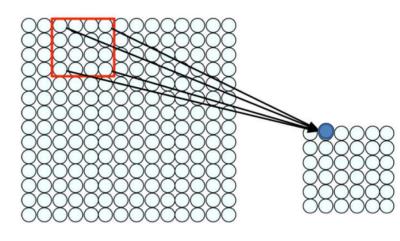
1) Apply a set of weights - a filter - to extract **local features**

2) Use **multiple filters** to extract different features

3) Spatially **share** parameters of each filter (features that matter in one part of the input should matter elsewhere)

Spatial Convolution

introtodeeplearning.com



- Filter of size $(n \times n)$: n^2 different weights
- Apply this same filter to all $(n \times n)$ patches in input
- Not necessary all: shift by *s* pixels for next patch

Producing Feature Maps

Feature Extraction and Convolution A Case Study

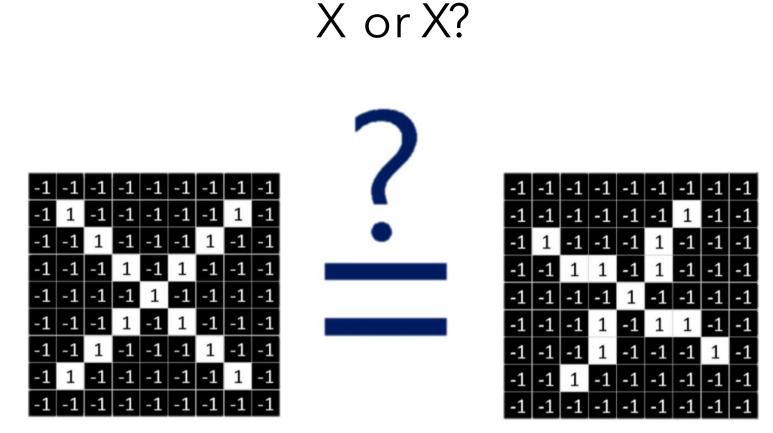
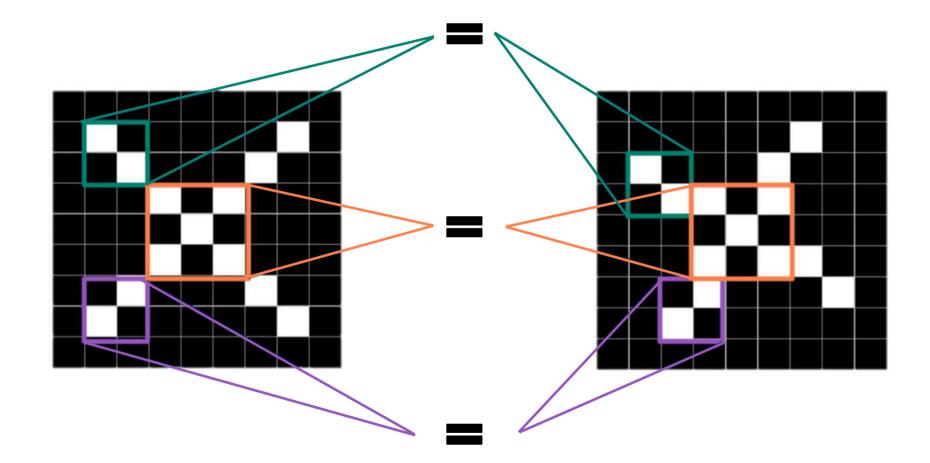


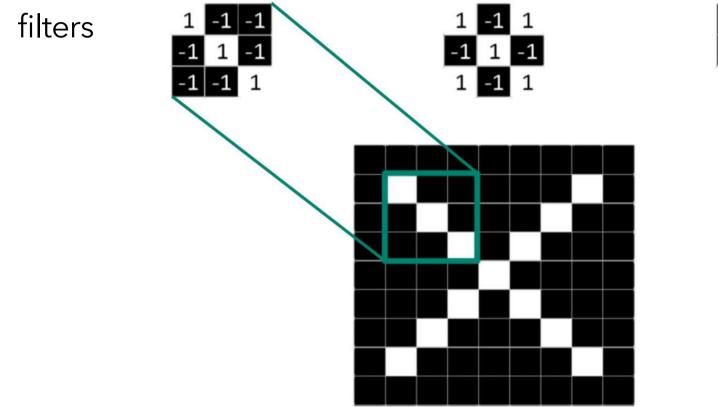
Image is represented as matrix of pixel values...and computers are literal!

We want to be able to classify an X as an X even if it's shifted, shrunk, rotated, deformed.

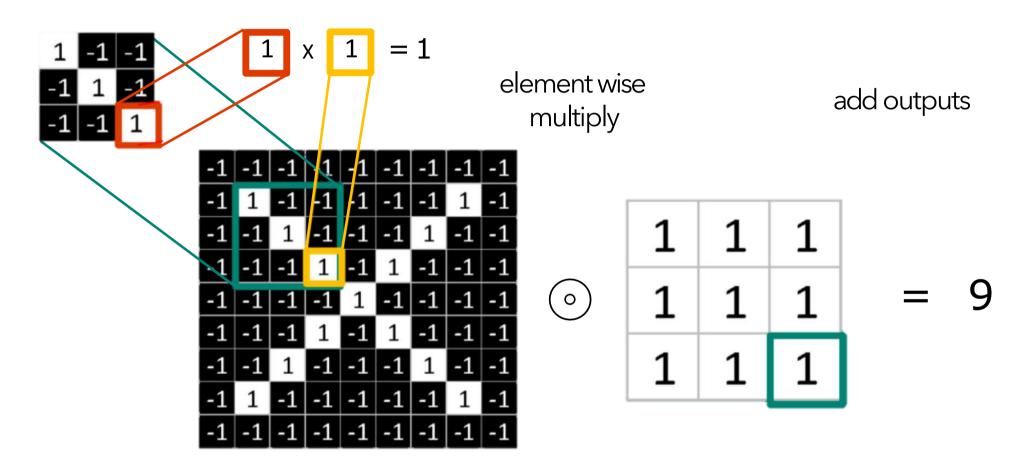
Features of X



Filters to Detect X Features

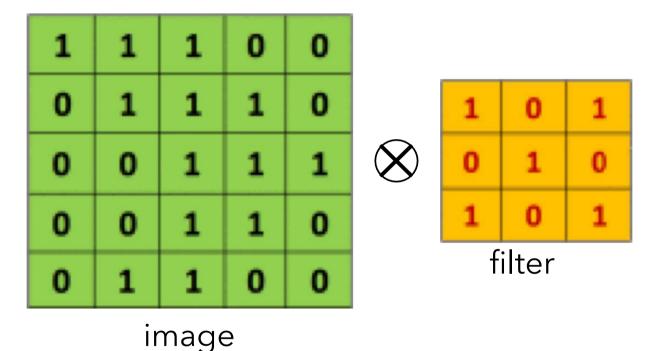


The Convolution Operation



The Convolution Operation

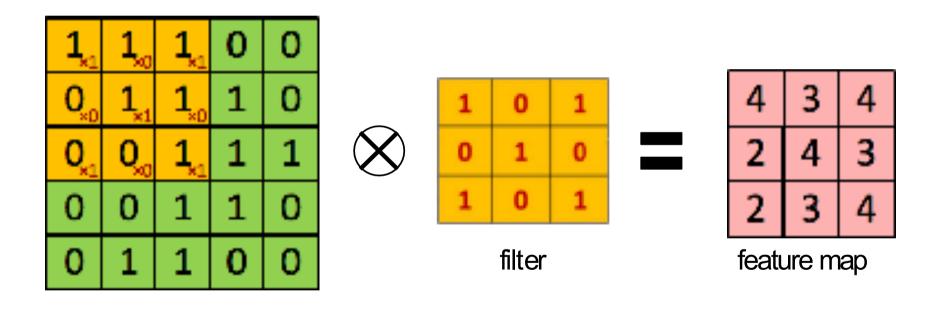
Suppose we want to compute the convolution of a5x5 image and a3x3 filter:



We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs...

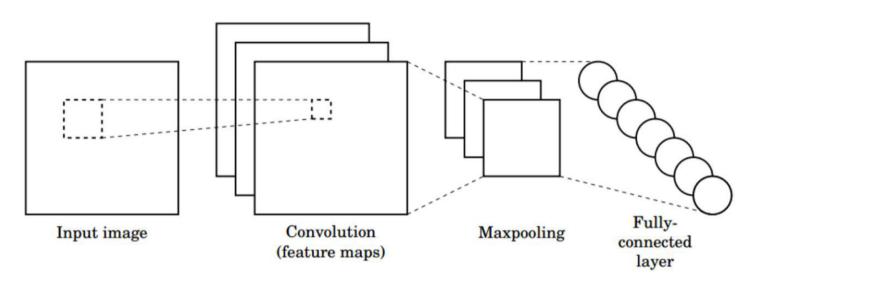
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

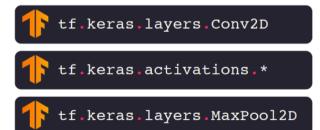


Convolutional Neural Networks (CNNs)

CNNs for Classification



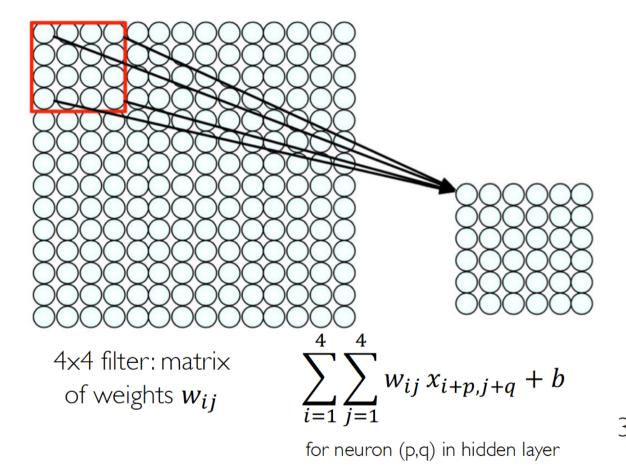
- I. Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- **3. Pooling**: Downsampling operation on each feature map.

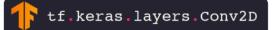


Train model with image data. Learn weights of filters in convolutional layers.

Massachusetts Institute of Technology 6.S191 Introduction to Deep Learning Institute of Technology Institute of Institute of Introduction to Deep Learning	1/28/20
---	---------

Convolutional Layers: Local Connectivity





For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

applying a window of weights
 computing linear combinations
 activating with non-linear function

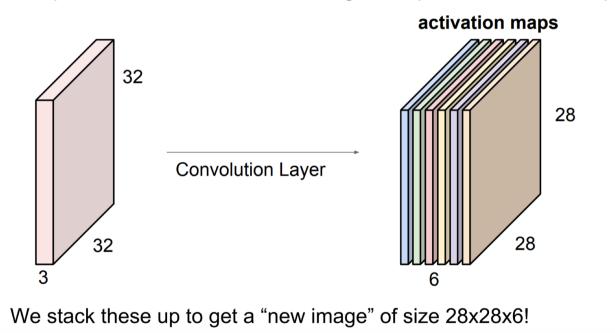
Illii	Massachusetts Institute of	6.S191 Introduction to Deep Learning introtodeeplearning.com J @MITDeepLearning	1/28/20
	Technology	🌐 introtodeeplearning.com 🛛 🔰 @MITDeepLearning	

Convolution layer: Activation Map

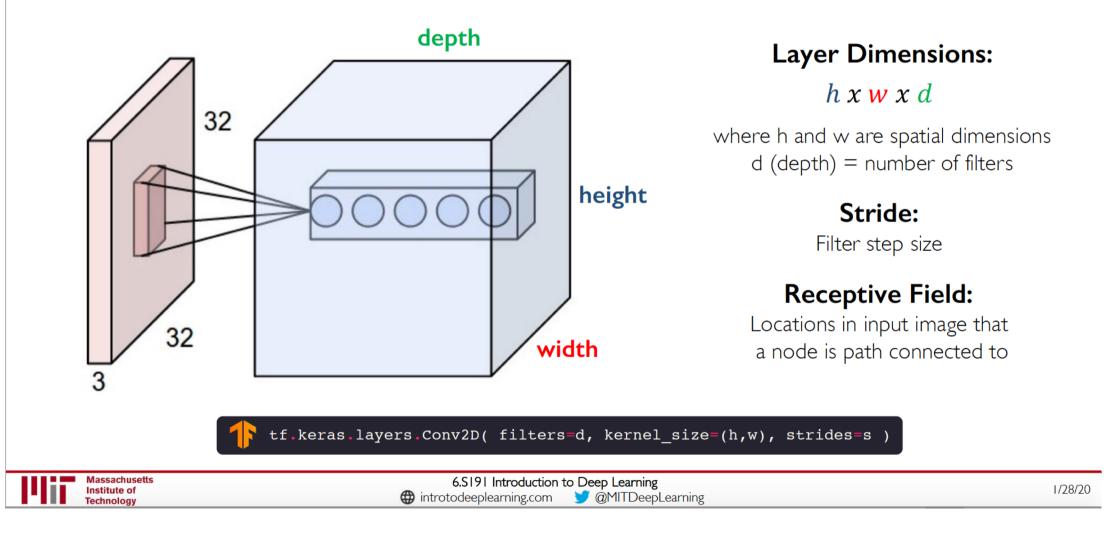
consider a second, green filter

Convolution layer: Activation Map

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

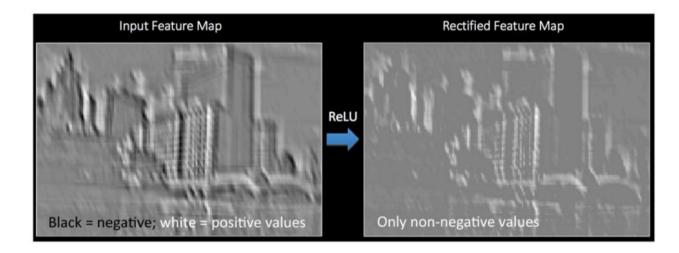


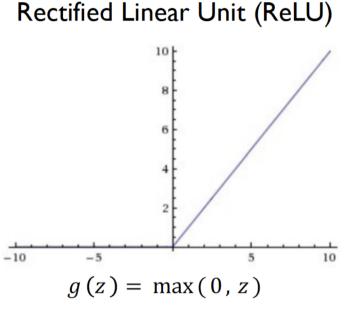
CNNs: Spatial Arrangement of Output Volume

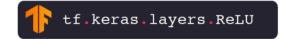


Introducing Non-Linearity

- Apply after every convolution operation (i.e., after convolutional layers)
- ReLU: pixel-by-pixel operation that replaces all negative values by zero. **Non-linear operation!**

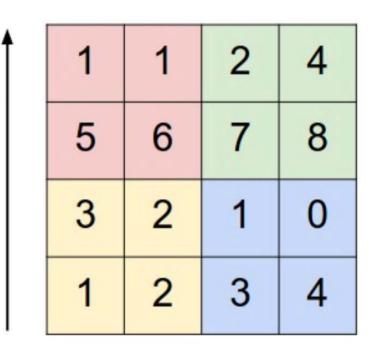






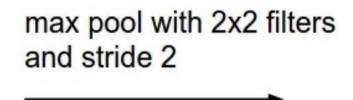
Massachusetts Institute of	6.S191 Introduction to Deep Learning	Karn Intuitive CNNs 1/28/20
Technology	🌐 introtodeeplearning.com 🛛 😏 @MITDeepLearning	

Pooling

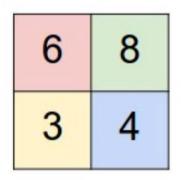


y

Х



tf.keras.layers.MaxPool2D(
 pool_size=(2,2),
 strides=2
)



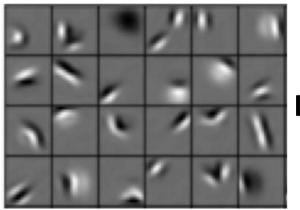
Reduced dimensionality
 Spatial invariance

How else can we downsample and preserve spatial invariance?

Massachusetts Institute of Technology 6.S191 Introduction to Deep Learning Image: Construction of the second se	1/28/20
--	---------

Representation Learning in Deep CNNs

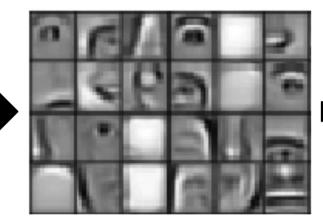
Low level features



Edges, dark spots

Conv Layer 1

Mid level features



Eyes, ears, nose

Conv Layer 2

High level features

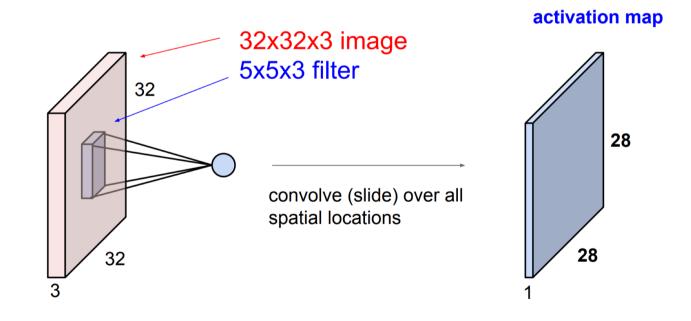
Facial structure

Conv Layer 3

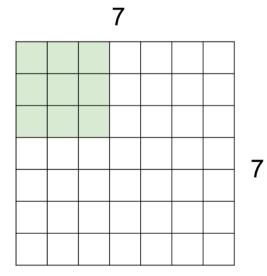
6.S191 Introduction to Deep Learning introtodeeplearning.com

Spatial parameters

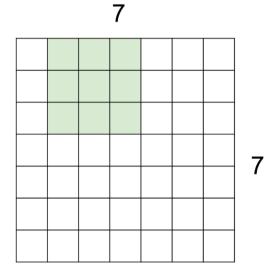
A closer look at spatial dimensions:



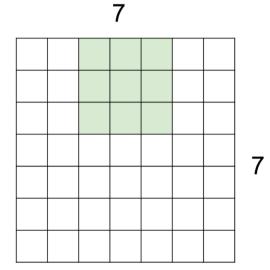
A closer look at spatial dimensions:



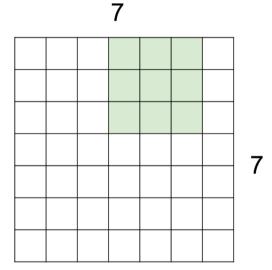
A closer look at spatial dimensions:



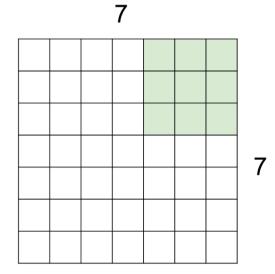
A closer look at spatial dimensions:



A closer look at spatial dimensions:



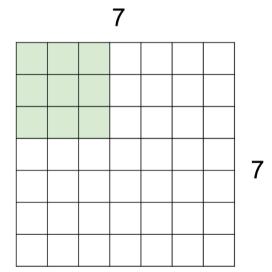
A closer look at spatial dimensions:



7x7 input (spatially) assume 3x3 filter

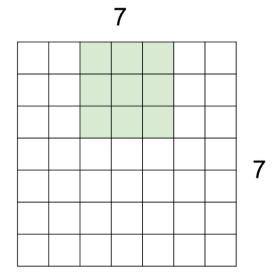
=> 5x5 output

A closer look at spatial dimensions:



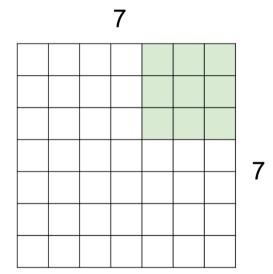
7x7 input (spatially) assume 3x3 filter applied **with stride 2**

A closer look at spatial dimensions:



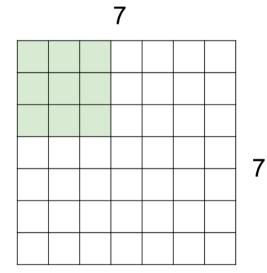
7x7 input (spatially) assume 3x3 filter applied **with stride 2**

A closer look at spatial dimensions:



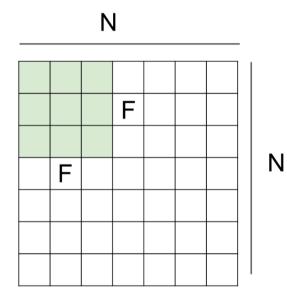
7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

A closer look at spatial dimensions:



7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.



Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

Some parameters: Padding

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7

3x3 filter, applied with **stride 1 pad with 1 pixel** border => what is the output?

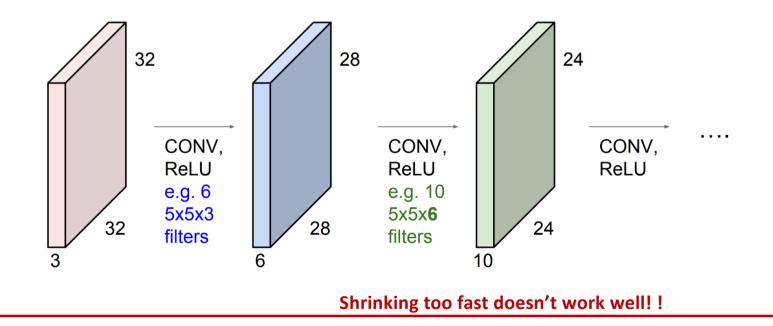
7x7 output!

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3

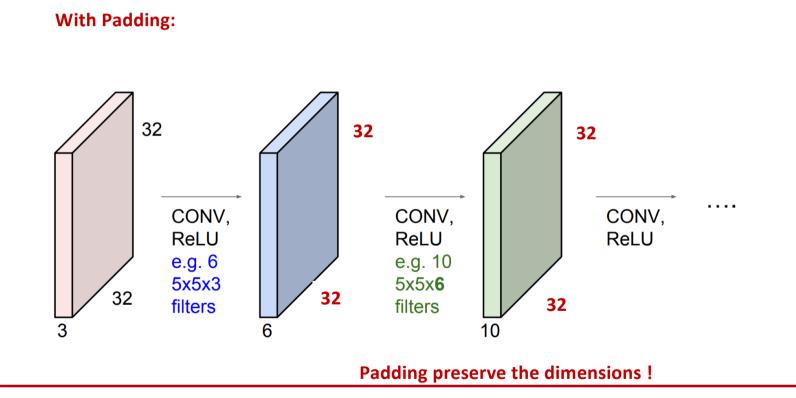
Some parameters: Padding

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! $(32 \rightarrow 28 \rightarrow 24 \dots)$.



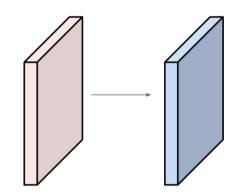
Some parameters: Padding



Some parameters

Examples time:

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

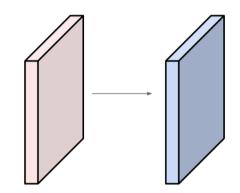


Number of parameters in this layer?

Some parameters

Examples time:

Input volume: **32x32x3 10 5x5** filters with stride 1, pad 2



Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

Summary

Summary. To summarize, the Conv Layer:

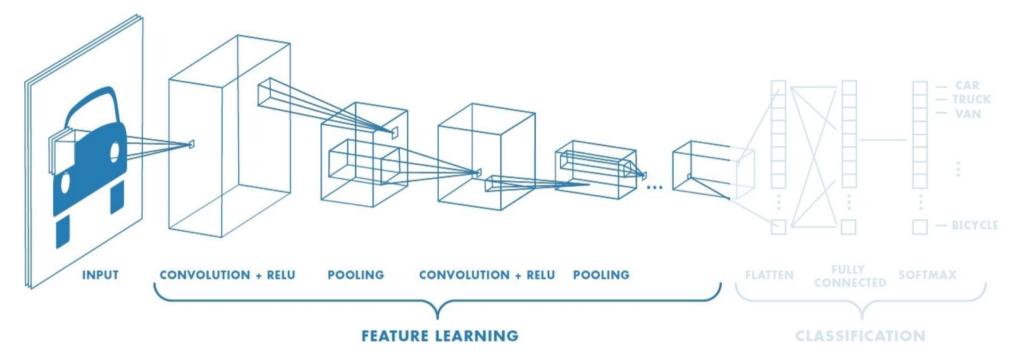
- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - \circ Number of filters K,
 - $\circ\;$ their spatial extent F ,
 - \circ the stride S,
 - \circ the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry) $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512) - F = 3, S = 1, P = 1

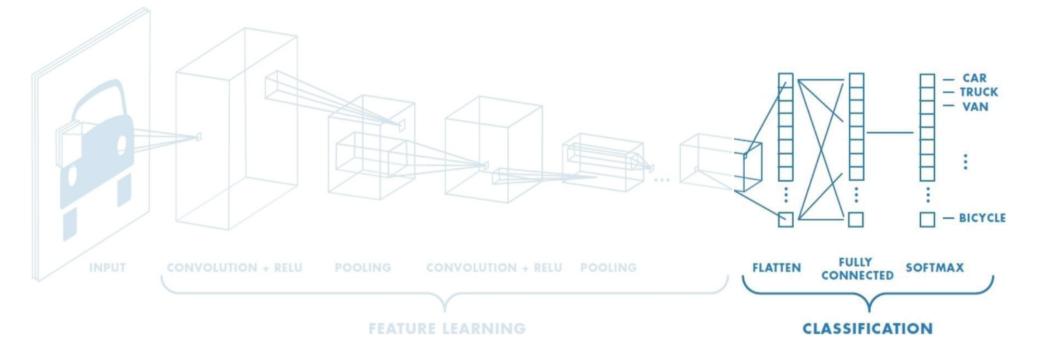
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

CNNs for Classification: Feature Learning



- 1. Learn features in input image through **convolution**
- 2. Introduce **non-linearity** through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with **pooling**

CNNs for Classification: Class Probabilities

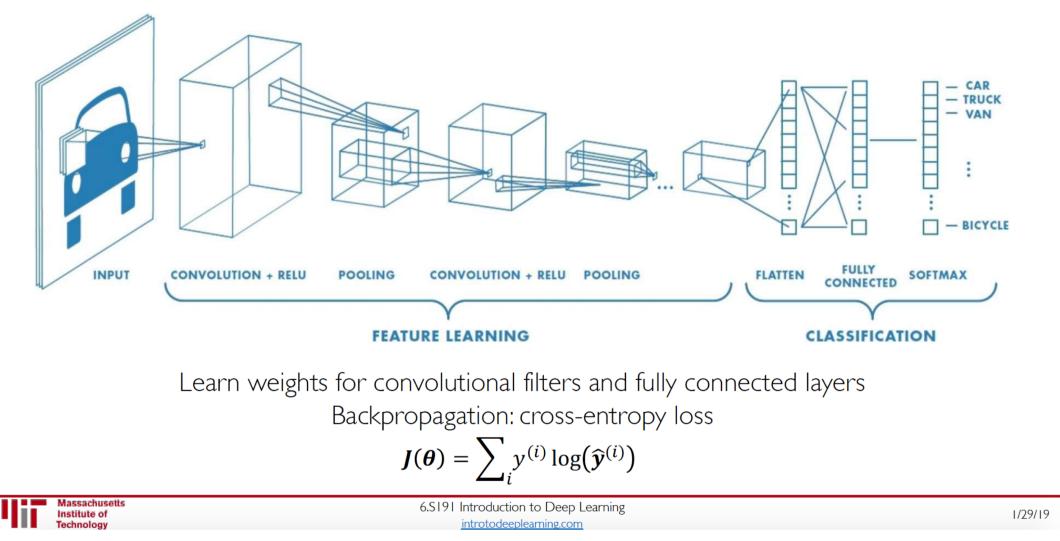


- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as **probability** of image belonging to a particular class

14117	Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeeplearning.com	1/29/19

 $softmax(y_i) =$

CNNs:Training with Backpropagation



Putting it all together

import tensorflow as tf

def generate_model():

model = tf.keras.Sequential([

first convolutional layer

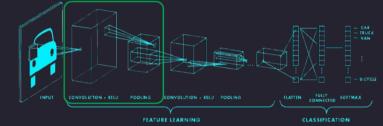
tf.keras.layers.Conv2D(32, filter_size=3, activation='relu'),

tf.keras.layers.MaxPool2D(pool_size=2, strides=2),

second convolutional layer

```
tf.keras.layers.Conv2D(64, filter_size=3, activation='relu'),
tf.keras.layers.MaxPool2D(pool size=2, strides=2),
```

fully connected classifier tf.keras.layers.Flatten(), tf.keras.layers.Dense(1024, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') # 10 outputs



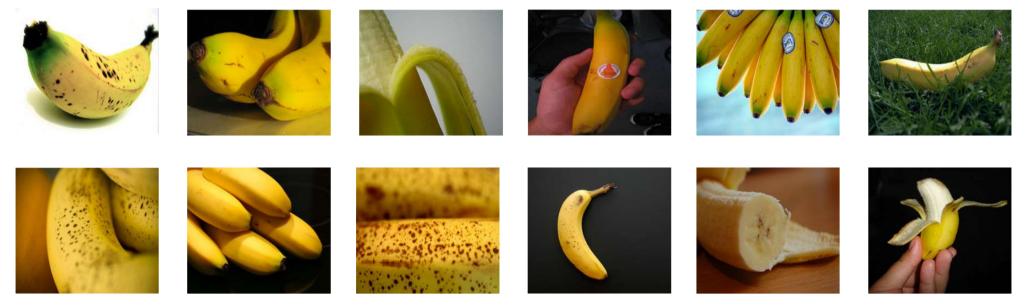

```
return model
```


CNNs for Classification: ImageNet

ImageNet Dataset

Dataset of over 14 million images across 21,841 categories

"Elongated crescent-shaped yellow fruit with soft sweetflesh"



1409 pictures of bananas.

6.S191 Introduction to Deep Learning introtodeeplearning.com

[6,7] 1/29/19

ImageNet Challenge

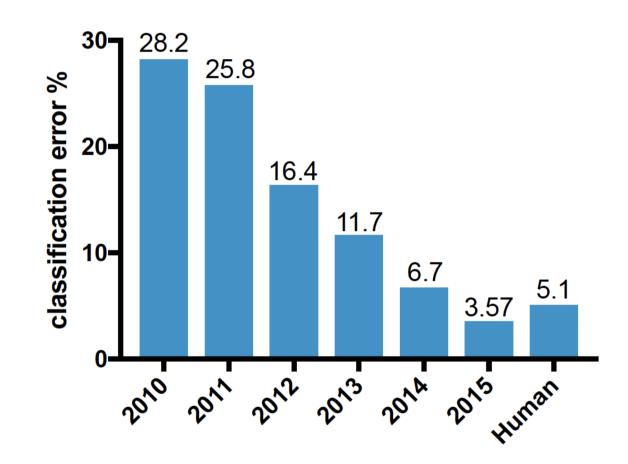
Classification task: produce a list of object categories present in image. 1000 categories.

"Top 5 error": rate at which the model does not output correct label in top 5 predictions

Other tasks include:

single-object localization, object detection from video/image, scene classification, scene parsing

ImageNet Challenge: Classification Task



2012: AlexNet. First CNN to win.

- 8 layers, 61 million parameters

2013: ZFNet

- 8 layers, more filters

2014:VGG

- 19 layers

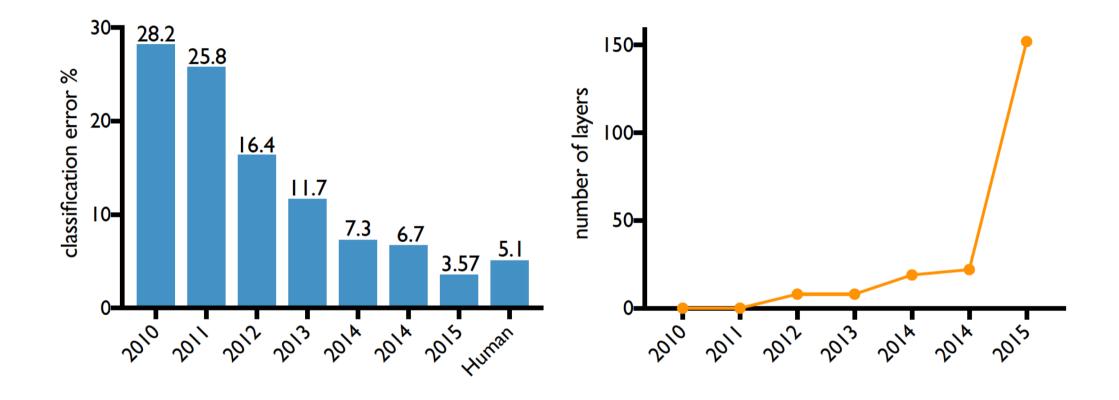
2014: GoogLeNet

- "Inception" modules
- 22 layers, 5million parameters

2015: ResNet

- 152 layers

ImageNet Challenge: Classification Task



Data, Data, Data

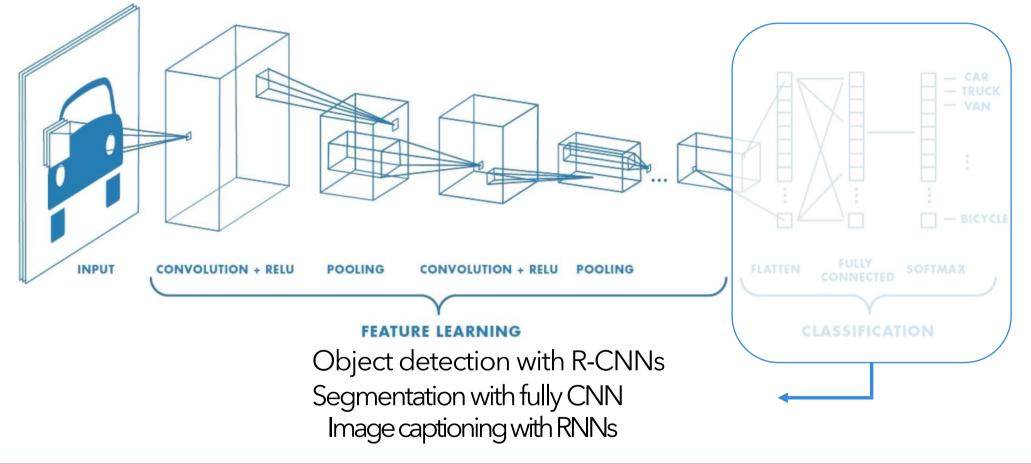
ImageNet: 22K categories. 14M images.

Airplane	3421956218 8912500664
Automobile	6701636370 3779466182
Bird	2934398725
Cat	1598365723 9319158084
Deer	5626858899 3770948543
Dog	7 7 6 4 7 0 6 9 2 3 MNIST: handwritten digits
Frog	
Horse	places 🗕 🌢 🤳
Ship	THE SCENE RECOGNITION DATABASE
Truck	places: natural scenes
CIFAR-10	

6.S191 Introduction to Deep Learning introtodeeplearning.com

An Architecture for Many Applications

An Architecture for ManyApplications

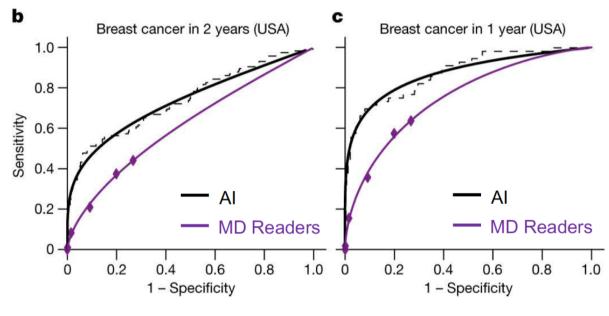


Deep Learning for Computer Vision: Impact

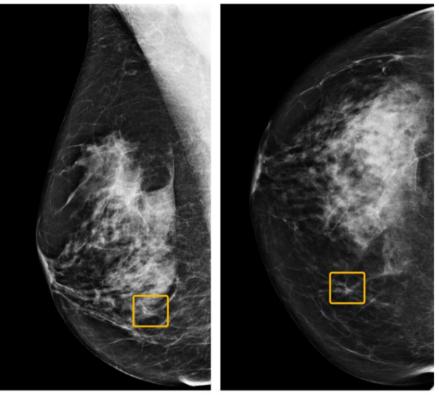
6.S191 Introduction to Deep Learning introtodeeplearning.com

Detection: Breast Cancer Screening

International evaluation of an AI system for breast cancer screening nature



CNN-based system outperformed expert radiologists at detecting breast cancer from mammograms



Breast cancer case missed by radiologist but detected by AI

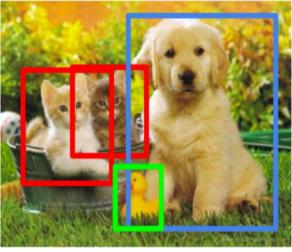
Plii	Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeeplearning.com	McKinney+ <i>Nature</i> 2020. 1/28/20

Beyond Classification

Semantic Segmentation

CAT

Object Detection



CAT, DOG, DUCK

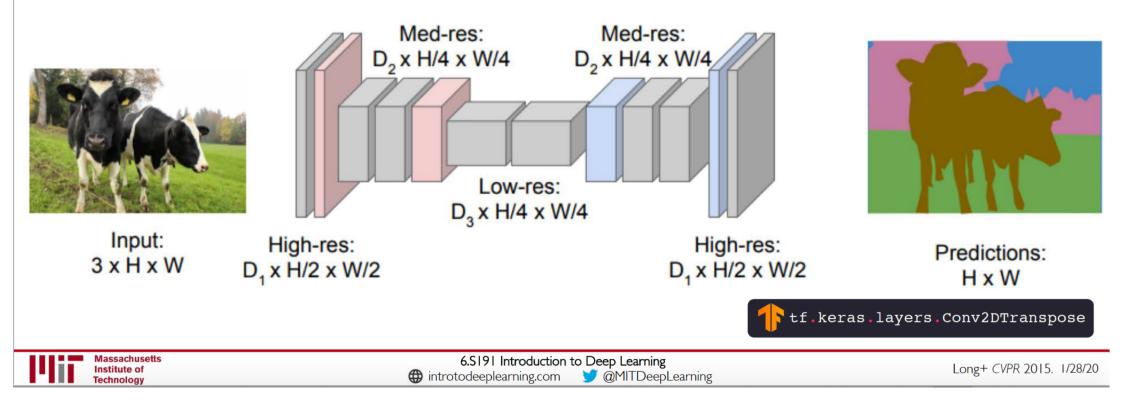
Image Captioning

The cat is in the grass.

husetts e of ogy 6.S191 Introduction to Deep Learning introtodeeplearning.com

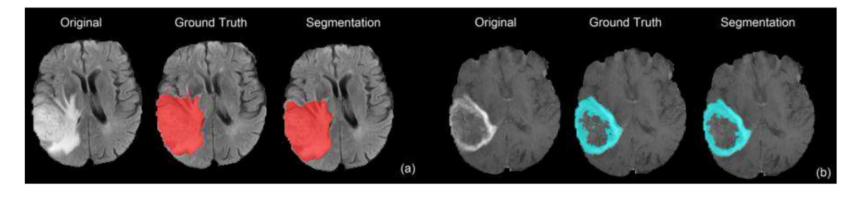
Semantic Segmentation: Fully Convolutional Networks

FCN: Fully Convolutional Network. Network designed with all convolutional layers, with **downsampling** and **upsampling** operations

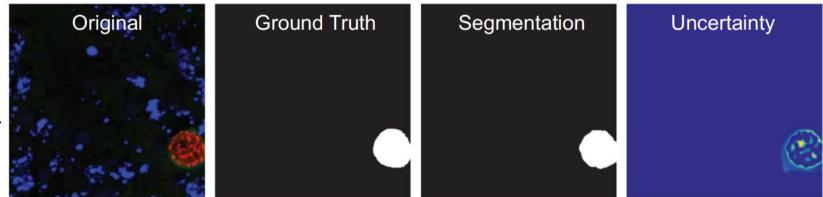


Semantic Segmentation: Biomedical Image Analysis

Brain Tumors Dong+ *MIUA* 2017.

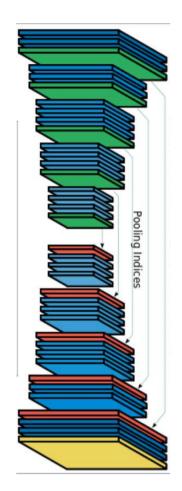


Malaria Infection Soleimany+ *arXiv* 2019.



Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeeplearning.com J@MITDeepLearning	Dong+ MIUA 2017; Soleimany+ arXiv 2019. 1/28/20
---	---	---

Driving Scene Segmentation



6.S191 Introduction to Deep Learning introtodeeplearning.com

Object Detection with R-CNNs

R-CNN: Find regions that we think have objects. Use CNN to dassify.

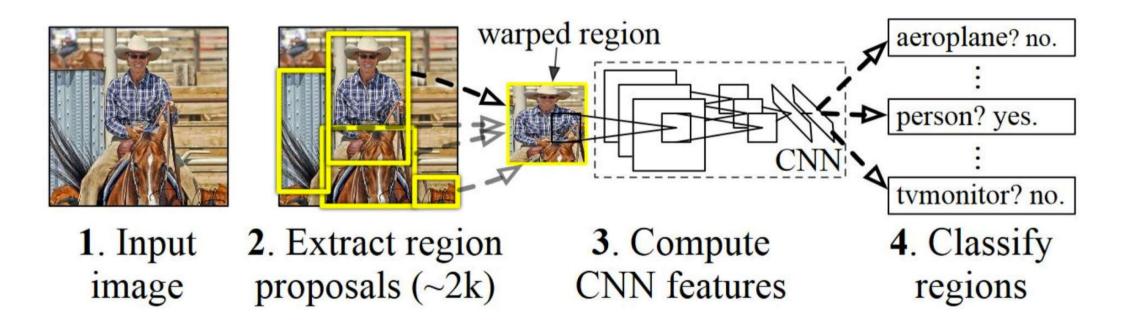
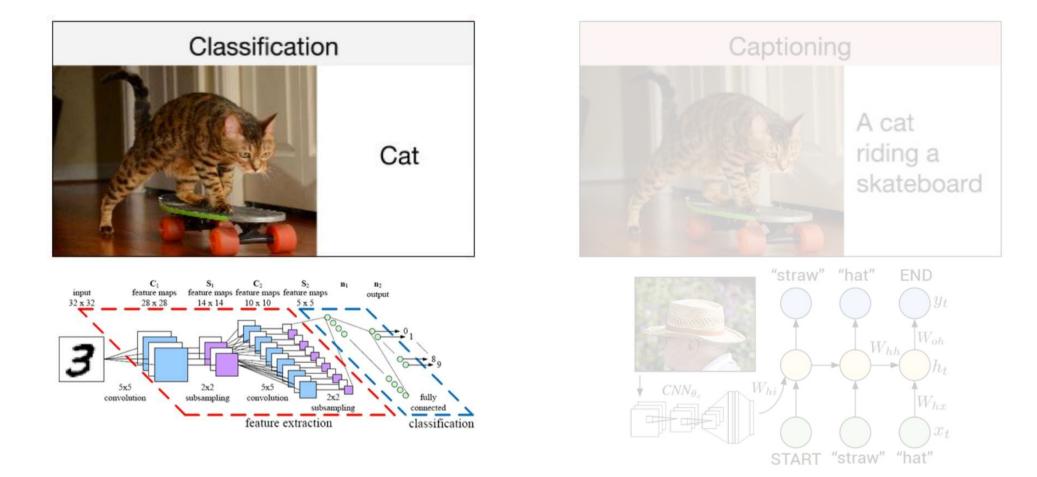
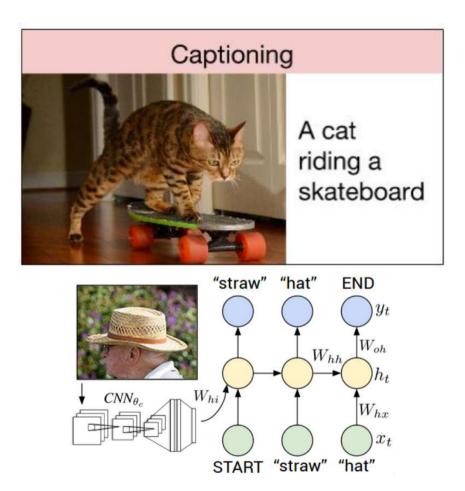


Image Captioning using RNNs



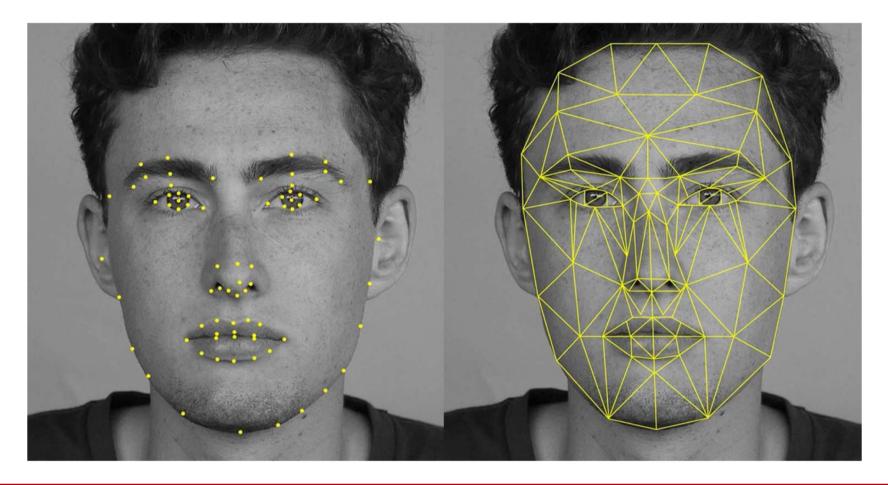
6.S191 Introduction to Deep Learning introtodeeplearning.com

Image Captioning using RNNs



6.S191 Introduction to Deep Learning introtodeeplearning.com

Impact: Face Detection



6.S191 Introduction to Deep Learning introtodeeplearning.com

Impact: Self-Driving Cars

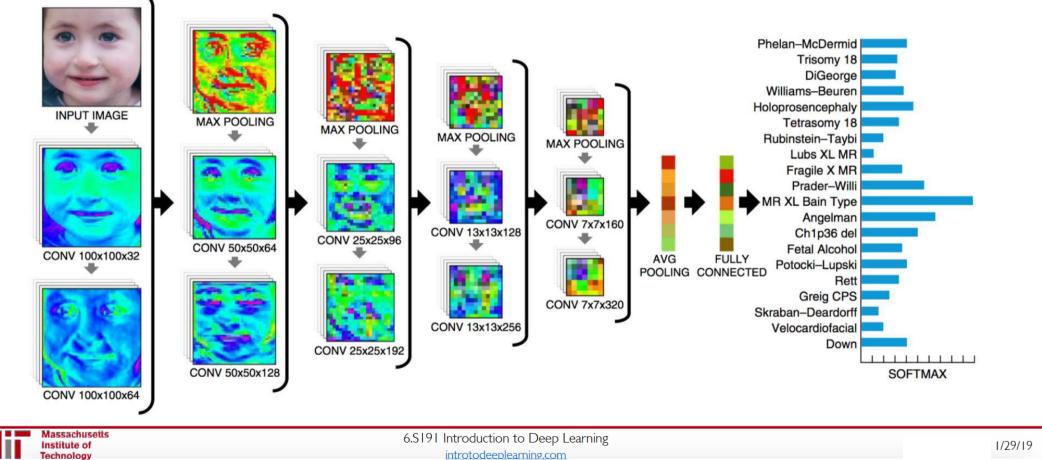
6.S191 Introduction to Deep Learning introtodeeplearning.com

Impact: Healthcare

h

Identifying facial phenotypes of genetic disorders using deep learning

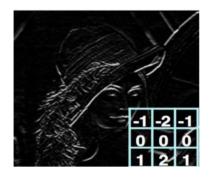
Gurovich et al., Nature Med. 2019



Deep Learning for Computer Vision: Summary

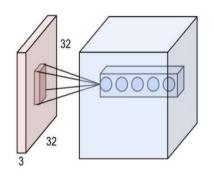
Foundations

- Why computer vision?
- Representing images
- Convolutions for feature extraction



CNNs

- CNN architecture
- Application to classification
- ImageNet



Applications

- Segmentation, object detection, image captioning
- Visualization

6.S191 Introduction to Deep Learning introtodeeplearning.com