Deep Learning

Theoretical introduction and its application for face
detection, recognition and camouflage.

Raffaella Lanzarotti

Aim of the course

* Introduction to Deep Learning,

e Theoretical
e Practical

« We'll largely adopt the valuable material from:

http://introtodeeplearning.com/

http://introtodeeplearning.com/

DAY 1

DAY 2

DAY 3

DAY 4

DAY 5

Schedule (tentative)

CLASS 1
LAB 1
CLASS 2
LAB 2
CLASS 3
LAB 3
CLASS 4
LAB 4

CLASS 5

Introduction to Machine Learning
Tensor Flow

Deep Sequence Modelling
Music Generation

Convolutional Neural Networ
MNIST

Deep Generative Models
Debiasing

Deep Reinforcement Learning
Limits and new Frontiers

Introduction to
Machine Learning

‘Deep Voice’ Software

Can Clone Anyone's T h e Ri Se Of D ee P Lea rn i ng clac.::ﬂelplnl’remwwumw

Voice With Just 3.7
Seconds of Audio

Let There Be Sight: How Deep Learning Is Helping the Blind ‘See’
Using snippets of volcsl, Baidu's ‘Deep Voice'

can new ts, and tones.
- . - . *hnology outpacing security Af beats docs in cancer spottir
; it DEEPVIND | o
pr - .ln.» 1] l‘l

-
el

=3 SIARCRAFT
o TRIUMPH K

‘Creative’ AlphaZero leads way for
chess computers and, maybe, science

How an Al ‘Cat-and-Mouse Game’

e faces show how far Al image generatio.n has
Generates Believable Fake Photos E

nced in just four years
Stock Predictions Based On Al: Is the Market
Truly Predictable?

%-

Neural networks eve'ywhere

mepl New chip r 1 es neural networks’ powe
y-powered ¢
Digeal R

After Millions of Trials, Th;se Simuhied Humans
Learned to Do Perfect Backflips and Cartwheels

s &
® Automation And Algorlthms

De-Risking Manufacturing With
Artificial Intelligence

6 Sarah Goshrke

» -
archers intreducea deep fearning method
that copverts mono audio recordings into 3D - TWEET Thes

Google’s DeepMind aces protein folding seunds usindiidecscencs

By Robert | Service —

knatiteite of 6.5191 Introduction to Deep Learning

Technology introtodeeplearing.com

II I H BN Massachusetts
1/28/19

The Rise of Deep Learning

Deep learning:

* has revolutionized many areas of machine intelligence,
with particular impact on image understanding tasks

* particularly effective...
e for unstructured data
* to learn good representations
* to learn good “models”

What is Intelligence?

 The ability to process information, to inform future decisions

T T W O

f*‘.;'u. X)\ -

l‘-___.f: — !
R o
. ‘. ;;‘ 3 .

-
"

" o =
& ey i d e
Ty LN
Sg o

What is Deep Learning?

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1728/19

W

v deep learning?
VY NOW?

Why Deep Learning?

Traditional ML:
* Hand engineered features * LIMITS and PROBLEMS:

* Time consuming
* Brittle
* Not scalable

Challenge:

can we |learn the underlying features directly from data?

Deep Learning
learns features directly from data

Ex: Features to detect faces

- Which features characterize faces?

- They should be:
- specific to this class
- flexible to manage intra-class variability

Low Level Features ? Mid Level Features? High Level Features?

Lines & Edges Eyes & Nose & Ears Facial Structure

Why Deep Learning?

Deep Learning

learns features in a hierarchical manner

Low Level Features

Mid Level Features

High Level Features

>

Lines & Edges

Eyes & Nose & Ears

Facial Structure

In this course...

* We'll try to answer to this question:

HOW CAN WE GO FROM RAW DATA (e.g. pixels) TO A
MORE AND MORE COMPLEX REPRESENTATION AS
THE DATA FLOWS THROUGH THE MODEL?

Why Now!?

N/ Neural Networks date back decades, so why the resurgence?
1952 Stochastic Gradient
Descent
Perceptron |. Big Data 2. Hardware 3. Software
1958 * Learnable Weights :
e ‘ * larger Datasets * Graphics * |Improved
. * Easier Collection Processing Units Techniques
* & Storage (GPUs) * New Models
1986 Backpropagation * Massively * TJoolboxes
* Multi-Layer Perceptron Parallelizable
| IMJSGEN
1995 Deep Convolutional NN P
* Digit Recognition /.,r’::) Y I f
: R “\:- W A i ?m@ A’@ ‘1.)
. Wiapspi g TensorFlow
V
III. - m::ﬁg‘g:‘m‘ 65191 Introduction to Deep Learning 128/19
Il Technology introtodeepleaming.com

The Perceptron

The structural building block of deep learning

Biological Inspiration

Axon
terminals

Myelin sheath /\
—
>
.
Input Output
. Dendrites .
Signals o Signals
o
s

—_— Cell nucleus

The Perceptron: Forward Propagation

Linear combination
Output of inputs

. —_—

os(§ o)

X2 ’Z—’/ y =l

w Non-linear
activation function
X

Inputs Sum Non-Linearity Output

l AR et 6.5191 Introduction to Deep Learning
I l institute of

Technology introtodeepleaming.com

1728/19

The Perceptron: Forward Propagation

Bias Linear combination
1 / Output of inputs

X2 Non-linear

activation function

Inputs VWeights Sum Non-Linearity Output

II I H BN Massachusetts
1/28/19

- 6.5191 Introduction to Deep Learning
I l Institute of , .
Technology introtodeepleaming.com

The Perceptron: Forward Propagation

~

= LW y (9= gCwerxTw)
X2

X1 W1

andW=\]

Using Linear Algebra...

where: X =

Inputs Weights Sum Non-Linearity Output

HEE Massachusetts - a
I l II l Stiute of 6.5191 Introduction to Deep Learning 1/28/19

Technology introtodeepleaming.com \

The Perceptron: Forward Propagation

Activation Functions
1

y=g(wo+XTW)

¢ Example: sigmoid function

™M
l
\

1
Wi, g(Z)ZU(Z)=—1+8_Z
1- o

Xm /
Of?
: : : /
Inputs Weights Sum Non-Linearity Output /
L '//1 o | 1 J
-6 -4 -2 0 2 - 6 Z
Illil- m::ﬁf:gfens 6.5191 Introduction to Deep Learning
Technology

‘ . 1/28/19
introtodeepleaming.com

Sigmoid

Near-0 gradient

- Historically the most used for binary
classification

091

0.8

0.7

0.6 [

051

0.4

- Useful for modelling probability, because it
collapse the input between 0 and 1

031

021

0.1

- ; g o - It suffers from the vanishing gradient
Near-0 gradient problem
1 - Non-zero centered output that may cause

o(r) = — - ;
1+ e zig-zagging

0.8

0.6

0.4

021

-0.2

0.4+

-0.6

-0.8

tanh(x) =

e’ —e

10

Tanh

It suffers from the vanishing gradient
problem

Output is zero centered, thus it has better
gradient properties than sigmoid

It is a scaled version of Sigmoid:

e? —e *

et +e 7

RelLU (Rectified Linear Unit)

f(x) = max(0,)

Very popular and simple: it thresholds
values below 0

It allows for fast convergence of the
optimization function

The weight may irreversibly die

10

fa)={

ar ifx <O
x itx>0

a=20.1

Leaky RelLU

- Itis aimed to fix the dying RelLU problem

- In avariant (called parametric ReLU) the
slope for negative values can be learnt

Sigmoid Function

Common Activation Functions

9(2)
08} 9@ |
0.6
0.4
0.2 ¢
0= - :
5 0
1
(z)= ————
g 1+e~ %

9'z)= g0 -g(2)

IF tf.math.sigmoid(z)

7 TensorFlow code blocks

Hyperbolic Tangent

4 9
0.5 g'@| |
0 B
-0.5
_1 —
-5 0 5
e —e %
(z) =
9 eZ + e 2

g9'(z)=1-g(2)?

IF tf.math.tanh(z)

NOTE: All activation functions are non-linear

Rectified Linear Unit (RelLU)

o |
4 9@ |

-5 0 5

9() = max (0, 7)
9'(2) = {éj

IF tf.nn.relu(z)

z >0
otherwise

N Em Massachusetts
I l Institute of

Technology

6.5191 Introduction to Deep Learning
@ introtodeeplearningcom 9 @MITDeeplearning

1127120

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

09k

w

08F

07f

06F

0SF

04

Linear Activation functions produce linear
decisions no matter the network size

I e —— 6.5191 Introduction to Deep Learning
Il institute of

. . 1/28/19
Technology introtodeeplearming.com

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

09k

w

08F

07p

06F

0S5k

04

Linear Activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions

I S 65191 Introduction to Deep Learning
Il institute of

) . 1/28/19
Technology introtodeepleaming.com

The Perceptron: Example

We have: wog =1 and W = [_32]

y=g(we+X"W)

\ /
/ =g (1+[] [3))
y=9g(1+3xy—2x3)
X, N g J

This is just a line in 2D!

Gy
v
™M
N
=

l H B Massachusetts
I I 1/28/19
I

it 6.5191 Introduction to Deep Learning
I l institute of : ;
Technology introtodeepleaming.com

The Perceptron: Example

Plot this line equal to 0 in the feature space:
y = g(l + 3x1 — ZXZ)

AX2 ’Q
1 1 1Y &
q,;rf\/
1/
,*,'\/
W

2
v
™M
N
=

I e 6.5191 Introduction to Deep Learning
ll Institute of

Technology introtodeepleaming.com

1/28/19

The Perceptron: Example

Yy =9g(1+3x1—2x5)

AX2 f
1 1 + / ’

r\;‘;\,
o +

W

X1 >Z—>/

A

Assume we have input: X = [_21] 1

g(1+ @*-1) - (2+2) / {
g (—6) = 0.002

y

III. g Massachusetis 6.5191 Introduction to Deep Learning
nstitute of

l l Technology introtodeepleaming.com

1/28/19

The Perceptron: Example

y=9g(1+3x1—2x3)

Q
1 4 /
1 z <0 /Arq,/
y < 0.5 v

=

\ 4
M
<)
X‘\
7,

Ill. T :“’s.s“h“”“" 6.5191 Introduction to Deep Learning
nstitute of

| |) : 1/28/19
Technology introtodeepleaming.com

Building Neural Networks with
Yerceptrons

The Perceptron: Simplified

0

P
xz/

Wm

)

Xm

Inputs Weights Sum Non-Linearity Output

H BN Massachusetts

institute of
Technology

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19

The Perceptron: Simplified

Diagram simplification
* No Bias
* No weights

o / z > * z:input to the a.f.

e y: output of the a.f.

m
Z =Wy +2_ Xj Wj
J=1

6.5191 Introduction to Deep Learning 1/28/19
introtodeeplearming.com

Multi Output Perceptron

X1
v =9(z1)
Zl >
X2
V2 = 9(23)
Z >
Xm

m
Zi = Wy + z 1xj W;j i
]:

Simply add a perceptron
Same input

Same process

What changes are the weights

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19

Dense layer from scratch 1F

class MyDenseLayer (tf.keras.layers.Layer):
def init (self, input dim, output dim):

super (MyDenseLayer, self). init ()
self.w self.add weight([input dim, output dim])
self.b self.add weight([1l, output dim])

def call(self, inputs):

tf .matmul (inputs, self.W) self.b

output tf .math.sigmoid(z)

return output

6.5191 Introduction to Deep Learning

introtodeeplearning.com @MITDeeplearning 1127120

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called Dense layers

X1
Z1

X2
Z2

Xm tensorflow tf

layer tf.keras.layers.Dense(
units=2)
m
Zi =Wp; t E X Wy
J=1
O e 6.5191 Introduction to Deep Learning
I I I I I ;22::::,‘.2;; @ introtodeeplearningcom W @MITDeeplearning LA

Single Layer Neural Network

w® w®
g(zy)
Zq
X1
g(fz) N
) Y1
X2
Z ¥ V2
3 g(z3)
Xm
Z
A1 g(z,)
Inputs Hidden Final Output

(1) (1)
+-:E: _133 il

pi=a(w?)

(2)
ZJ Jii

Not observable

To be learned

No specific
behaviour enforced
2 weight matrices
Same operation as

before (dot product,
bias, a.f.)

)

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19

Single Layer Neural Network

Z1
Z7 V1
Z3 V2
Zd1
m
1 1
Zy = W(g,z) + z X Wj(,z)
J=1
1 1 (1) (1)
= wé’z) + x4 W1(,2) + x5 w,, + Xm Wi 2

« Same operation as
before (dot product,
bias, a.f.)
« Same for z3, what
changes are the
weights

6.5191 Introduction to Deep Learning
introtodeeplearming.com

1/28/19

Multi Output Perceptron

1F tensorflow tf

model tf.keras.Sequential ([

tf.keras.layers.Dense(n),
tf.keras.layers.Dense(2)

A
X1
Z? V1
X2 X X
Z3 V2 X | :replace connections.
X
m Stands for:
7 Fully connected layer
OR
Inputs Hidden Output Dense layer

6.5191 Introduction to Deep Learning

@ introtodeeplearningcom 9 @MITDeeplearning 1127120

Deep Neural Network

) T

tensorflow tf

model tf.keras.Sequential ([

X2 >< ceooe X X PP >< tf.keras.layers.Dense(n;),

tf.keras.layers.Dense(n,),

Zk,3 Y2
Xm layers.Dense(2)
Zkﬂuc
Inputs Hidden Output
Ng—1
_ (B (k)
Zgi = Wo; +) . 9(Zy-1,7) W
]:
Illil— m::fztc:zs;eﬂs 6.5191 Introduction to Deep Learning

Technology @ introtodeeplearningcom W @MITDeeplearning Lyiry

Deep Neural Network

e Stack hidden layer back to back to back to create increasingly
deeper and deeper models.

» Output computed going deeper into the NN and computing
these weighted sums over and over and over again with these
a.t. repeatedly applied

Applying Neural Networks

Example Problem

WIll'| pass this class?

Let's start with a simple two feature model

x1 = Number of lectures you attend

X, = Hours spent on the final project

H BN Massachusetts

institute of
Technology

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19

Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend

II I ap Massachusetts 65191 Introduction to Deep Learning
nstitute of

l l Technology introtodeepleaming.com

1728/19

Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend

II Il E Massachusetts
1/28/19

” 6.5191 Introduction to Deep Learning
l I Institute of ‘ .
Technology introtodeepleaming.com

Example Problem: Will | pass this class?

Z
| A
X(l) = [4 ,5] Zy V1 Predicted: 0.1
L X,
“z

HEE Massachusetts - .
Il I l I kst of 65191 Ilntroductlon to Deep Learning 1/28/19
Technology introtodeepleaming.com

Example Problem: Will | pass this class?

21
| X1
x(l) — [4 ,5] Z2 V1
L X,
Z3

I S 6.5191 Introduction to Deep Learning
I institute of ‘ i
Technology introtodeepleaming.com

1/28/19

Example Problem: Will | pass the exam?

Why Wrong prediction?
»Because the network is not trained

Train a network: teach it to get the right answer. How?

> tell it when it makes a mistake, so to correct it in the future

The Loss of a network is what gquantify the wrong prediction

Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

21
| A
X(l) = [4 ,5] Zy V1
L X,
Z3

L (f (x(i); W), y(i))

Predicted Actual

I I ll E Massachusetts
1/28/19

6.5191 Introduction to Deep Learning
II Institute of))
Technology introtodeepleaming.com

Empirical Loss

When we train a network, we do not want to minimize the loss
for a particular student, but the loss across the entire training set

The empirical loss measures the total loss over our entire dataset

o 2 @y

‘zh ? %4 0.1 |

x= 12 . 0.8 0
5’ 8 ZZ YI 06 |

. xZ N .

L p— 23 L ._ L ._

1" . .
wepene T JW) =) LU GOw),y0)

* Cost function L
* Empirical Risk Predicted Actual
Illi l- m::f:g‘g:e“s 6.5191 Introduction to Deep Learning 1/28/19

Technology introtodeeplearming.com

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and |

. 7 Sy
45 o1] |1
X = |4 N 0.8 0
5’ 8 Zp 1 06 |
. Xy . .

L — Z3 L ’ — L) —

Jw) = %Z?ZIy(i) log (f(x(i); W)) +(1—y®) log(l — f(x®; W))

Actual Predicted Actual Predicted

1F loss tf.reduce mean(tf.nn.softmax cross entropy with logits(y, predicted))

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

7 f () y
_ 1 ST
S 30| |90
-2 | - 80| |20
X Z
5, 8 : L les| o5
. Xy . .
L — Z3 L ’ — L) -
1 . . 2 7 l
W) = — O _ @. w Final Grades
Jw) n Z i=1 (y f(x)) (percentage)

Actual Predicted

["F loss tf.reduce mean(tf.square(tf.subtract(y, predicted)))

Training Neural Networks

Loss Optimization

We want to find the network weights that achieve the lowest loss

n
w* = argminlz L(f(x(‘) W) y(‘))
w Né&aj=1

W* = argmin J(W)
w

I-M
ltttof
Technology

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19

Loss Optimization

We want to find the network weights that achieve the lowest loss

n
W™ = argminlz L(f(x(i); W),y(i))
w Né&dj=1

W* = argmin J (W)
w

|

Remember:
W = {W(O), w® ... }

H BN Massachusetts . .
I I Il I knstitte of 6.5191 Introduction to Deep Learning 1/28/19
\

Technology introtodeeplearming.com ‘

J(wo, wy) |

Loss Optimization

W* = argmin (W)
w

Remember:
Our loss is a function of
the network weights!

](W(); Wl) ‘

Loss Optimization

Loss optimization through gradient descent

Randomly pick an initial (wg, wy)

Loss Optimization

aJjw)

Compute gradient,

ow

J (W, wy) |

J(wg, wy) |

Loss Optimization

Take small step in opposite direction of gradient

Gradient Descent

Repeat until convergence

J(wg, wy) |

Gradient Descent

Algorithm
. Initialize weights randomly ~N'(0, 02)

2. Loop until convergence:

oJW)
ow

3. Compute gradient,

W)
ow

4 Update weights, W « W —

5. Return weights

H B Massachusetts

Institute of
Technology

6.5191 Introduction to Deep Learning
@ introtodeeplearningcom W @MITDeeplearning

1127120

Gradient Descent 1F

tensorflow tf

Algorithm

| Inrtialize Weights randomly ~]\/‘(O, 0-2) weights = tf.Variable([tf.random.normal()])

2. Loop until convergence:

while True:

3 , aJj(Ww) with tf.GradientTape() as g:
ComPUte gradleﬂt, ow loss compute loss(weights)
4. Upda-te Weightg' W W — n a]a(_:VV) gradient g.gradient(loss, weights)

5. Return WelghtS weights = weights - lr * gradient

I I I —— m::f:f:‘;feﬂs 6.5191 Introduction to Deep Learning /27120
II Technology @ introtodeeplearning.com L 4 @MITDeeplearning

Gradient Descent 1F

tensorflow tf

Algorithm

| Inrtialize Weights randomly NN(O, 0-2) weights = tf.Variable([tf.random.normal()])

2. Loop until convergence:

while True:

3 , aJj(Ww) with tf.GradientTape() as g:
CompUte gradleﬂt, ow loss compute loss(weights)
- Update weights, W W — n ‘”a(_:VV) gradient g gradient(loss, weights)

5. Return WelghtS weights = weights - lr * gradient

I I I —— m::fjf:‘;?eﬂs 6.5191 Introduction to Deep Learning \/27/20
II Technology @ introtodeeplearningcom W @MITDeeplearning

Computing Gradients: Backpropagation

X >z > 9 > J(W)

How does a small change in one weight (ex. w,) affect the final loss J(W)!

I I I H BN Massachusetts
1/28/19

Inst 6.5191 Introduction to Deep Learning
I l nstitute of . i
Technology introtodeepleaming.com

Computing Gradients: Backpropagation

oj(W)

ow,

N

Let's use the chain rule!

<<

> J(W)

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19

Computing Gradients: Backpropagation

Wl w
. b 2, i [e——

Jyw) _ow) 93
ow, 09 dw,

I - ey 6.5191 Introduction to Deep Learning
l l institute of , .
Technology introtodeepleaming.com

1/28/19

Computing Gradients: Backpropagation

W1 w
x bz e P e (W)

Jyw) _yw) 99

ow; 0y owq
I I f
Apply chain rule! Apply chain rule!

el 6.5191 Introduction to Deep Learning
I institute of , .
Technology introtodeepleaming.com

1/28/19

Computing Gradients: Backpropagation

Wl w
x — 7, e) ——

Jyw) _gw) 99 oz

Iw, 39 0z, ow;

I R —— 65191 Introduction to Deep Learning
l ' institute of . .
Technology introtodeepleaming.com

1728/19

Computing Gradients: Backpropagation

Wl w
X — 7, e) O

IWw) _gw) 99 on

odwq ay 074 ow;

Repeat this for every weight in the network using gradients from later layers

I I I H Bl Massachusetts
1/28/19

. 6.5191 Introduction to Deep Learning
I I Institute of) .
Technology introtodeepleaming.com

Neural Networks in practice:
Optimization

Training Neural Networks is Difficult

“Visualizing the loss landscape
of neural nets”. Dec 201 7.

III' o Necemests 6.5191 Introduction to Deep Learning 128/19

I I institute of))
Technology introtodeepleaming.com

Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent
oJ] (W)
W« W —
T ow

l S 6.5191 Introduction to Deep Learning
I I Institute of ‘ _
Technoloay introtodeepleaming.com

1728719

Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

] (W
W«W-—n](7(W)

|

How can we set the
learning rate?

I S 6.5191 Introduction to Deep Learning
I l institute of _ _
Technology introtodeepleaming.com

1/28/19

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Jw),,

\ Initial guess

I l I HEE Massachusetts

institte of 6.5191 Introduction to Deep Learning

| | . : 1/28/19
Technology introtodeepleaming.com

Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Jw),,

\ Initial guess

w

H B Massachusetts : -
Il Il I kst of 6.5191 Introduction to Deep Learning 1/28/19

Technology introtodeepleaming.com

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

J(6) .,

\ Initial guess

I S Nassachussts 6.5191 Introduction to Deep Learning
institute of

I I) , 1/28/19
Technology introtodeepleaming.com

How to deal with this?

Idea |:

Try lots of different learning rates and see what works “just right”

Illl l “ f 6.5191 Introduction to Deep Learning 1128/19

Techn l ogy introtodeepleaming.com

How to deal with this?

ldea 2:

Do something smarter!
Design an adaptive learning rate that “adapts” to the landscape

II I H BN Massachusetts
1/28/19

- 6.5191 Introduction to Deep Learning
I I institute of : .
Technology introtodeepleaming.com

Adaptive Learning Rates

 Learning rates are non longer fixed

« Can be made larger or smaller depending on:
* How large gradient is
* How fast learning is happening
* Size of particular weights

Gradient Descent Algorithms

Algorithm TF Implementation Reference

Kiefer & Wolfowitz. “Stochastic Estimation of the
¢ SG D Maximum of a Regression Function.” [952.
. " Kingma et al.”Adam: A Method for Stochastic
+ Adar

o Zeiler et al. "ADADELTA: An Adaptive Learning Rate
° Ad ade“:a t tf. keras. optimizers.Adadelta Method” 2012,

; . Duchi et al."Adaptive Subgradient Methods for Online
® tf. ke t s.Adagrad
Adagrad Learning and Stochastic Optimization.” 201 |.

¢ RM SPFOp iF tf. keras. optimizers. RMSProp

Additional details: http://ruderio/optimizing-gradient-descent/

I I I MmN Massachusetts 6.5191 Introduction to Deep Learning 127120

Institute of : . .
II T:z.:n%:i;y @ introtodeeplearningcom W @MITDeeplearning

Putting it all together

tensorflow tf
model tf.keras.Sequential ([1)

Can replace with any

optimizer = tf.keras.optimizer.SGD() N [CEsieeliur

while True:

prediction model (x)

with tf.GradientTape() as tape:

loss compute loss(y, prediction)

grads tape.gradient(loss, model.trainable variables)

optimizer.apply gradients(zip(grads, model.trainable variables)))

6.5191 Introduction to Deep Learning
introtodeeplearning.com @MITDeeplearning

1/27/20

Neural Networks in practice:
Mini-batches

Gradient Descent

Algorithm
. Initialize weights randomly ~N'(0, o%)

2. Loop until convergence:

3. Compute gradient, a]a(vl://)
4. Update weights, W « W —n 9 a(MM//) Lo
5. Return weights ST —

l T 6.5191 Introduction to Deep Learning
l I Institute of

) . 1/28/19
Technology introtodeepleaming.com

Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, 52)

2. Loop until convergence:

3 Compute gradient, 2 a(:,’) ‘
4. Update weights, W « W —n ajéuu;) L
5. Return weights B o —

Can be very
computational to

compute!
HEN Massachusetts . s
II II l Institute of 65191 l.ntroductlon to Deep Learning 1128/19
Technology introtodeepleaming.com

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick single data point i
4 . 9Ji(W)
Compute gradient, W
. aJj(Ww
>, Update weights W « W —n ja(w)
6. Return weights
Phii e S tesemingem 28019

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N(0, 02)

2. Loop until convergence:

3. Pick single data point i
4 - aJi(W)

Compute gradient, o o s |
>. Update weights W « W —n a];:lvv) CEETeS <
6. Return weights

Easy to compute but

very noisy
(stochastic)!
II I. . m::fsg‘g:ms 6.5191 Introduction to Deep Learning 128/19
I I Technology introtodeepleaming.com

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. [Pick batch of B data points] ,.
W) _ 1y kW) f\

4 C '
- ompute gradient, = _
PHte 8 ow Bek=1"aw
| a1 (W oot e
S, Update weights, W « W — 1]a(w) i S e
6. Return weights
HEm Massachusetts 65191 Introduction to Deep Learnin

IlIII :'2:::""‘:"'2;; introtodeeDleaming.cc?m ° 1728/19

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N(0, 02)

2. Loop until convergence:

3. Pick batch of B data points H
4. Compute gradient,](= —Z a]gl(:/) 1
2. Update weights, W « W — 7 a](W S o St |

6. Return weights

Fast to compute and a much better
estimate of the true gradient!

Il I. e :“““"'h“se“s 65191 Introduction to Deep Learning
titute of

Technology introtodeepleaming.com

1/728/19

Mini-batches while training

* More accurate estimation of gradient
Smoother convergence

Allows for larger learning rates

* Mini-batches lead to fast training!

Can parallelize computation + achieve significant speed
increases on GPU’s

Some terminology

* One epoch is when the entire dataset is passed forward and
backward through the neural network only once (multiple times are
usually needed)

* The batch size is the number of training examples in a mini-batch

 An iteration is the number of batches needed to complete one
epoch

 Ex. For a dataset of 10000 sample with mini-batch size 1000, 10
iterations will complete 1 epoch

Neural Networks in Practice:
Overtitting

The Problem of Overfitting

Y
g

o

a . 9]

P a g0
q o
s® »
>
Underfitting < Ideal fit > Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well

I S S Massachusetls 6.5191 Introduction to Deep Learning
I I Institute of

Technology introtodeeplearning.com

1728719

Regularization

* What is it?
Technique that constrains our optimization problem to discourage complex
models

* Why do we need it?
Improve generalization of our model on unseen data

Regularization |: Dropout

* During training, randomly set some activations to O

Z11 “2

X1
Z12 22,2 V1

X2
21,3 223 Y2

X3
Z1 4 224

i ™ Tt .’

Regularization |: Dropout

* During training, randomly set some activations to O

e Typically ‘drop’ 50% of activations in layer
picalydop' 0% Y

Z21
X1
21,2 1
X2
22,3 V2
X3
Z14 T 224
I I I i I- E-‘EEEE{*’: z?eﬂs @ introtc?ailegpllelg:r:ﬁ\?ccéirzn togee@pl"ll-ﬁ'a[r)r:aire‘[g)Learning L
gy

Regularization |: Dropout

* During training, randomly set some activations to O

e Typically ‘drop’ 50% of activations in layer
picalydop' 0% Y

Z11
X1
222 1
X2
21,3 T 223 V2
X3
22,4
I I I i I- E-‘EEEE{*’: z?eﬂs @ introtc?ailegpllelg:r:ﬁ\?ccéirzn togee@pl"ll-ﬁ'a[r)r:aire‘[g)Learning L
gy

Regularization |: Dropout

» the network is not going to rely too heavily on any particular
path through the network

» instead it's going to find a whole ensemble of different paths,
because it doesn’t know which path is going to be dropped
out at any given time

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Overfitting:

when a model starts to perform
worse on the test (validation) set
than on the training set

|Loss

Training Iterations

III. s Emonsriuielie 6.S191 Introduction to Deep Learning 128/19
introtodeepleaming.com

I I institute of
Technology

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

| oss

Training lterations

Legend

Tésﬂng

Training

I '- Minsasthuse 6.5191 Introduction to Deep Learning
lnsmute of

Technology introtodeeplearning.com

1728719

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

Loss

A

Training lterations

Legend

Testing

T?anmg

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

Loss Tésﬂng

T?&nhg

Training lterations

6.5191 Introduction to Deep Learning

Inst f)) 1/28/19
Technology introtodeepleaming.com

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

L oss

~ 0

Legend

Tésﬂng

WYanMg

Training Iterations
HEm Massachusetis

. 6.5191 Introduction to Deep Learning
I I Institute of) .
Technology introtodeeplearmning.com

1728719

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

Loss Tégﬂng

Training

—0— L

Training Iterations

I I I H BN Massachusetts
1/28/19

: 6.5191 Introduction to Deep Learning
II Institute of) .
Technology introtodeeplearning.com

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

|Loss

A

Stop training
here!

Training lterations

Legend

Tésﬂng

WYanmg

—@— —Q ,

HEE Massachusetts

Institute of
Technology

6.5191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

L oss

A

Under-fitting Over-fitting

Stop training
here!

Training Iterations

Legend

Testing

Training

—@— —Q ,

H BN Massachusetts

Institute of
Technology

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19

Core Foundation Review

The Perceptron Neural Networks Training in Practice

* Structural building blocks * Stacking Perceptrons to * Adaptive learning
* Nonlinear activation form neural networks * Batching
functions * Optimization through « Regularization
backpropagation

X1 \ X1 g
Zk2 b21
xz —- 2 * /

o B * F.-F
a— o @ “

> Zkdy

<

I R e 6.5191 Introduction to Deep Learning
I I Institute of

. . 1/28/19
Technology introtodeepleaming.com

