Deep Learning

Theoretical introduction and its application for face detection, recognition and camouflage.

Raffaella Lanzarotti

Aim of the course

- Introduction to Deep Learning,
 - Theoretical
 - Practical
- We'll largely adopt the valuable material from:

http://introtodeeplearning.com/

Schedule (tentative)

DAY 1	CLASS 1	Introduction to Machine Learning
	LAB 1	Tensor Flow
DAY 2	CLASS 2	Deep Sequence Modelling
	LAB 2	Music Generation
DAY 3	CLASS 3	Convolutional Neural Networ
	LAB 3	• MNIST
DAY 4	CLASS 4	Deep Generative Models
	LAB 4	• Debiasing
DAY 5	CLASS 5	Deep Reinforcement LearningLimits and new Frontiers

Introduction to Machine Learning

The Rise of Deep Learning

Deep learning:

- has revolutionized many areas of machine intelligence, with particular impact on image understanding tasks
- particularly effective...
 - for unstructured data
 - to learn good representations
 - to learn good "models"

What is Intelligence?

• The ability to process information, to inform future decisions

What is Deep Learning?

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

3 1 3 4 7 2

Why deep learning? Why now?

Why Deep Learning?

Traditional ML:

- Hand engineered features
- LIMITS and PROBLEMS:
 - Time consuming
 - Brittle
 - Not scalable

Challenge:

can we learn the **underlying features** directly from data?

Deep Learning
learns features directly from data

Ex: Features to detect faces

- Which features characterize faces?
- They should be:
 - specific to this class
 - flexible to manage intra-class variability

Low Level Features ?

Mid Level Features?

High Level Features?

Lines & Edges

Eyes & Nose & Ears

Facial Structure

Why Deep Learning?

Deep Learning

learns features in a hierarchical manner

In this course...

• We'll try to answer to this question:

HOW CAN WE GO FROM RAW DATA (e.g. pixels) TO A MORE AND MORE COMPLEX REPRESENTATION AS THE DATA FLOWS THROUGH THE MODEL?

Why Now?

Neural Networks date back decades, so why the resurgence?

Stochastic Gradient
Descent

Perceptron
Learnable Weights

Backpropagation
Multi-Layer Perceptron

Deep Convolutional NNDigit Recognition

I. Big Data

- Larger Datasets
- Easier Collection& Storage

IM GENET

2. Hardware

- Graphics Processing Units (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

1995

The Perceptron

The structural building block of deep learning

Biological Inspiration

Inputs

Sum

Non-Linearity Output

Inputs Weights Sum Non-Linearity Output

$$\hat{y} = g \left(w_0 + \sum_{i=1}^m x_i w_i \right)$$

$$\hat{y} = g \left(w_0 + \boldsymbol{X}^T \boldsymbol{W} \right)$$

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Using Linear Algebra...

Activation Functions

$$\hat{y} = g(w_0 + X^T W)$$

• Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid

Near-0 gradient

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Historically the most used for binary classification
- Useful for modelling probability, because it collapse the input between 0 and 1
- It suffers from the <u>vanishing gradient</u> problem
- Non-zero centered output that may cause zig-zagging

Tanh

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- It suffers from the <u>vanishing gradient</u> problem
- Output is <u>zero centered</u>, thus it has better gradient properties than sigmoid
- It is a <u>scaled version of Sigmoid</u>:

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$

ReLU (Rectified Linear Unit)

$$f(x) = max(0, x)$$

- Very popular and <u>simple</u>: it thresholds values below 0
- It allows for <u>fast convergence</u> of the optimization function
- The <u>weight may irreversibly die</u>

Leaky ReLU

- It is aimed to <u>fix the dying ReLU problem</u>
- In a variant (called parametric ReLU) the slope for negative values can be learnt

$$f(x) = \begin{cases} \alpha x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$
$$\alpha = 0.1$$

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

NOTE: All activation functions are non-linear

Importance of Activation Functions

The purpose of activation functions is to **introduce non-linearities** into the network

Linear Activation functions produce <u>linear</u> <u>decisions</u> no matter the network size

Importance of Activation Functions

The purpose of activation functions is to **introduce non-linearities** into the network

Linear Activation functions produce <u>linear</u> decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

We have:
$$w_0 = 1$$
 and $\mathbf{W} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g(w_0 + X^T W)$$

$$= g\left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix}\right)$$

$$\hat{y} = g(1 + 3x_1 - 2x_2)$$

This is just a line in 2D!

Plot this line equal to 0 in the feature space:

$$\hat{y} = g(1 + 3x_1 - 2x_2)$$

Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g(1 + (3*-1) - (2*2))$$

= $g(-6) \approx 0.002$

Building Neural Networks with Perceptrons

The Perceptron: Simplified

The Perceptron: Simplified

Diagram simplification

- No Bias
- No weights
- z: input to the a.f.
- y: output of the a.f.

Multi Output Perceptron

- Simply add a perceptron
- Same input
- Same process
- What changes are the weights

$$z_{\underline{i}} = w_{0,\underline{i}} + \sum_{j=1}^{m} x_j \ w_{j,\underline{i}}$$

Dense layer from scratch


```
class MyDenseLayer(tf.keras.layers.Layer):
 def init (self, input dim, output dim):
   super(MyDenseLayer, self). init ()
   # Initialize weights and bias
   self.W = self.add weight([input dim, output dim])
   self.b = self.add weight([1, output dim])
 def call(self, inputs):
   # Forward propagate the inputs
   z = tf.matmul(inputs, self.W) + self.b
   # Feed through a non-linear activation
   output = tf.math.sigmoid(z)
   return output
```


Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

Single Layer Neural Network

Hidden layer(s):

- Not observable
- To be learned
- No specific behaviour enforced
- 2 weight matrices
- Same operation as before (dot product, bias, a.f.)

Single Layer Neural Network

$$z_2 = w_{0,2}^{(1)} + \sum_{j=1}^m x_j w_{j,2}^{(1)}$$

= $w_{0,2}^{(1)} + x_1 w_{1,2}^{(1)} + x_2 w_{2,2}^{(1)} + x_m w_{m,2}^{(1)}$

Zoom in into a single hidden layer, say z₂:

- Same operation as before (dot product, bias, a.f.)
- Same for z₃, what changes are the weights

Multi Output Perceptron

```
import tensorflow as tf
                                                      model = tf.keras.Sequential([
                                                           tf.keras.layers.Dense(n),
                                                           tf.keras.layers.Dense(2)
                         z_1
                                                      1)
 x_1
                                                  \hat{y}_1
                         Z_2
 x_2
                                                  \hat{y}_2
                          Z_3
                                                                       : replace connections.
x_m
                                                                      Stands for:
                                                                      Fully connected layer
                         z_n
                                                                      OR
                                                                      Dense layer
                        Hidden
                                                Output
Inputs
```

Deep Neural Network


```
import tensorflow as tf

model = tf.keras.Sequential([
   tf.keras.layers.Dense(n1),
   tf.keras.layers.Dense(n2),

itf.keras.layers.Dense(2)
])
```

Inputs

Hidden

Output

$$z_{k,i} = w_{0,i}^{(k)} + \sum_{j=1}^{n_{k-1}} g(z_{k-1,j}) w_{j,i}^{(k)}$$

Deep Neural Network

- <u>Stack hidden layer</u> back to back to back to create increasingly deeper and deeper models.
- Output computed going deeper into the NN and computing these weighted sums over and over and over again with these a.f. repeatedly applied

Applying Neural Networks

Example Problem

Will I pass this class?

Let's start with a simple two feature model

 x_1 = Number of lectures you attend

 x_2 = Hours spent on the final project

Example Problem: Will I pass the exam?

Why Wrong prediction?

> Because the network is not trained

Train a network: teach it to get the right answer. How?

> tell it when it makes a mistake, so to correct it in the future

The **Loss** of a network is what <u>quantify</u> the wrong prediction

Quantifying Loss

The **loss** of our network measures the cost incurred from incorrect predictions

$$\mathcal{L}\left(\underline{f\left(x^{(i)}; \boldsymbol{W}\right)}, \underline{y^{(i)}}\right)$$
Predicted Actual

Empirical Loss

When we train a network, we do not want to minimize the loss for a particular student, but the loss across the entire training set

The **empirical loss** measures the total loss over our entire dataset

$$\mathbf{X} = \begin{bmatrix} 4 & 5 \\ 2 & 1 \\ 5 & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} x_1 \\ x_2 \\ z_3 \end{array} \qquad \begin{array}{c} f(x) & y \\ 0.1 \\ 0.8 \\ 0.6 \\ \vdots \end{array} \qquad \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$$

Also known as:

Also known as:
$$J(W) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
Objective function

Cost function

Empirical Risk

Predicted

Actual

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

$$X = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} x_1 \\ x_2 \\ \end{array}$$

$$\begin{array}{c} z_1 \\ z_2 \\ \end{array}$$

$$\begin{array}{c} f(x) \\ 0.1 \\ 0.8 \\ 0.6 \\ \vdots \end{array} \qquad \begin{bmatrix} 1 \\ 0 \\ 0.6 \\ \vdots \end{bmatrix}$$

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f\left(x^{(i)}; W\right) \right) + (1 - y^{(i)}) \log \left(1 - f\left(x^{(i)}; W\right) \right)$$
Actual Predicted Actual Predicted

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

Training Neural Networks

We want to find the network weights that achieve the lowest loss

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

We want to find the network weights that achieve the lowest loss

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$

$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$
Remember:
$$W = \{W^{(0)}, W^{(1)}, \dots\}$$

Loss optimization through **gradient descent**

Randomly pick an initial (w_0, w_1)

Take small step in opposite direction of gradient

Repeat until convergence

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\boldsymbol{W} \leftarrow \boldsymbol{W} \eta \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$
- 5. Return weights

#

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

```
import tensorflow as tf

weights = tf.Variable([tf.random.normal()])

while True:  # loop forever

with tf.GradientTape() as g:
    loss = compute_loss(weights)
    gradient = g.gradient(loss, weights)

weights = weights - lr * gradient
```

Algorithm

- Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- Return weights

```
import tensorflow as tf
weights = tf.Variable([tf.random.normal()])
while True:
              # loop forever
   with tf.GradientTape() as g:
      loss = compute loss(weights)
      gradient = g.gradient(loss, weights)
   weights = weights - lr * gradient
```


How does a small change in one weight (ex. w_2) affect the final loss J(W)?

$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(\boldsymbol{W})}{\partial w_1} = \frac{\partial J(\boldsymbol{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Repeat this for **every weight in the network** using gradients from later layers

Neural Networks in practice: Optimization

Training Neural Networks is Difficult

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

$$\boldsymbol{W} \leftarrow \boldsymbol{W} - \eta \, \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$$

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

$$W \leftarrow W - \frac{\partial J(W)}{\partial W}$$
How can we set the learning rate?

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

Idea 2:

Do something smarter!

Design an adaptive learning rate that "adapts" to the landscape

Adaptive Learning Rates

- Learning rates are non longer fixed
- Can be made larger or smaller depending on:
 - How large gradient is
 - How fast learning is happening
 - Size of particular weights
 - •

Gradient Descent Algorithms

Algorithm

- SGD
- Adam
- Adadelta
- Adagrad
- RMSProp

TF Implementation

Reference

Kiefer & Wolfowitz. "Stochastic Estimation of the Maximum of a Regression Function." 1952.

Kingma et al. "Adam: A Method for Stochastic Optimization." 2014.

Zeiler et al. "ADADELTA: An Adaptive Learning Rate Method." 2012.

Duchi et al. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." 2011.

Additional details: http://ruder.io/optimizing-gradient-descent/

Putting it all together


```
import tensorflow as tf
model = tf.keras.Sequential([...])
# pick your favorite optimizer
                                                                    Can replace with any
                                                                    TensorFlow optimizer!
optimizer = tf.keras.optimizer.SGD()
while True: # loop forever
    # forward pass through the network
    prediction = model(x)
    with tf.GradientTape() as tape:
        # compute the loss
        loss = compute loss(y, prediction)
    # update the weights using the gradient
    grads = tape.gradient(loss, model.trainable variables)
    optimizer.apply gradients(zip(grads, model.trainable variables)))
```


Neural Networks in practice: Mini-batches

Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Can be very computational to compute!

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Easy to compute but very noisy (stochastic)!

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points
- 4. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of *B* data points
- 4. Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Fast to compute and a much better estimate of the true gradient!

Mini-batches while training

More accurate estimation of gradient

Smoother convergence

Allows for larger learning rates

• Mini-batches lead to fast training!

Can parallelize computation + achieve significant speed increases on GPU's

Some terminology

- One epoch is when the entire dataset is passed forward and backward through the neural network only once (multiple times are usually needed)
- The **batch** size is the number of training examples in a mini-batch
- An iteration is the number of batches needed to complete one epoch
- Ex. For a dataset of 10000 sample with mini-batch size 1000, 10 iterations will complete 1 epoch

Neural Networks in Practice: Overfitting

The Problem of Overfitting

Regularization

• What is it?

Technique that constrains our optimization problem to discourage complex models

• Why do we need it?

Improve generalization of our model on unseen data

Regularization 1: Dropout

• During training, randomly set some activations to 0

Regularization 1: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer

tf.keras.layers.Dropout(p=0.5)

Regularization 1: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer

tf.keras.layers.Dropout(p=0.5)

Regularization I: Dropout

- the network is not going to rely too heavily on any particular path through the network
- instead it's going to find a whole ensemble of different paths, because it doesn't know which path is going to be dropped out at any given time

Core Foundation Review

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

