Deep Learning

Theoretical introduction and its application for face
detection, recognition and camouflage.

Raffaella Lanzarotti



Aim of the course

* Introduction to Deep Learning,

e Theoretical
e Practical

« We'll largely adopt the valuable material from:

http://introtodeeplearning.com/


http://introtodeeplearning.com/
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CLASS 5

Introduction to Machine Learning
Tensor Flow

Deep Sequence Modelling
Music Generation

Convolutional Neural Networ
MNIST

Deep Generative Models
Debiasing

Deep Reinforcement Learning
Limits and new Frontiers



Introduction to
Machine Learning
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The Rise of Deep Learning

Deep learning:

* has revolutionized many areas of machine intelligence,
with particular impact on image understanding tasks

* particularly effective...
e for unstructured data
* to learn good representations
* to learn good “models”



What is Intelligence?

 The ability to process information, to inform future decisions
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What is Deep Learning?
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W

v deep learning?
VY NOW?



Why Deep Learning?

Traditional ML:
* Hand engineered features * LIMITS and PROBLEMS:

* Time consuming
* Brittle
* Not scalable

Challenge:

can we |learn the underlying features directly from data?

Deep Learning
learns features directly from data




Ex: Features to detect faces

- Which features characterize faces?

- They should be:
- specific to this class
- flexible to manage intra-class variability

Low Level Features ? Mid Level Features? High Level Features?

Lines & Edges Eyes & Nose & Ears Facial Structure



Why Deep Learning?

Deep Learning

learns features in a hierarchical manner

Low Level Features

Mid Level Features

High Level Features

>

Lines & Edges

Eyes & Nose & Ears

Facial Structure



In this course...

* We'll try to answer to this question:

HOW CAN WE GO FROM RAW DATA (e.g. pixels) TO A
MORE AND MORE COMPLEX REPRESENTATION AS
THE DATA FLOWS THROUGH THE MODEL?



Why Now!?

N/ Neural Networks date back decades, so why the resurgence?
1952 Stochastic Gradient
Descent
Perceptron |. Big Data 2. Hardware 3. Software
1958 * Learnable Weights :
e ‘ * larger Datasets * Graphics * |Improved
. * Easier Collection Processing Units Techniques
* & Storage (GPUs) * New Models
1986 Backpropagation * Massively * TJoolboxes
*  Multi-Layer Perceptron Parallelizable
| IMJSGEN
1995 Deep Convolutional NN P
* Digit Recognition /.,r’::) Y I f
: R “\:- W A i ?m@ A’@ ‘1. )
. Wiapspi g TensorFlow
V
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The Perceptron

The structural building block of deep learning



Biological Inspiration
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The Perceptron: Forward Propagation

Linear combination
Output of inputs

. —_—

os(§ o)

X2 ’Z—’/ y =l

w Non-linear
activation function
X

Inputs Sum  Non-Linearity Output
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The Perceptron: Forward Propagation

Bias Linear combination
1 / Output of inputs

X2 Non-linear

activation function

Inputs  VWeights Sum  Non-Linearity Output

II I H BN Massachusetts
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The Perceptron: Forward Propagation

~

= LW y (9= gCwerxTw)
X2

X1 W1

andW=\ ]

Using Linear Algebra...

where: X =

Inputs  Weights Sum  Non-Linearity Output

HEE Massachusetts - a
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The Perceptron: Forward Propagation

Activation Functions
1

y=g(wo+XTW)

¢ Example: sigmoid function

™M
l
\

1
Wi, g(Z)ZU(Z)=—1+8_Z
1- o

Xm /
Of?
: : : /
Inputs  Weights Sum  Non-Linearity Output /
L '//1 o | 1 J
-6 -4 -2 0 2 - 6 Z
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Sigmoid

Near-0 gradient

- Historically the most used for binary
classification

091

0.8

0.7

0.6 [

051

0.4

- Useful for modelling probability, because it
collapse the input between 0 and 1

031

021

0.1

- ; g o - It suffers from the vanishing gradient
Near-0 gradient problem
1 - Non-zero centered output that may cause

o(r) = — - ;
1+ e zig-zagging
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021

-0.2
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-0.6

-0.8

tanh(x) =

e’ —e

10

Tanh

It suffers from the vanishing gradient
problem

Output is zero centered, thus it has better
gradient properties than sigmoid

It is a scaled version of Sigmoid:

e? —e *

et +e 7



RelLU (Rectified Linear Unit)

f(x) = max(0, )

Very popular and simple: it thresholds
values below 0

It allows for fast convergence of the
optimization function

The weight may irreversibly die




10

fa)={

ar ifx <O
x itx>0

a=20.1

Leaky RelLU

- Itis aimed to fix the dying RelLU problem

- In avariant (called parametric ReLU) the
slope for negative values can be learnt




Sigmoid Function

Common Activation Functions

9(2)
08} 9@ |
0.6
0.4
0.2 ¢
0= - :
5 0
1
(z)= ————
g 1+e~ %

9'z)= g0 -g(2)

IF tf.math.sigmoid(z)

7 TensorFlow code blocks

Hyperbolic Tangent

4 9
0.5 g'@| |
0 B
-0.5
_1 —
-5 0 5
e —e %
(z) =
9 eZ + e 2

g9'(z)=1-g(2)?

IF tf.math.tanh(z)

NOTE: All activation functions are non-linear

Rectified Linear Unit (RelLU)

o |
4 9@ |

-5 0 5

9() = max (0, 7)
9'(2) = {éj

IF tf.nn.relu(z)

z >0
otherwise
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

09k

w

08F

07f

06F

0SF

04

Linear Activation functions produce linear
decisions no matter the network size
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

09k

w

08F

07p

06F

0S5k

04

Linear Activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions
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The Perceptron: Example

We have: wog =1 and W = [_32]

y=g(we+X"W)

\ /
/ =g (1+[] [3))
y=9g(1+3xy—2x3)
X, N g J

This is just a line in 2D!

Gy
v
™M
N
=
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The Perceptron: Example

Plot this line equal to 0 in the feature space:
y = g(l + 3x1 — ZXZ)

AX2 ’Q
1 1 1Y &
q,;rf\/
1/
,*,'\/
W

2
v
™M
N
=
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The Perceptron: Example

Yy =9g(1+3x1—2x5)

AX2 f
1 1 + / ’

r\;‘;\,
o +

W

X1 >Z—>/

A

Assume we have input: X = [_21] 1

g(1+ @*-1) - (2+2) / {
g (—6) = 0.002

y
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The Perceptron: Example

y=9g(1+3x1—2x3)

Q
1 4 /
1 z <0 /Arq,/
y < 0.5 v

=

\ 4
M
<)
X‘\
7,
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Building Neural Networks with
Yerceptrons




The Perceptron: Simplified

0

P
xz/

Wm

)

Xm

Inputs  Weights Sum  Non-Linearity Output
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The Perceptron: Simplified

Diagram simplification
* No Bias
* No weights

o / z > * z:input to the a.f.

e y: output of the a.f.

m
Z =Wy +2_ Xj Wj
J=1

6.5191 Introduction to Deep Learning 1/28/19
introtodeeplearming.com




Multi Output Perceptron

X1
v =9(z1)
Zl >
X2
V2 = 9(23)
Z >
Xm

m
Zi = Wy + z 1xj W;j i
]:

Simply add a perceptron
Same input

Same process

What changes are the weights

6.5191 Introduction to Deep Learning
introtodeepleaming.com
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Dense layer from scratch 1F

class MyDenseLayer (tf.keras.layers.Layer):
def init (self, input dim, output dim):

super (MyDenseLayer, self). init ()
self.w self.add weight([input dim, output dim])
self.b self.add weight([1l, output dim])

def call(self, inputs):

tf .matmul (inputs, self.W) self.b

output tf .math.sigmoid(z)

return output

6.5191 Introduction to Deep Learning

introtodeeplearning.com @MITDeeplearning 1127120




Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called Dense layers

X1
Z1

X2
Z2

Xm tensorflow tf

layer tf.keras.layers.Dense(
units=2)
m
Zi =Wp; t E X Wy
J=1
O e 6.5191 Introduction to Deep Learning
I I I I I ;22::::,‘.2;; @ introtodeeplearningcom W @MITDeeplearning LA




Single Layer Neural Network

w® w®
g(zy)
Zq
X1
g(fz) N
) Y1
X2
Z ¥ V2
3 g(z3)
Xm
Z
A1 g(z,)
Inputs Hidden Final Output

(1) (1)
+-:E: _133 il

pi=a(w? )

(2)
ZJ Jii

Not observable

To be learned

No specific
behaviour enforced
2 weight matrices
Same operation as

before (dot product,
bias, a.f.)

)
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Single Layer Neural Network

Z1
Z7 V1
Z3 V2
Zd1
m
1 1
Zy = W(g,z) + z X Wj(,z)
J=1
1 1 (1) (1)
= wé’z) + x4 W1(,2) + x5 w,, + Xm Wi 2

« Same operation as
before (dot product,
bias, a.f.)
« Same for z3, what
changes are the
weights

6.5191 Introduction to Deep Learning
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Multi Output Perceptron

1F tensorflow tf

model tf.keras.Sequential ([

tf.keras.layers.Dense(n),
tf.keras.layers.Dense(2)

A
X1
Z? V1
X2 X X
Z3 V2 X | :replace connections.
X
m Stands for:
7 Fully connected layer
OR
Inputs Hidden Output Dense layer

6.5191 Introduction to Deep Learning

@ introtodeeplearningcom 9 @MITDeeplearning 1127120




Deep Neural Network

) T

tensorflow tf

model tf.keras.Sequential ([

X2 >< ceooe X X PP >< tf.keras.layers.Dense(n;),

tf.keras.layers.Dense(n,),

Zk,3 Y2
Xm layers.Dense(2)
Zkﬂuc
Inputs Hidden Output
Ng—1
_ (B (k)
Zgi = Wo; + ) . 9(Zy-1,7) W
]:
Illil— m::fztc:zs;eﬂs 6.5191 Introduction to Deep Learning
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Deep Neural Network

e Stack hidden layer back to back to back to create increasingly
deeper and deeper models.

» Output computed going deeper into the NN and computing
these weighted sums over and over and over again with these
a.t. repeatedly applied



Applying Neural Networks



Example Problem

WIll'| pass this class?

Let's start with a simple two feature model

x1 = Number of lectures you attend

X, = Hours spent on the final project

H BN Massachusetts

institute of
Technology

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19



Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend

II I ap Massachusetts 65191 Introduction to Deep Learning
nstitute of

l l Technology introtodeepleaming.com
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Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend

II Il E Massachusetts
1/28/19
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Example Problem: Will | pass this class?

Z
| A
X(l) = [4 ,5] Zy V1 Predicted: 0.1
L X,
“z

HEE Massachusetts - .
Il I l I kst of 65191 Ilntroductlon to Deep Learning 1/28/19
Technology introtodeepleaming.com




Example Problem: Will | pass this class?

21
| X1
x(l) — [4 ,5] Z2 V1
L X,
Z3

I S 6.5191 Introduction to Deep Learning
I institute of ‘ i
Technology introtodeepleaming.com
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Example Problem: Will | pass the exam?

Why Wrong prediction?
»Because the network is not trained

Train a network: teach it to get the right answer. How?

> tell it when it makes a mistake, so to correct it in the future

The Loss of a network is what gquantify the wrong prediction




Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

21
| A
X(l) = [4 ,5] Zy V1
L X,
Z3

L (f (x(i); W), y(i))

Predicted Actual

I I ll E Massachusetts
1/28/19
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Empirical Loss

When we train a network, we do not want to minimize the loss
for a particular student, but the loss across the entire training set

The empirical loss measures the total loss over our entire dataset

o 2 @y

‘zh ? %4 0.1 |

x= 12 . 0.8 0
5’ 8 ZZ YI 06 |

. xZ N .

L p— 23 L ._ L ._

1" . .
wepene T JW) =) LU GOw),y0)

* Cost function L
*  Empirical Risk Predicted Actual
Illi l- m::f:g‘g:e“s 6.5191 Introduction to Deep Learning 1/28/19
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Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and |

. 7 Sy
45 o1] |1
X = |4 N 0.8 0
5’ 8 Zp 1 06 |
. Xy . .

L — Z3 L ’ — L ) —

Jw) = %Z?ZIy(i) log (f(x(i); W)) +(1—y®) log(l — f(x®; W))

Actual Predicted Actual Predicted

1F loss tf.reduce mean( tf.nn.softmax cross entropy with logits(y, predicted) )




Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

7 f () y
_ 1 ST
S 30| |90
-2 | - 80| |20
X Z
5, 8 : L les| o5
. Xy . .
L — Z3 L ’ — L ) -
1 . . 2 7 l
W) = — O _ @. w Final Grades
Jw) n Z i=1 (y f(x )) (percentage)

Actual Predicted

["F loss tf.reduce mean( tf.square(tf.subtract(y, predicted)) )




Training Neural Networks



Loss Optimization

We want to find the network weights that achieve the lowest loss

n
w* = argminlz L(f(x(‘) W) y(‘))
w Né&aj=1

W* = argmin J(W)
w

I-M
ltttof
Technology

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19



Loss Optimization

We want to find the network weights that achieve the lowest loss

n
W™ = argminlz L(f(x(i); W),y(i))
w Né&dj=1

W* = argmin J (W)
w

|

Remember:
W = {W(O), w® ... }

H BN Massachusetts . .
I I Il I knstitte of 6.5191 Introduction to Deep Learning 1/28/19
\
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J(wo, wy) |

Loss Optimization

W* = argmin (W)
w

Remember:
Our loss is a function of
the network weights!




](W(); Wl) ‘

Loss Optimization

Loss optimization through gradient descent

Randomly pick an initial (wg, wy)




Loss Optimization

aJjw)

Compute gradient,

ow

J (W, wy) |




J(wg, wy) |

Loss Optimization

Take small step in opposite direction of gradient




Gradient Descent

Repeat until convergence

J(wg, wy) |




Gradient Descent

Algorithm
. Initialize weights randomly ~N'(0, 02)

2. Loop until convergence:

oJW)
ow

3. Compute gradient,

W)
ow

4 Update weights, W « W —

5. Return weights

H B Massachusetts

Institute of
Technology
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Gradient Descent 1F

tensorflow tf

Algorithm

| Inrtialize Weights randomly ~]\/‘(O, 0-2) weights = tf.Variable([tf.random.normal()])

2. Loop until convergence:

while True:

3 , aJj(Ww) with tf.GradientTape() as g:
ComPUte gradleﬂt, ow loss compute loss(weights)
4. Upda-te Weightg' W W — n a]a(_:VV) gradient g.gradient(loss, weights)

5. Return WelghtS weights = weights - lr * gradient

I I I —— m::f:f:‘;feﬂs 6.5191 Introduction to Deep Learning /27120
II Technology @ introtodeeplearning.com L 4 @MITDeeplearning




Gradient Descent 1F

tensorflow tf

Algorithm

| Inrtialize Weights randomly NN(O, 0-2) weights = tf.Variable([tf.random.normal()])

2. Loop until convergence:

while True:

3 , aJj(Ww) with tf.GradientTape() as g:
CompUte gradleﬂt, ow loss compute loss(weights)
- Update weights, W W — n ‘”a(_:VV) gradient g gradient(loss, weights)

5. Return WelghtS weights = weights - lr * gradient

I I I —— m::fjf:‘;?eﬂs 6.5191 Introduction to Deep Learning \/27/20
II Technology @ introtodeeplearningcom W @MITDeeplearning




Computing Gradients: Backpropagation

X >z > 9 > J(W)

How does a small change in one weight (ex. w,) affect the final loss J(W)!

I I I H BN Massachusetts
1/28/19

Inst 6.5191 Introduction to Deep Learning
I l nstitute of . i
Technology introtodeepleaming.com




Computing Gradients: Backpropagation

oj(W)

ow,

N

Let's use the chain rule!

<<

> J(W)

6.5191 Introduction to Deep Learning
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Computing Gradients: Backpropagation

Wl w
. b 2, i [ e——

Jyw) _ow) 93
ow, 09 dw,

I - ey 6.5191 Introduction to Deep Learning
l l institute of , .
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Computing Gradients: Backpropagation

W1 w
x bz e P e (W)

Jyw) _yw) 99

ow; 0y owq
I I f
Apply chain rule! Apply chain rule!
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Computing Gradients: Backpropagation

Wl w
x  — 7, e ) ——

Jyw) _gw) 99 oz

Iw, 39 0z, ow;

I R —— 65191 Introduction to Deep Learning
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Computing Gradients: Backpropagation

Wl w
X — 7, e ) O

IWw) _gw) 99 on

odwq ay 074 ow;

Repeat this for every weight in the network using gradients from later layers

I I I H Bl Massachusetts
1/28/19
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Neural Networks in practice:
Optimization



Training Neural Networks is Difficult

“Visualizing the loss landscape
of neural nets”. Dec 201 7.

III' o Necemests 6.5191 Introduction to Deep Learning 128/19

I I institute of ) )
Technology introtodeepleaming.com




Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent
oJ] (W)
W« W —
T ow

l S 6.5191 Introduction to Deep Learning
I I Institute of ‘ _
Technoloay introtodeepleaming.com
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Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

] (W
W«W-—n ](7(W)

|

How can we set the
learning rate?

I S 6.5191 Introduction to Deep Learning
I l institute of _ _
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Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Jw),,

\ Initial guess

I l I HEE Massachusetts

institte of 6.5191 Introduction to Deep Learning
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Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Jw),,

\ Initial guess

w

H B Massachusetts : -
Il Il I kst of 6.5191 Introduction to Deep Learning 1/28/19
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Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

J(6) .,

\ Initial guess

I S Nassachussts 6.5191 Introduction to Deep Learning
institute of

I I ) , 1/28/19
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How to deal with this?

Idea |:

Try lots of different learning rates and see what works “just right”

Illl l “ f 6.5191 Introduction to Deep Learning 1128/19

Techn l ogy introtodeepleaming.com




How to deal with this?

ldea 2:

Do something smarter!
Design an adaptive learning rate that “adapts” to the landscape

II I H BN Massachusetts
1/28/19
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Adaptive Learning Rates

 Learning rates are non longer fixed

« Can be made larger or smaller depending on:
* How large gradient is
* How fast learning is happening
* Size of particular weights



Gradient Descent Algorithms

Algorithm TF Implementation Reference

Kiefer & Wolfowitz. “Stochastic Estimation of the
¢ SG D Maximum of a Regression Function.” [952.
. " Kingma et al.”Adam: A Method for Stochastic
+ Adar

o Zeiler et al. "ADADELTA: An Adaptive Learning Rate
° Ad ade“:a t tf. keras. optimizers.Adadelta Method” 2012,

; . Duchi et al."Adaptive Subgradient Methods for Online
® tf. ke t s.Adagrad
Adagrad Learning and Stochastic Optimization.” 201 |.

¢ RM SPFOp iF tf. keras. optimizers. RMSProp

Additional details: http://ruderio/optimizing-gradient-descent/

I I I MmN Massachusetts 6.5191 Introduction to Deep Learning 127120

Institute of : . .
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Putting it all together

tensorflow tf
model tf.keras.Sequential ([ 1)

Can replace with any

optimizer = tf.keras.optimizer.SGD() N [CEsieeliur

while True:

prediction model (x)

with tf.GradientTape() as tape:

loss compute loss(y, prediction)

grads tape.gradient(loss, model.trainable variables)

optimizer.apply gradients(zip(grads, model.trainable variables)))

6.5191 Introduction to Deep Learning
introtodeeplearning.com @MITDeeplearning
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Neural Networks in practice:
Mini-batches




Gradient Descent

Algorithm
. Initialize weights randomly ~N'(0, o%)

2. Loop until convergence:

3. Compute gradient, a]a(vl://)
4. Update weights, W « W —n 9 a(MM//) Lo
5. Return weights ST —

l T 6.5191 Introduction to Deep Learning
l I Institute of

) . 1/28/19
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Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, 52)

2. Loop until convergence:

3 Compute gradient, 2 a(:,’) ‘
4. Update weights, W « W —n ajéuu;) L
5. Return weights B o —

Can be very
computational to

compute!
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick single data point i
4 . 9Ji(W)
Compute gradient, W
. aJj(Ww
>, Update weights W « W —n ja(w)
6. Return weights
Phii e S tesemingem 28019




Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N(0, 02)

2. Loop until convergence:

3. Pick single data point i
4 - aJi(W)

Compute gradient, o o s |
>. Update weights W « W —n a];:lvv) CEETeS <
6. Return weights

Easy to compute but

very noisy
(stochastic)!
II I. . m::fsg‘g:ms 6.5191 Introduction to Deep Learning 128/19
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. [ Pick batch of B data points ] ,.
W) _ 1y kW) f\

4 C '
- ompute gradient, = _
PHte 8 ow  Bek=1"aw
| a1 (W oot e
S, Update weights, W « W — 1 ]a(w) i S e
6. Return weights
HEm Massachusetts 65191 Introduction to Deep Learnin
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N(0, 02)

2. Loop until convergence:

3. Pick batch of B data points H
4. Compute gradient, ]( = —Z a]gl(:/) 1
2. Update weights, W « W — 7 a](W S o St |

6. Return weights

Fast to compute and a much better
estimate of the true gradient!

Il I. e :“““"'h“se“s 65191 Introduction to Deep Learning
titute of

Technology introtodeepleaming.com

1/728/19




Mini-batches while training

* More accurate estimation of gradient
Smoother convergence

Allows for larger learning rates

* Mini-batches lead to fast training!

Can parallelize computation + achieve significant speed
increases on GPU’s



Some terminology

* One epoch is when the entire dataset is passed forward and
backward through the neural network only once (multiple times are
usually needed)

* The batch size is the number of training examples in a mini-batch

 An iteration is the number of batches needed to complete one
epoch

 Ex. For a dataset of 10000 sample with mini-batch size 1000, 10
iterations will complete 1 epoch



Neural Networks in Practice:
Overtitting



The Problem of Overfitting

Y
g

o

a . 9]

P a g0
q o
s® »
>
Underfitting < Ideal fit > Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well
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Regularization

* What is it?
Technique that constrains our optimization problem to discourage complex
models

* Why do we need it?
Improve generalization of our model on unseen data



Regularization |: Dropout

* During training, randomly set some activations to O

Z11 “2

X1
Z12 22,2 V1

X2
21,3 223 Y2

X3
Z1 4 224
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Regularization |: Dropout

* During training, randomly set some activations to O

e Typically ‘drop’ 50% of activations in layer
picalydop' 0% Y

Z21
X1
21,2 1
X2
22,3 V2
X3
Z14 T 224
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Regularization |: Dropout

* During training, randomly set some activations to O

e Typically ‘drop’ 50% of activations in layer
picalydop' 0% Y

Z11
X1
222 1
X2
21,3 T 223 V2
X3
22,4
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Regularization |: Dropout

» the network is not going to rely too heavily on any particular
path through the network

» instead it's going to find a whole ensemble of different paths,
because it doesn’t know which path is going to be dropped
out at any given time



Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Overfitting:

when a model starts to perform
worse on the test (validation) set
than on the training set

|Loss

Training Iterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

| oss

Training lterations

Legend

Tésﬂng

Training
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

Loss

A

Training lterations

Legend

Testing

T?anmg

6.5191 Introduction to Deep Learning
introtodeepleaming.com

1/28/19



Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

Loss Tésﬂng

T?&nhg

Training lterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

L oss

~ 0

Legend

Tésﬂng

WYanMg

Training Iterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

Loss Tégﬂng

Training

—0— L

Training Iterations

I I I H BN Massachusetts
1/28/19
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

|Loss

A

Stop training
here!

Training lterations

Legend

Tésﬂng

WYanmg

—@— —Q ,

HEE Massachusetts

Institute of
Technology
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

L oss

A

Under-fitting Over-fitting

Stop training
here!

Training Iterations

Legend

Testing

Training

—@— —Q ,

H BN Massachusetts

Institute of
Technology
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Core Foundation Review

The Perceptron Neural Networks Training in Practice

* Structural building blocks * Stacking Perceptrons to * Adaptive learning
* Nonlinear activation form neural networks * Batching
functions * Optimization through « Regularization
backpropagation

X1 \ X1 g
Zk2 b21
xz —- 2 * /

o B * F.-F
a— o @ “

> Zkdy

<
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