
Path Rewriting and Combined Word Problems

Camillo Fiorentini and Silvio Ghilardi

�

Tehnial Report n.250-00

Department of Computer Siene,

Universit�a degli Studi di Milano

via Comelio 39, 20135 Milano { Italy

Email: f�orenti, ghilardig�dsi.unimi.it

May 2000

Abstrat. We give an algorithm solving ombined word problems (over non ne-

essarily disjoint signatures) based on rewriting of equivalene lasses of terms. The

anonial rewriting system we introdue onsists of few transparent rules and is ob-

tained by applying Knuth-Bendix ompletion proedure to presentations of pushouts

among ategories with produts. It applies to pairs of theories whih are both on-

strutible over their ommon redut (on whih we do not make any speial assump-

tion).

�

Lavoro svolto nell'ambito del progetto MURST \Logia".
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1 Introdution

An essential problem in automated dedution onsists in integrating theorem provers

whih are able to perform separated tasks. In the �eld of equational logi, this leads

in partiular to the following question: suppose you are able to solve word problems

for theories T

1

; T

2

; an you solve word problem for T

1

[ T

2

? Better, an you design

an algorithm taking as input two arbitrary algorithms for word problems for T

1

and

T

2

and realizing a deision proedure for word problem for T

1

[ T

2

?

In ase T

1

; T

2

have disjoint signatures the positive answer was known from long

time [12℄, although only more reently disovered within automated dedution om-

munity (see e.g. [11℄). In the general ase, ombining deidable word problems may

leads to undeidability, even if we suppose that T

1

; T

2

are both onservative over their

ommon redut T

0

. To this aim, onsider the following example. Let T

0

be the theory

of join-semilatties with zero (i.e. of ommutative idempotent monoids) and let T

1

be the theory of Boolean algebras. As T

2

we take the theory of semilattie-monoids,

whih are algebras having both a monoid and a join-semilattie with zero struture

and whih satisfy the further equation:

(

n

_

i=1

x

i

) Æ (

m

_

j=1

y

j

) =

n

_

i=1

m

_

j=1

(x

i

Æ y

j

):

T

2

learly has deidable word problem (free algebras are �nite sets of lists of the

generators), as well as T

1

. The union theory (whih we better indiate with T

1

+

T

0

T

2

)

orresponds to the `distributive linear logi' of [8℄ and falls within the undeidability

results of [1℄.

Clearly something must be assumed in order to have positive solution to ombined

word problems; in the literature it is usually assumed that T

1

; T

2

share a set of

onstrutors (we prefer the terminology `they are both onstrutible over T

0

'). There

are various de�nitions of onstrutors and depending on suh de�nitions there are

variable strength results. Main papers on the subjet are [5℄ and [3, 4℄: the seond has

a weaker de�nition and onsequently a stronger result. Our de�nition is again weaker

(see Setion 10 for details) and, more important, it overs natural mathematial

examples and does not make any strong assumption on T

0

(in [5℄ T

0

is assumed to be

free, in [3, 4℄ to be ollapse-free).

1

[5℄ and [3, 4℄ use quite di�erent methods: in [3, 4℄ the ombined deision algo-

rithm is obtained through a refutation tehnique manipulating equations aording to

ertain non-deterministi rules. As suh it has the advantage of being more exible,

although it does not provide normal forms. On the ontrary, [5℄ (and the similar

method of [11℄ for the disjoint ase) diretly manipulate terms by abstrating and

ollapsing alien subterms and the suggested algorithm follows a omplex and rigidly

1

Reall that an equational theory is said to be ollapse-free i� it annot prove equations of the

kind x = t, where x is a variable and t is a non-variable term.
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preassigned proedure. Our method is more similar to that of [5℄ (in the sense that it

manipulates terms), but has the same exibility advantages as the method of [3, 4℄.

The idea is simple: we build a anonial rewriting system whih is able to normalize

paths of mixed pure terms.

The realization of suh a plan looks very hard at a �rst glane: terms from om-

bined signatures are quite unreliable datatypes, basially beause they an ompose,

deompose and even ollapse in many unontrolled and overlapping ways. However,

we shall put suh omplex ombinatoris under the ontrol framework provided by

the ategorial approah to equational logi: suh approah goes bak to the lassial

pioneering paper of F.W. Lawvere [9℄ in funtorial semantis.

2

Basially, equational

theories are identi�ed with ategories with produts, so that in our situation we need

to manipulate presentations of pushouts among suh ategories. We get a �rst gen-

eral and simple presentation of these pushouts in Setion 3 by means of two-sides

rewrite rules. To this presentation we apply, in Setion 5, Knuth-Bendix ompletion

proedure and get the desired rewriting system, under some `onstrutors' hypothesis

for our theories.

This onstrutors hypothesis is formulated within a ategorial framework in Se-

tion 5 by means of (weak) fatorization systems and translated in symboli terms

in Setion 10: roughly speaking, T

i

is said to be onstrutible over T

0

i� there is a

lass E

i

of terms (inluding variables and losed under renamings) in the signature




i

of T

i

so that any 


i

-term t(x

1

; : : : ; x

n

) deomposes uniquely (up to provable iden-

tity) as u(v

1

; : : : ; v

k

) where the v

i

(x

1

; : : : ; x

n

) are (always up to provable identity)

distint terms from E

i

and u is a k-minimized term in the signature 


0

of T

0

(a term

u(x

1

; : : : ; x

k

) is said to be k-minimized i� it is not provably idential to any term in

whih only variables oming from a proper subset of fx

1

; : : : ; x

k

g our). Examples

are provided in Setion 10 (a typial example is the ase of ommutative rings with

unit whih are onstrutible over abelian groups).

We briey desribe here the rewriting system R we obtain. R onsists of only

four rules (for tehnial reasons onerning `olours' of terms, two of suh rules are

`dupliated'). First rule (alled omposition rule) simply allows to ompose equally

oloured onseutive (equivalene lasses of) terms. Seond rule (alled "-extration

rule) minimizes terms by `moving left' projetions (i.e. n-tuples of distint variables).

Third rule (alled �-extration rule) `moves right' the seond omponent of the above

mentioned fatorization of terms. The fourth rule (alled produts rule) is suggested

by the ompletion proedure and has the following meaning: any projetion (i.e. any

tuple of distint variable terms) appearing in an internal position of a path of pure

terms represents a `hole' and the normalization proess is supposed to �ll suh a hole

by `moving right' genuine terms (i.e. terms whih are not projetions). The omplete

table of rules of R is given at the end of Setion 5.

2

We reall that there is another quite interesting ategory-theoreti approah to universal algebra,

namely the monads approah (whih has also been signi�antly used in questions related to rewriting,

see e.g. [10℄).
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Although R is a quite simply desribed system, the onuene proof requires long

work, beause all ritial pairs must be examined. This leads to a large amount of

details, all onsisting of elementary omputations (in fat, one the tehnial tools

are appropriately settled, single ases are treated in the most natural way).

The paper is organized as follows: in Setion 2 we reall the neessary bakground

from funtorial semantis; in Setion 3 we get a �rst presentation of pushouts among

Lawvere ategories. In Setions 4-5 we apply ompletion proedure and get the appro-

priate rewriting system R. In Setion 6 we provide loal onuene and termination

for a simple subsystem R

0

of R. In Setion 7 a third rewriting system, alled R

+

is

introdued (R

+

is equivalent to R, it normalizes slower but it is easier to manage); in

addition useful tehnial fats are olleted. In Setion 8, R

+

is proved to be loally

onuent, whereas in Setion 9 termination of both R and R

+

is established. Finally,

equivalene between R and R

+

and anoniity of the former are obtained. Setion 10

provides examples of onstrutible theories and of normalizations of paths of terms;

a omparison with results of [3, 4℄ is done at the end of the paper.

Setions 6-7-8-9 an be skipped in a �rst reading by people mostly interested in

our results (and less interested in their proofs).

This tehnial report is fully detailed and self-ontained. We only assume a ertain

familiarity with rewriting (for some unexplained notions readers may onsult [2℄).

2 A short summary in funtorial semantis

We reall that a ategory with �nite produts C is a ategory in whih for every �nite

list of objets X

1

; : : : ;X

n

(n � 0) there is an objet X

1

� � � � � X

n

and there are

arrows

�

X

1

;:::;X

n

X

i

: X

1

� � � � �X

n

�! X

i

(to be denoted simply as �

X

i

or �

i

) enjoying the following universal property:

� for every objet Z, for every n-tuple of arrows �

i

: Z �! X

i

(i = 1; : : : ; n)

there is a unique arrow � : Z �! X

1

� � � � �X

n

suh that � Æ �

i

= �

i

for all

i = 1; : : : ; n

3

(suh � is usually indiated by h�

1

; : : : ; �

n

i).

The de�nition inludes the ase n = 0 and n = 2: in fat, suh two ases are suÆient

for the general ase n � 0. We an so equivalently give the de�nition in the following

way: a ategory C is said to have �nite produts i�

� there is a terminal objet, namely an objet 1 suh that for every objet X

there is just one arrow X �! 1 (suh arrow is noted h i or h i

X

);

3

Composition of arrows

�

�!

�

�! in a ategory is denoted as � Æ � in this paper (ontrary to some

more frequent notations like � Æ�). We think that diretly following `arrow pitures' looks better for

the purposes of this paper.
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� for every pair of objets X

1

;X

2

there are an objet X

1

� X

2

and arrows �

1

:

X

1

� X

2

�! X

1

, �

2

: X

1

� X

2

�! X

2

, suh that for every objet Z and for

every pair of arrows �

1

: Z �! X

1

, �

2

: Z �! X

2

, there is a unique arrow

h�

1

; �

2

i : Z �! X

1

�X

2

suh that h�

1

; �

2

i Æ �

1

= �

1

and h�

1

; �

2

i Æ �

2

= �

2

.

In ategories with �nite produts, we also use the standard abbreviation �

1

�� � ���

n

to denote (for X

1

�

1

�! Y

1

, : : : ; X

n

�

n

�! Y

n

) the arrow h�

1

Æ �

1

; : : : ; �

n

Æ �

n

i.

In the paper by `ategory' we always mean `ategory with �nite produts' and

by `funtor' we always mean `�nite produts preserving funtor'. Cheking omplex

identities in ategories with produts might be a little painful if the above de�nition

is used, however for general reasons it is suÆient to hek suh identities in the

ategory Set of sets (basially, this is due to faithfulness of Yoneda embedding and

to the fat that produts are omponentwise in presheaves). For instane, in order to

hek the identity

h� Æ �; i = h�; i Æ (� � 1);

where X

�

�! Y

�

�! Z

1

, X



�! Z

2

,

4

one an always assume that the data involved

are just sets and funtions and observe that \for every x 2 X"

(h� Æ �; i)(x) = h�(�(x)); (x)i = (� � 1) Æ (h�(x); (x)i) = (h�; i Æ (� � 1))(x):

We shall meet many suh identities in the paper, but we shall never justify them

expliitly, we simply assume the reader realizes by himself that they are `true in Set'.

An (equational) theory T = h
; Axi is just an ordinary signature 
 endowed

with a set of pairs of terms (`the axioms' of T ). We use letters t; u; v; : : : for terms

and letters x

1

; x

2

; : : : for variables; t(x

1

; : : : ; x

n

) means that the term t ontains

at most the variables x

1

; : : : ; x

n

. Notation t(u

1

=x

1

; : : : ; t

n

=x

n

) (or simply t(u

i

=x

i

)

or again t(u

1

; : : : ; u

n

)) is used for substitutions; when we write t(u=x

i

) we mean

t(x

1

=x

1

; : : : ; u=x

i

; : : : ; x

n

=x

n

). Notations like `

T

t

1

= t

2

refer to some sound and

omplete dedution system (e.g. equational logi). Deiding `

T

t

1

= t

2

is just the

(uniform) word problem for T . In order to avoid irrelevant ases, we shall always

assume that our theories T math the following two requirements:

� 
 always ontains a onstant symbol 

0

(this is harmless, beause adding a free

onstant -if needed- does not hange the nature of word problems);

� T is non-degenerate, namely 6`

T

x

1

= x

2

.

Given a signature 
 and a ategory C, an 
-interpretation I in C onsists of the

following data:

- an objet A in C (alled the support of I);

4

Identities are generially noted 1; in some ases, we may use a subsript for their domain if we

want to evidentiate it (in the present ase, we should have written 1

Z

2

).
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- for every f 2 


n

(


n

is the set of funtion symbols having arity n), an arrow

I(f) : A

n

�! A (notie that for n = 0, we have I(f) : 1 �! A).

Given suh an interpretation I and a term t, we an de�ne I

n

(t) : A

n

�! A (to be

denoted simply as I(t) if onfusion does not arise), for every n suh that x

1

; : : : ; x

n

is a list ontaining all the variables ourring in t, as follows:

- I(x

i

) = �

i

;

- I(f(t

1

; : : : ; t

m

)) = hI(t

1

); : : : ;I(t

m

)i Æ I(f).

An 
-interpretation I is a model of T = h
; Axi (or is an internal T -algebra in C)

i� for every (t

1

; t

2

) 2 Ax, we have I(t

1

) = I(t

2

).

5

Not only ategories give models of theories, they an be used as theories. This

is a basi point in ategorial logi, whih leads in our ase to the notion of Lawvere

ategory. Basially this is nothing but any one-sorted (�nite produts) ategory.

Formally, a Lawvere ategory is a ategory having objets fX

n

g

n�0

, in whih X

n

(endowed with spei�ed projetions �

i

: X

n

�! X) is the produt with itself n-

times.

6

In our ontext (see below) �

i

will be the (equivalene lass of) the variable

x

i

. We �x the following onvention about a Lawvere ategory: arrows X

n

�! X

m

of the kind h�

i

1

; : : : ; �

i

m

i (where i

1

; : : : ; i

m

� n) are alled

� (pure) projetions i� the i

1

; : : : ; i

m

are all distint (in this ase we must have

m � n);

� diagonals i� fi

1

; : : : ; i

m

g inlude f1; : : : ; ng (in this ase we must have m � n);

� renamings i� i

1

; : : : ; i

m

are just a permutation of f1; : : : ; ng (in this ase we

must have n = m).

In order to have a learer piture, onsider the ategory Sf having as objets the �nite

sets of the kind n = f1; : : : ; ng and as arrows all funtions (this is the skeleton ategory

of �nite sets); for every Lawvere ategory T, we have a funtor S : Sf

op

�! T

assoiating X

n

with n and h�

h(1)

; : : : ; �

h(m)

i with every funtion h : n �m. Now

an arrow in T is a (pure) projetion i� it is the S-image of an injetive funtion, it

is a diagonal i� it is the S-image of a surjetive funtion and it is a renaming i� it is

the S-image of a bijetion.

5

Stritly speaking, one should show that this does not depend on the list x

1

; : : : ; x

n

(whih inludes

all variables ourring in t

1

; t

2

) hosen in order to apply I. Indeed it is so: in fat, a simple indutive

argument shows that I

n+1

(t

i

) di�ers from I

n

(t

i

) by left omposition with the n-tuple of projetions

h�

1

; : : : ; �

n

i. Now notie that any arrow of the kind A

n

h�

1

;:::;�

n

;�i

�! A

n+1

gives the identity one

omposed on the right with suh an n-tuple of projetions (one an take as � anything, e.g. A

n

I

n

(t

1

)

�!

A). Thus I

n+1

(t

1

) = I

n+1

(t

2

) holds i� I

n

(t

1

) = I

n

(t

2

) holds (just take left omposition with the

above mentioned arrows).

6

Of ourse, this implies that X

0

is equal to the terminal objet 1 and that X

n

1

+n

2

is the produt

of X

n

1

and X

n

2

with obvious tuples of �

i

's as projetions.
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Lawvere ategories are essentially in one-to-one orrespondene with equational

theories (we said `essentially' beause two equational theories di�ering only for the

hoie of the language and of the axioms are ollapsed into the same `invariant'

Lawvere ategory). We need in this paper only one side of this orrespondene, whih

we are going to explain. Let T = (
; Ax) be a theory; we build a Lawvere ategory

T in the following way. We take as arrows X

n

�! X

m

the m-tuples of equivalene

lasses of terms ontaining at most the variables x

1

; : : : ; x

n

(equivalene is intended

through provable identity in T ); equivalene lasses of variables are the spei�ed

projetions and omposition is substitution. Expliitly, this means that omposition

of

hft

1

g; : : : ; ft

m

gi : X

n

�! X

m

and of

hfu

1

g; : : : ; fu

r

gi : X

m

�! X

r

is the r-tuple of terms in the variables x

1

; : : : ; x

n

given by:

hfu

1

(t

i

=x

i

)g; : : : ; fu

r

(t

i

=x

i

)gi : X

n

�! X

r

:

Let us now examine models; given a model I of a theory T in a ategory C, we

an assoiate with it a funtor:

(1) F

I

: T �! C

in the following way. If A is the support of I, F

I

(X

n

) = A

n

; if hft

1

g; : : : ; ft

m

gi is an

arrow in T,

F

I

(hft

1

g; : : : ; ft

m

gi) = hI(t

1

); : : : ;I(t

m

)i:

Vie versa, given a funtor F : T �! C, we an assoiate with it the model I

F

with

support F (X) given by

(2) I

F

(f) = F (ff(x

1

; : : : ; x

n

)g)

for every f 2 


n

. The two orrespondenes (1) and (2) are inverse eah other, thus

we an identify models with funtors.

Funtors an be used also to deal with syntati interpretations; we shall onsider

only speial kinds of syntati interpretations, those whih matter for our purposes.

Suppose we are given two theories T

0

= (


0

; Ax

0

) and T

1

= (


1

; Ax

1

), suh that




0

� 


1

and Ax

0

� Ax

1

. Suh data indue a funtor

(3) I

1

: T

0

�! T

1

assoiating equivalene lasses of terms with themselves (more preisely, equivalene

lass of t in T

0

with equivalene lass of t in T

1

). When T

1

is a onservative extension

of T

0

(i.e. when 


0

-terms are provably equal in T

0

i� they are provably equal in T

1

)

we write T

0

� T

1

for short. Notie that T

1

is a onservative extension of T

0

i� the

funtor I

1

is faithful (i.e. injetive on arrows). Moreover, the restrition of a T

1

-model

to a T

0

-model beomes omposition on the left with I

1

(whenever models are seen as

funtors under the orrespondene (1)-(2)).

7



3 Basi Equations

We now �x our main data for the paper: we have three theories

T

0

= (


0

; Ax

0

)

T

1

= (


1

; Ax

1

)

T

2

= (


2

; Ax

2

)

suh that T

1

and T

2

are onservative extensions of T

0

and 


0

= 


1

\ 


2

; taking

(non disjoint) union of signatures and axioms we get a further theory whih we all

T

1

+

T

0

T

2

. We suppose to be able to solve the word problem for T

1

; T

2

; in general,

as explained in the introdution, this is not enough for solving the word problem

for T

1

+

T

0

T

2

too,

7

however we may look for suÆient onditions yielding a positive

solution.

The ategory T

1

+

T

0

T

2

an be built as usual, by using terms; however we want

to haraterize it intrinsially in terms of T

0

;T

1

;T

2

. For this it is suÆient to look

at its models. Let C be a ategory and let I

1

;I

2

be models of T

1

; T

2

in C restriting

to the same model of T

0

; from these data it is possible to build a unique model I of

T

1

+

T

0

T

2

in C restriting to I

1

;I

2

: the support is the same as the ommon support of

I

1

;I

2

and the interpretations of funtions symbols an simply be joined (as they agree

on 


0

). Axioms Ax

1

[Ax

2

will be all true (as they involve only terms belonging to the

same T

i

). Translating everything in terms of funtors, we have that T

1

+

T

0

T

2

enjoys

the following universal property: for every ategory C, for every pair of funtors F

1

:

T

1

�! C and F

2

: T

2

�! C suh that I

1

ÆF

1

= I

2

ÆF

2

, there exists a unique funtor

F : T

1

+

T

0

T

2

�! C suh that J

1

Æ F = F

1

and J

2

Æ F = F

2

(here I

1

: T

0

�! T

1

,

I

2

: T

0

�! T

2

, J

1

: T

1

�! T

1

+

T

0

T

2

, J

2

: T

2

�! T

1

+

T

0

T

2

are funtors oming

from syntati expansions as in (3)). Otherwise said, T

1

+

T

0

T

2

is just the pushout of

T

1

;T

2

over T

0

.

8

This purely ategorial property uniquely haraterizes T

1

+

T

0

T

2

.

Next step onsists in a diret desription of a ategory (isomorphi to) T

1

+

T

0

T

2

,

by using the above mentioned universal property: for this desription we do not use

terms anymore, but a more algebrai notion, namely mixed paths of arrows from

T

1

;T

2

. To make the notation simpler, we at as funtors I

1

; I

2

(whih are faithful)

were just inlusions. Formally, a path K : X

n

�! X

m

is a non empty list of arrows

oming from either T

1

or T

2

(or both)

K = �

1

; : : : ; �

k

suh that

7

Notie that T

1

+

T

0

T

2

might not be a onservative extension of T

1

; T

2

: for instane, both Boolean

algebras and Heyting algebras are onservative over distributive latties with 0 and 1, but putting

together the two theories one gets again the theory of Boolean algebras whih is obviously not

onservative over Heyting algebras.

8

In relevant ontexts, a 2-dimensional pushout should be onsidered instead: it orresponds to the

theory of pairs of models of T

1

; T

2

, endowed with an isomorphism among their respetive reduts.

2-dimensional aspets ould be onglobated with some further work in the approah of this paper.

8



(i) the domain of �

1

is X

n

;

(ii) the odomain of �

k

is X

m

;

(iii) for every i = 1; : : : ; k � 1, the odomain of �

i

is equal to the domain of �

i+1

.

Paths are just words (with `typing' restritions). Equivalene relations on paths

(stable with right and left onatenation) an be introdued by two-side rewrite rules.

The plan is quite simple: identify suh rules, orient and omplete them into a

anonial rewrite system (after all, the situation is very similar to string-rewriting

systems for monoid presentations).

In the remaining part of the paper, we make the following onventions:

� we shall use letters �; �; : : : for arrows fromT

1

[T

2

, letters �

1

; �

1

; : : : for arrows

from T

1

, letters �

2

; �

2

; : : : for arrows from T

2

and letters �

0

; �

0

; : : : for arrows

from T

0

; notie that any arrow like �

1

may happen to ome from T

0

, the vie

versa however annot be;

� instead of indiating types (i.e. objets of Lawvere ategories) with X

n

;X

m

; : : :

we may use letters Y;Z; U; : : : if the knowledge of the exponent does not matter;

letter X however an only indiate X

1

;

� roman letters an be used to indiate arrows having odomain X, that is a

1

for instane, stands for an arrow in T

1

(whih might belong to T

0

too) having

domain some Y = X

n

, but whose odomain an only be X = X

1

.

Next, we give main de�nitions for path rewriting. Let S be a set of pairs of paths;

we write

(i) K )

S

K

0

(or simply K ) K

0

, leaving S as understood from the ontext) i�

K = K

1

; L;K

2

and K

0

= K

1

; R;K

2

for some pair hL;Ri 2 S;

(ii) K ,

S

K

0

(or simply K , K

0

) i� K = K

1

; L;K

2

and K

0

= K

1

; R;K

2

for some

pair hL;Ri suh that either hL;Ri 2 S or hR;Li 2 S;

(iii) K )

�

S

K

0

(or simply K )

�

K

0

) for the reexive-transitive losure of )

S

;

(iv) K ,

�

S

K

0

(or simply K ,

�

K

0

) for the least equivalene relation ontaining

)

S

.

Clearly ,

�

is the least stable equivalene relation extending S. Pairs hL;Ri 2 S

will be diretly written as L) R and alled rules of S; alternatively, they might be

written as L , R (and alled basi equations of S), but in suh a ase we taitly

assume that S is symmetri, i.e. that S ontains hR;Li in ase it ontains hL;Ri (in

suh a ase e.g. relations ) and , obviously oinide).

Next theorem aomplishes our �rst goal (`�nding appropriate basi equations'):

9



Theorem 3.1 Let P be given by the following two kinds of pairs of paths:

�

i

; �

i

, �

i

Æ �

i

(i = 1; 2)

1� �

2

; �

1

� 1, �

1

� 1; 1� �

2

(where in the last pair we have

�

1

: Y

1

�! Z

1

�

2

: Y

2

�! Z

2

and so

1� �

2

: Y

1

� Y

2

�! Y

1

� Z

2

�

1

� 1 : Y

1

� Z

2

�! Z

1

� Z

2

):

We have that T

1

+

T

0

T

2

is isomorphi to the Lawvere ategory having as arrows the

equivalene lasses of paths under the relation ,

�

P

.

Proof. Let P be the ategory having fX

n

g

n�0

as objets and as arrows X

n

�!

X

m

the equivalene lasses (wrt ,

�

) of paths of domain X

n

and odomain X

m

.

Composition of fKg and fLg is fK;Lg. Identity of X

n

turns out to be just f1

X

n

g.

We �rst show that P has �nite produts. X

0

= 1 is obviously terminal; in fat

any path K : Y �! 1 is equivalent to the singleton path h i

Y

by iterated appliations

of the �rst basi equation of P (last member of K must be some h i

Z

, so it omposes

with the last-but-one member giving again something of the same kind, et.).

Given objets Y

1

= X

n

1

; Y

2

= X

n

2

, we take Y

1

�Y

2

(i.e.X

n

1

+n

2

) as binary produt

and f�

Y

1

g; f�

Y

2

g as projetions (here �

Y

1

; �

Y

2

are obviously the projetions in T

0

).

Let us now take two paths K

1

;K

2

of domain Z and odomains Y

1

; Y

2

, respetively.

Suppose for instane that

K

1

= �

1

; : : : ; �

r

K

2

= �

1

; : : : ; �

s

:

Let hK

1

;K

2

i be the path:

Z

h1

Z

;1

Z

i

�! Z � Z

1

Z

�K

2

�! Z � Y

2

K

1

�1

Y

2

�! Y

1

� Y

2

where 1

Z

�K

2

is (1

Z

��

1

); : : : ; (1

Z

��

s

) (K

1

� 1

Y

2

is de�ned analogously). We show

that fhK

1

;K

2

ig enjoys the universal property for pairs. In fat

h1

Z

; 1

Z

i; (1

Z

�K

2

); (K

1

� 1

Y

2

); �

Y

1

,

�

K

1

by suessive appliations of the �rst basi equation of P (we have (�

r

� 1

Y

2

) Æ �

Y

1

=

�

dom(�

r

)

Æ �

r

, et. so we �nally get h1

Z

; 1

Z

i; (1

Z

�K

2

); �

dom(�

1

)

;K

1

,

�

K

1

, beause

dom(�

1

) = Z and for every j, (1

Z

� �

j

) Æ �

Z

= �

Z

). Similarly

h1

Z

; 1

Z

i; (1

Z

�K

2

); (K

1

� 1

Y

2

); �

Y

2

,

�

K

2

10



(by the same passages in di�erent order).

Let now K be another path from Z into Y

1

� Y

2

suh that K;�

Y

1

,

�

K

1

and

K;�

Y

2

,

�

K

2

. We must have K = K

0

; h

1

; 

2

i, for some h

1

; 

2

i : U �! Y

1

� Y

2

;

so K

0

; 

1

,

�

K

1

and K

0

; 

2

,

�

K

2

. From this, a glane to the shape of our basi

equations

9

yields (K

0

� 1

Y

2

); (

1

� 1

Y

2

) ,

�

(K

1

� 1

Y

2

) and (1

Z

�K

0

); (1

Z

� 

2

) ,

�

(1

Z

�K

2

). Consequently

hK

1

;K

2

i ,

�

h1

Z

; 1

Z

i; (1

Z

�K

0

); (1

Z

� 

2

); (K

0

� 1

Y

2

); (

1

� 1

Y

2

):

We only have to show that this last path is equivalent to K = K

0

; h

1

; 

2

i. If K

0

=

Æ

1

; : : : ; Æ

l

, by repeated appliations of the seond basi equation (�rst basi equation

is also used e.g. in ontrating (1� Æ

j

); (Æ

j

� 1) into Æ

j

� Æ

j

), we have that

h1

Z

; 1

Z

i; (1

Z

�K

0

); (1

Z

� 

2

); (K

0

� 1

Y

2

); (

1

� 1

Y

2

) ,

�

h1

Z

; 1

Z

i; (K

0

�K

0

); (

1

� 

2

)

(where K

0

�K

0

is (Æ

1

� Æ

1

); (Æ

2

� Æ

2

); : : : ; (Æ

l

� Æ

l

)). Finally, observe that h1

Z

; 1

Z

i Æ

(Æ

1

� Æ

1

) = Æ

1

Æ h1

od(Æ

1

)

; 1

od(Æ

1

)

i, et. hene repeated appliations of the �rst basi

equation yield

hK

1

;K

2

i ,

�

K

0

; h1

U

; 1

U

i; 

1

� 

2

, K

0

; h

1

; 

2

i;

as wanted.

In order to hek that P is isomorphi to T

1

+

T

0

T

2

, we show it enjoys the related

universal property. Funtors

F

1

: T

1

�! P F

2

: T

2

�! P

assoiating with �

i

the equivalene lass f�

i

g obviously ommute with the inlusions

I

1

: T

0

�! T

1

and I

2

: T

0

�! T

2

. Now let G

i

: T

i

�! C (i = 1; 2) be suh

that I

1

Æ G

1

= I

2

Æ G

2

. There is in fat a unique funtor G : P �! C suh that

F

1

Æ G = G

1

and F

2

Æ G = G

2

: it is the funtor assoiating with f�

i

1

1

; : : : ; �

i

k

k

g the

arrow G

i

1

(�

i

1

1

)Æ � � � ÆG

i

k

(�

i

k

k

). This de�nition is fored by the onditions F

1

ÆG = G

1

and F

2

ÆG = G

2

and is good beause basi equations of P express identities holding

in any ategory with �nite produts. This ompletes the proof of the theorem. a

9

For the ase of the seond basi equation, you need identities like 1

Y

� (Æ � 1

Z

) = 1

Y

� Æ �

1

Z

= (1

Y

� Æ) � 1

Z

, whih hold in Lawvere ategories (in fat, if e.g. Y = X

n

; Z = X

m

and

Æ = hd

1

; : : : ; d

k

2

i : X

k

1

�! X

k

2

, then unravelling the de�nitions the three members are all equal to

h�

1

; : : : ; �

n

; � Æ d

1

; : : : ; � Æ d

k

2

; �

n+k

1

+1

; : : : ; �

n+k

1

+m

i;

where � = h�

n+1

; : : : ; �

n+k

1

i). The point is that in Lawvere ategories the �nite produt struture

is freely generated (atually by one objet); this is usual for ategories oming from syntati aluli,

however in the general ontext of arbitrary ategory with produts suh identities hold only up to

(oherent) isomorphisms.
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In the appliations, we should keep in mind that the isomorphism of ategories

among T

1

+

T

0

T

2

and P is the unique expansion to the signature 


1

[ 


2

of the

models F

1

: T

1

�! P , F

2

: T

2

�! P assoiating with �

i

the equivalene lass f�

i

g.

This means the following: given an 


1

[


2

-term t, the universal model (isomorphism)

U : T

1

+

T

0

T

2

�! P interpretes it as the equivalene lass of any path obtained by

expressing t as an iterated omposition of terms whih are pure, i.e. whih are either




1

or 


2

-terms. Suh a path (alled a splitting path for t) an be e�etively omputed

from t in many ways (possibly yielding not the same path, but yielding in any ase,

�

-

equivalent paths); one might for instane adopt usual abstration of alien subterms, or

alternatively make use of the following simply desribed indutive proedure (whih

applies to any tuple t

1

; : : : ; t

n

of terms having variables inluded in some �xed list

x

1

; : : : ; x

m

):

- if t

1

; : : : ; t

n

are all 


1

or 


2

-terms, a splitting path is the singleton path

hft

1

g; : : : ; ft

n

gi

having domain X

m

and odomain X

n

(reall that arrows in T

1

;T

2

are equiv-

alene lasses of terms under provable identity in the orresponding theory);

- otherwise, we have e.g. that t

i

= f(u

1

; : : : ; u

k

); a splitting path K of

t

1

; : : : ; t

i�1

; u

1

; : : : ; u

k

; t

i+1

; : : : ; t

n

is given (we apply multiset indution on term omplexities) and it has odomain

X

n�1+k

, so we an take

K; hfx

1

g; : : : ; ff(x

i

; : : : ; x

i+k

)g; : : : ; fx

n�1+k

gi

as a splitting path for t

1

; : : : ; t

n

.

It is now lear how we an deal with word problems: to deide whether t and u are

T

1

+

T

0

T

2

-equal, it is suÆient to split them into paths K and L aording to one

of the above mentioned proedures and then hek whether K ,

�

L holds or not.

Of ourse, this will beome onvenient only after turning our basi equations into a

anonial rewriting system. Let us see in any ase an example.

Example Let us prove the well-known fat from elementary algebra saying that

it is not possible to endow a given distributive lattie with 0 and 1 with two di�erent

Boolean algebra strutures (the omplement, in ase it exists, is unique). Let T

0

be

the theory of distributive latties with 0 and 1 and let T

1

; T

2

be the theory of Boolean

algebras. We show that

`

T

1

+

T

0

T

2

:

1

x

1

= :

1

x

1

^ :

2

x

1

12



(here :

i

is omplement in T

i

, what we prove is :

1

x

1

� :

2

x

1

). We take X

:

1

x

1

�! X

as splitting path of :

1

x

1

(we usually drop brakets in the examples, to be preise we

should write X

f:

1

x

1

g

�! X); as splitting path of :

1

x

1

^ :

2

x

1

, we take

X

h:

1

x

1

;x

1

i

�! X

2

x

1

^:

2

x

2

�! X:

Notie we ould have used

X

hx

1

;:

2

x

1

i

�! X

2

:

1

x

1

^x

2

�! X

istead: indeed the two paths are ,

�

-equivalent (just expand h:

1

x

1

; x

1

i; x

1

^:

2

x

2

to

hx

1

; x

1

i; h:

1

x

1

; x

2

i; hx

1

;:

2

x

2

i; x

1

^x

2

, then apply seond basi equation and ontrat

one again). We need to show that

:

1

x

1

,

�

h:

1

x

1

; x

1

i; x

1

^ :

2

x

2

:

For this, let us onsider the path

K = h:

1

x

1

; x

1

i; hx

1

; x

2

; x

1

^ x

2

i; x

1

^ (:

2

x

2

_ x

3

);

We have

K , h:

1

x

1

; x

1

i; x

1

^ (:

2

x

2

_ (x

1

^ x

2

)) , :

1

x

1

beause fx

1

^ (:

2

x

2

_ (x

1

^ x

2

))g = fx

1

g. On the other hand

K , h:

1

x

1

; x

1

; x

1

^ :

1

x

1

i; x

1

^ (:

2

x

2

_ x

3

),

, h:

1

x

1

; x

1

i; hx

1

; x

2

; 0i; x

1

^ (:

2

x

2

_ x

3

),

, h:

1

x

1

; x

1

i; x

1

^ :

2

x

2

:

In onlusion, we have

:

1

x

1

,

�

K ,

�

h:

1

x

1

; x

1

i; x

1

^ :

2

x

2

as wanted. a

Notie that in the above example we sometimes replaed terms from 


i

(i =

1; 2) with terms from 


0

, when we realized this was possible. Suh passages are

indispensable in order to ativate the �rst basi equation (whih applies to onseutive

equally oloured terms), but they might be non e�etive. The additional hypotheses

we shall make on our data in order to be able to orient and omplete basi equations

into a anonial rewrite system will also be suÆient in order to make suh passages

e�etive.
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4 Orientation

Before beginning orientation and ompletion, we make a modi�ation to our `dataty-

pes', due to the fat that we do not want to bother distinguishing paths whih are mere

alphabeti variants eah other. Formally, the involved de�nitions are the following (let

K be the path Y

1

�

1

�! � � �

�

k

�! Y

k+1

and let L be `parallel' path Y

1

�

1

�! � � �

�

k

�! Y

k+1

,

with �

i

; �

i

equally oloured and having the same domain and odomain):

� K is said to be a �-renaming of L (where � = f�

i

: Y

i

�! Y

i

g

1�i�k+1

is a list

of renamings)

10

i� the following squares

Y

i

Y

i+1

-

�

i

Y

i

Y

i+1

-

�

i

?

�

i

?

�

i+1

ommute for i = 1; : : : ; k (otherwise said, we have �

i

= �

�1

i

Æ�

i

Æ �

i+1

for all i);

we write L = �(K) in order to express that L is (the) �-renaming of K;

� K is said to be the �-alphabeti variant of L (where � = f�

i

: Y

i

�! Y

i

g

1�i�k+1

is a list of renamings) i� it is the �-renaming of L and moreover �

1

= 1

Y

1

and �

k+1

= 1

Y

k+1

(the reason for this de�nition is that variables in internal

equivalene lasses of terms in a path are onsidered bounded).

Example. For every permutation � on the n-elements set, we have that path

K

1

; ha

1

; : : : ; a

n

i; �;K

2

is an alphabeti variant of the path

K

1

; ha

�(1)

; : : : ; a

�(n)

i; h�

�

�1

(1)

; : : : ; �

�

�1

(n)

i Æ �;K

2

(here K

1

;K

2

might be empty). Thus applying alphabeti variants allows permuting

the omponents of an arrow in a path (provided suh arrow is not in last position).

a

Example. Path

W

K

1

�! Y � Z � U

h�;�

Z

i

�! V � Z

K

2

�! T

10

Reall from Setion 2 that a renaming X

n

�! X

n

in a Lawvere ategory is an n-tuple of

projetions of the kind h�

�(1)

; : : : ; �

�(n)

i, where � is a permutation on f1; : : : ; ng.
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is an alphabeti variant of the path

W

K

1

Æh�

Y

;�

Z

;�

U

i

�! Y � U � Z

hh�

Y

;�

Z

;�

U

iÆ�;�

Z

i

�! V � Z

K

2

�! T

(here only K

2

might be empty and K

1

Æ h�

Y

; �

Z

; �

U

i is K

1

with last arrow omposed

with h�

Y

; �

Z

; �

U

i). Thus applying alphabeti variants allows assuming that ertain

projetions (loated not in �rst position) projet, say, on last omponents of their

domains. a

The ontent of the last two examples will be frequently and taitly used within

the tehnial Setions of the paper.

We shall apply rewriting on equivalene lasses of paths modulo `being an alpha-

beti variant of'. This needs some additional onventions on our rules, beause we

want to have the following property (making the rewriting proess easily manageable):

if K rewrites to L, then any alphabeti variant of K rewrites to some alphabeti vari-

ant of L. In addition, notation of ertain rules may be awkward in ase we do not

stipulate anything about their alphabeti variants. Consequently, we stipulate that

the renaming of any rule is always taitly supposed to be available as a rule: by this,

we mean that if K ) K

0

is a rule, then �(K)) �

0

(K

0

) is also a rule, for any list �; �

0

of renamings suh that �rst and last omponents of �; �

0

are respetively equal.

11

A onsequene of the above stipulation is that the normal forms we eventually

obtain, will be unique only up to alphabeti variants. Cheking whether two paths

are alphabeti variants eah other, in ase we know they are both in normal forms,

does not substantially a�et eÆieny, given the partiular struture of normal forms

(we shall turn on that in Setion 10).

Before going on, we need another preliminary indispensable deision about our

datatypes. As evidentiated also in the example at the end of Setion 3, terms like

f(t

1

; t

2

), where f 2 


0

and where t

i

(x

1

) is a pure 


i

-term, have (at least) two di�erent

splitting paths, namely

X

ht

1

(x

1

);x

1

i

�! X

2

f(x

1

;t

2

(x

2

))

�! X and X

hx

1

;t

2

(x

1

)i

�! X

2

f(t

1

(x

1

);x

2

)

�! X:

Our �nal aim is that of having (uniqueness of) normal forms for paths, so we must

deide one for all whih one has to be onsidered in normal form. This hoie is

learly onventional, but has to be done one way or another: we hoose the former

path. This yields to the following notion: say that a path is well-oloured i� it has

the form K;�

2

(where K is possibly empty). This means that the last arrow in a

well-oloured path must ome from T

2

(whih does not exlude it might ome from

T

0

as well).

We modify our basi equations so that we need to onsider only well-oloured

paths. For a path K : Y �! Z, let K

+

be the well-oloured path K; 1

Z

.

11

We shall of ourse always deal with rules K ) K

0

suh that K and K

0

agree on domains and

odomains. Thus, our onvention says that �(K) ) �(K

0

) is a rule in ase K ) K

0

is a rule,

� = f�

1

; : : : ; �

n

g, �

0

= f�

0

1

; : : : ; �

0

m

g and �

1

= �

0

1

and �

n

= �

0

m

.

15



Let us reformulate our basi equations as follows:

(E1)

1

�

1

; �

1

;  , �

1

Æ �

1

; 

(E1)

2

�

2

; �

2

, �

2

Æ �

2

(E2) 1� �

2

; �

1

� 1; � , �

1

� 1; 1� �

2

; �:

These new equations do not allow to rewrite a well-oloured path into a non well-

oloured path; notie also that the `interhange basi equation' 1 � �

2

; �

1

� 1 ,

�

1

� 1; 1� �

2

now does not apply anymore in the last position of a path.

As we said, we shall only onsider from now on only well-oloured paths subjet

to the new basi equations (E1)

i

; (E2).

12

There is no loss in that beause for well-

oloured paths K;L, we have K ,

�

L (aording to the old basi equations) i�

K ,

�

L (aording to the new basi equations). In fat, one side is trivial; for the

other side, let us onsider a ,-hain like

K = K

0

, K

1

, � � � , K

n

= L

obtained aording to the old basi equations. We thus have

K

+

= K

+

0

, K

+

1

, � � � , K

+

n

= L

+

aording to the new basi equations; now two appliations of (E1)

2

yields K , K

+

and L , L

+

beause K;L are well-oloured. Thus K ,

�

L holds by using the new

equations too.

The obvious orientations of (E1)

1

; (E1)

2

are

(R

1



) �

1

; �

1

;  ) �

1

Æ �

1

; 

(R

2



) �

2

; �

2

) �

2

Æ �

2

:

Orientation of (E2) depends on the olour of �. In ase � has olour 2, we orient it

as follows (supposing �

2

has olour 2 too):

(R

2

p

)

�

1� �

2

2

; �

1

� 1; �

2

) �

1

� 1; (1� �

2

2

) Æ �

2

where seond member has been redued by a further (R

2



)-rewrite step. In ase �

has olour 2, there are no other relevant ases. If �

1

; �

2

have both olour 1, the two

members are joinable by (R

1



) and the equation an be deleted.

13

If �

2

has olour 1

and �

1

has olour 2, we do not need to add the rule

�

2

1

� 1; 1� �

1

2

; �

2

) 1 � �

1

2

; (�

2

1

� 1) Æ �

2

12

Of ourse, this means also that, when omputing the splitting path of a term, identity should be

added at the end in ase the top symbol of the term has wrong olour.

13

We tolerate the use of (R

2

p

)

�

in ase �

1

; �

2

both have olour 2. As a general philosophy, we prefer

not to put provisoes on appliations of rules, unless needed. So, for (R

2

p

)

�

(and (R

1

p

)

�

below), the

only proviso is that �rst and third arrow in �rst member must be equally oloured.

16



beause this is simply a renaming of (R

2

p

)

�

and our onvention about renamings

automatially inludes it. Notie that (R

2

p

)

�

applies also in ase � 2 T

0

(the fat

that � has olour 2 does not prevent it from belonging to T

0

).

In ase � 2 T

1

nT

0

, both members of (E2) annot our in last position of a

well-oloured path; taking into aount this fat, the appropriate oriented rule is

(R

1

p

)

�

1� �

1

2

; �

1

� 1; �

1

;  ) �

1

� 1; (1� �

1

2

) Æ �

1

; 

Although, stritly speaking, we do not need suh a rule in ase � 2 T

0

(beause

orientation in this ase is like in (R

2

p

)

�

), we allow its use in this ase too.

During next setion ompletion proess, rules (R

i

p

)

�

will be removed, whereas the

rules (R

i



) (alled omposition rules) are permanent (whenever a rule is deleted during

ompletion, we always mark its name with a �).

Let us summarize the ontent of this setion. We all R

�

the rewriting system

given by the rules

(R

1



); (R

2



); (R

1

p

)

�

; (R

2

p

)

�

:

R

�

is our starting rewriting system: this system is sound and omplete for our pur-

poses (deiding path equivalene aording to system P of Theorem 3.1), beause the

above disussion shows that

Lemma 4.1 For well-oloured paths K

1

;K

2

, we have K

1

,

�

P

K

2

i� K

1

,

�

R

�

K

2

.

5 Completion

System R

�

is learly inadequate beause it is far from being onuent, so we shall

modify it by using Knuth-Bendix style ompletion as an heuristi guide.

Let us reall some general notions onerning a rewrite system S (these notions

an be formulated within the ontext of abstrat rewrite systems as in [2℄). System

S is said to be:

� terminating i� there are no in�nite redution sequenes

K

1

)

S

K

2

)

S

� � �K

i

)

S

� � �

� onuent i� K )

�

S

K

1

and K )

�

S

K

2

imply that K

1

;K

2

are joinable (i.e. that

there exists K

0

suh that K

1

)

�

S

K

0

and K

2

)

�

S

K

0

);

� loally onuent i� K )

S

K

1

and K )

S

K

2

imply that K

1

;K

2

are joinable;

� anonial i� it is terminating and onuent i� (by Newmann's Lemma) it is

terminating and loally onuent.

17



It an be shown (see [2℄) that in a anonial rewriting system S the relationK

1

,

�

S

K

2

holds i� K

1

and K

2

have the same normal form, whih is moreover unique (a normal

form for L is some L

0

suh that L)

�

S

L

0

and there is no L

00

suh that L

0

)

S

L

00

).

In order to prove anoniity of our path rewriting systems, we show that they are

loally onuent and terminating; loal onuene is, in its turn, easily redued to

the fat that ritial pairs are all joinable. We reall that a ritial pair is any pair

of paths obtained as follows

R

1

; L

2

L

1

; R

2

L

1

;M;L

2

�

�

�	

�

�

�R

where M is non empty and

L

1

;M ) R

1

and M;L

2

) R

2

are both rules of the system (we say in this ase that suh rules superpose).

In ase some ritial pairs are not joinable, the obvious thing to do is to enrih the

system by adding it suh oriented ritial pairs as new rules. In addition, experiene

shows that it is better also to simplify - if possible - rules whih are generated from

the proedure. The following operations onerning a rewrite system S are in order:

(i) we an add to S a set of new rules fL

i

) R

i

g

i

suh that (L

i

; R

i

) or (R

i

; L

i

) is

a ritial pair generated by rules in S;

(ii) we an divide rules in S in two disjoint groups S

0

[ S

00

and remove all rules in

S

00

in ase we realize that left and right member of suh rules are joinable in S

0

;

(iii) we an divide rules in S in two disjoint groups S

0

[ S

00

and replae any rule

L) R in S

00

by some L) R

0

suh that R)

�

S

0

R

0

.

14

Clearly if S

0

results from S after a �nite number of appliations of (i)-(ii)-(iii), we

have that S

0

is equivalent to S (in the sense that we have K

1

,

�

S

K

2

i� K

1

,

�

S

0

K

2

).

If we are luky, we an produe in this way a anonial rewrite system S

0

starting

from a given S. Notie that the above ompletion proedure - as it is formulated here

- only has heuristi value (it annot be fully mehanized as eah step in (i)-(ii)-(iii)

may onsist in in�nitely many operations).

Let us now apply ompletion to R

�

. The �rst obvious superposition we have in

R

�

is obtained by onsidering rules (R

1



) and (R

2



) as in the fork:

14

We shall not need left member simpli�ation steps.
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�

i

Æ �

0

; �

j

�

i

; �

0

Æ �

j

�

i

; �

0

; �

j

(R

i



)

�

�

�	

(R

j



)

�

�

�R

(with i 6= j and possibly with a  appended everywhere to the right in ase j = 1).

Any naif global orientation of these ritial pairs in one sense or in the other, would

immediately ause in�nite rewriting. Orientation from left to right �

i

Æ �

0

; �

j

)

�

i

; �

0

Æ�

j

would produe for instane (let � have odomain Y and let � have domain

Y ):

�; � = � Æ h1

Y

; 1

Y

i Æ �

1

; �

) � Æ h1

Y

; 1

Y

i; �

1

Æ � = � Æ h1

Y

; 1

Y

i Æ h1

Y�Y

; 1

Y�Y

i Æ �

0

1

; �

1

Æ �

) � � �

where �

1

: Y � Y ) Y and �

0

1

: (Y � Y )� (Y � Y ) �! Y � Y are �rst projetions.

Critial pairs

(CP ) h�

i

; �

0

Æ �

j

; �

i

Æ �

0

; �

j

i

will be di�erently oriented, depending on the nature of the arrow �

0

. In ase the

signature 


0

is empty, the solution is the following ouple of rules:

(Rpr)

�

�

i

; � Æ �

j

) �

i

Æ �; �

j

(Rdi)

�

�

i

Æ Æ; �

j

) �

i

; Æ Æ �

j

where � is any strit projetion and Æ is any strit diagonal

15

(a projetion - resp.

diagonal - is strit i� it is not a renaming). Given that any �

0

fators as � Æ Æ, where

� is a projetion and Æ is a diagonal, this pair of rules is suÆient to make all ritial

pairs (CP ) joinable, if 


0

is empty.

In our ase, we annot suppose 


0

to be empty, however we an try to identify two

di�erent lasses of arrows in T

0

forming a fatorization system; arrows in the �rst

lass will be assoiated `to the left' and arrows in the seond lass will be assoiated

`to the right', as in the ase in whih 


0

is empty. There is a standard notion of

fatorization system in ategory theory (see [6℄), however suh a notion is too strong

in the present ontext, so that we weaken it.

Let C be any ategory; by a weak fatorization system in C, we mean a pair of

lasses of arrows (E ;M) from C suh that:

(i) both E and M ontain identities and are losed with respet to left and right

omposition with arrows in E \M;

15

Reall from Setion 2 that we all projetions (resp. diagonals) arrows X

n

�! X

m

whih are

m-tuples of distint �

i

(resp. m-tuples of �

i

inluding all the �

1

; : : : ; �

n

).
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(ii) for every � 2 C, there are " 2 E , � 2M suh that � = " Æ �;

(iii) whenever we have a ommutative square

Y

2

Y

-

�

2

Y

0

Y

1

-

"

1

?

"

2

?

�

1

with "

1

; "

2

2 E , �

1

; �

2

2M, there is a unique � 2 E\M suh that "

2

Æ� = "

1

and

� Æ�

1

= �

2

(this ondition says that the fatorization given by (ii) is essentially

unique).

>From the above axioms it follows that arrows � 2 E \M are invertible (beause

they have two trivial fatorizations, namely � Æ 1 and 1 Æ �, hene...); suh arrows

will be just renamings in our ases. Notie that we do not ask for E ,M to be losed

under omposition, not even that they ontain isomorphisms and are `orthogonal'

eah other (like in standard fatorization systems).

Main Example. For any equational theory T = (
; Ax), the orresponding

Lawvere ategory T always has a weak fatorization system (E ;M) (whih we all

the standard weak fatorization system for T):

� arrows in E are just projetions;

� arrows in M are those � suh that in ase it happens that � = " Æ �

0

(with

" 2 E), we must have that " is just a renaming.

The fatorizations � = �

"

Æ �

�

(with �

"

2 E , �

�

2 M) are obtained as follows. Let

~

t(x

1

; : : : ; x

n

) be a tuple of terms ontaining at most the variables x

1

; : : : ; x

n

; say that

this tuple is n-minimized i� for no i = 1; : : : ; n we have `

T

~

t =

~

t(

0

=x

i

).

16

Now we

have that the m-tuple of terms

~

t is n-minimized i� the arrow � : X

n

�! X

m

belongs

to M, where � is the vetor of the equivalene lasses of terms represented by the

m omponents of

~

t (if, say,

~

t = ht

1

; : : : ; t

m

i, then � is hft

1

g; : : : ; ft

m

gi). Suppose

in fat on one side that we have � = " Æ �

0

, where " : X

n

�! X

k

is the tuple

h�

i

1

; : : : ; �

i

k

i; as suh a tuple is a strit projetion, the i

j

are all distint and some

s = 1; : : : ; n is missed. Let �

0

be formed by the equivalene lasses represented

by the terms

~

t

0

(x

1

; : : : ; x

k

); the relation � = " Æ �

0

means that `

T

~

t(x

1

; : : : ; x

n

) =

~

t

0

(x

i

1

=x

1

; : : : ; x

i

k

=x

k

). Replaing x

s

by the onstant 

0

, we get

`

T

~

t(

0

=x

s

) =

~

t

0

(x

i

1

; : : : ; x

i

k

); hene `

T

~

t(

0

=x

s

) =

~

t

16

Notations like `

T

~u = ~v, for ~u = hu

1

; : : : ; u

m

i and ~v = hv

1

; : : : ; v

m

i, mean that `

T

V

m

j=1

u

j

= v

j

.

Reall that in Setion 2 we assumed that there is at least one ground term 

0

in our signatures.
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ontrary to the fat that

~

t is n-minimized. Conversely, if

~

t is not n-minimized, we

have `

T

~

t(

0

=x

s

) =

~

t for some s, hene � admits a fatorization through the proper

projetion h�

1

; : : : ; �

s�1

; �

s+1

; : : : ; �

n

i.

We so established that � : X

n

�! X

m

belongs toM i� it is represented by some

n-minimized vetor of terms. Let now � be arbitrary; how an we get the fatorization

� = �

"

Æ �

�

, where �

"

2 E and �

�

2 M? This is easy: take any vetor of terms in

the equivalene lasses of � ontaining a minimal set of variables: if suh a vetor

is

~

t(x

i

1

; : : : ; x

i

k

), then the fatorization is � = h�

i

1

; : : : ; �

i

k

i Æ �, where � represents

the vetor of terms

~

t(x

1

; : : : ; x

k

). Notie that this proess is e�etive in ase word

problem for T is solvable: one takes any

~

t representing � and then go on by replaing

variables in it by 

0

; the proedure stops when only terms not provably equal to

~

t an

be obtained.

Next we show that the above fatorization is unique up to a renaming. Suppose

we have a ommutative square in T

X

k

X

n

-

�

1

X

m

X

l

-

"

2

?

"

1

?

�

2

with "

1

; "

2

2 E and �

1

; �

2

2 M. For the sake of simpliity, we an apply a suitable

renaming to X

m

so that we have "

1

= h�

1

; : : : ; �

k

i (i.e. "

1

projets on �rst k om-

ponents) and "

2

= h�

j

1

; : : : ; �

j

l

i; now �

1

; �

2

must be represented by k, l-minimized

vetors of terms

~

t

1

;

~

t

2

. The ommutativity of the square says that we have

`

T

~

t

1

(x

1

; : : : ; x

k

) =

~

t

2

(x

j

1

; : : : ; x

j

l

):

By minimization, we must have f1; : : : ; kg = fj

1

; : : : ; j

l

g (otherwise, one an `redue'

variables in t

1

or t

2

by replaing them with 

0

); this means also that k = l. Now the

renaming h�

j

1

; : : : ; �

j

l

i : X

k

�! X

k

�lls the `bottom-top' diagonal of the square

X

k

X

n

-

�

1

X

k+l

X

k

-

"

2

?

"

1

?

�

2

(and is the unique suh), as wanted. a

Using the above desribed standard weak fatorization system (whih we onve-

niently all (E

0

;M

0

)) available in T

0

, we an replae rule (Rdi)

�

by the following

one

(R

�

)

�

�

i

Æ �; �

j

) �

i

; � Æ �

j

(� 2M

0

)
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whih is stronger than (Rdi)

�

beause diagonals always are in M

0

(they annot be

fatored through a strit projetion or, to say it di�erently, they always are repre-

sented by minimized vetors of terms). As rule (Rpr)

�

is kept, the e�et of rules

(Rpr)

�

and (R

�

)

�

is that all ritial pairs (CP ) are now joinable (beause �

0

an

be fatored as �

0

"

Æ �

0

�

, with �

0

"

2 E

0

and �

0

�

2 M

0

). Apart from evident problems

onerning the e�etiveness of appliability of rule (R

�

)

�

, this is still bad beause it

may one again produe in�nite rewriting. This is espeially evident in ase T

0

is not

ollapse-free. Suppose for instane we have a ollapsing equation like f(x

1

; x

1

) = x

1

in T

0

; then if we start with the path x

1

; t(x

1

) (where t(x

1

) is any term), we an

deompose x

1

as hx

1

; x

1

i Æ f(x

1

; x

2

), thus produing the following rewrite steps:

hx

1

; x

1

i Æ f(x

1

; x

2

); t(x

1

) ) hx

1

; x

1

i; t(f(x

1

; x

2

)) ) x

1

; hx

1

; x

1

i Æ t(f(x

1

; x

2

))

yielding again x

1

; t(x

1

). We annot overome this problem without postulating any-

thing (after all, ombined solvable word problems might be unsolvable...). We shall

postulate that there is a anonial way of extrating M

0

-omponents from terms in




i

(of ourse, we shall also have to assume that suh extration an be done in an

e�etive way, see Setion 10).

17

This extra assumption will restrit rule (R

�

)

�

(or, to

put it in a di�erent form, will allow the ompletion/simpli�ation proess to get rid

of undesired instanes of rule (R

�

)

�

). We need �rst to ome bak one again to the

abstrat ategorial framework.

Let C to be a subategory of C

0

and let (E ;M) be a weak fatorization system in

C. A weak fatorization system (E

0

;M) in C

0

(notie that M is the same!) is said

to be a left extension of (E ;M) i� the following hold:

� E

0

\C = E ;

� if "

1

; "

2

2 E and if " 2 E

0

, then "

1

Æ" 2 E

0

and "Æ"

2

2 E

0

(whenever ompositions

make sense).

Notie that this implies that E - not neessarily E

0

- is losed under omposition. Let

us say that T

i

is onstrutible over T

0

i� in T

i

there is a left extension (E

i

;M

0

) of

the standard weak fatorization system (E

0

;M

0

) of T

0

.

Assumption. We assume that T

1

; T

2

are both onstrutible over T

0

.

We postpone to Setion 10 a symboli translation of this assumption as well as the

analysis of some examples (and ounterexamples). For the moment, let us underline

that, as an e�et of the above assumption, we now have that any arrow �

i

admits

two fatorizations, namely:

17

The assumption of [3, 4℄ may be seen as the stronger requirement that there is a maximal way of

extrating M

0

-omponents (suh stronger requirement is inompatible with existene of ollapsing

equations in T

0

).
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� it an be fatored as �

i

"

Æ�

i

m

aording to the standard weak fatorization system

(E

0

;M

i

) of T

i

(we reall that here E

0

is formed by arrows whih are projetions,

whereasM

i

is formed by arrows represented by minimized -in the sense of the

theory T

i

- vetors of terms);

� it an be fatored as �

i

e

Æ �

i

�

aording to the left extension (E

i

;M

0

) of the

standard weak fatorization system of T

0

(here the lass E

i

is axiomatially

given by the above Assumption, whereas M

0

is the lass of arrows from T

0

represented by minimized vetors of terms -in the sense of the theory T

0

).

18

Rules (Rpr)

�

, (R

�

)

�

are so restrited:

(R

"

) �

i

; �

j

) �

i

Æ �

j

"

; �

j

m

(R

�

) �

i

; �

j

) �

i

e

; �

i

�

Æ �

j

and alled "-extration and �-extration rules, respetively.

19

Let us all R

0

the

rewriting system formed by rules (R

i



); (R

"

); (R

�

); in Setion 6 we shall prove that

Theorem 5.1 R

0

is anonial.

As an e�et of the above Theorem, rules (Rpr)

�

; (Rdi)

�

; (R

�

)

�

are all aneled

during ompletion/simpli�ation proess (beause their members are joinable in R

0

);

we shall nevertheless arti�ially postpone anellation of rules (Rpr)

�

and (Rdi)

�

at

the end of the ompletion, beause we shall make further use of them in order to

identify the good superpositions/simpli�ations steps needed to treat the remaining

rule (R

i

p

)

�

(whih auses some further onuene problems).

In fat, in order to �nish our ompletion proess we need only to identify a ouple

of very spei� superpositions yielding the right modi�ation of the rule (R

i

p

)

�

(R

i

p

)

�

1� �

i

2

; �

j

1

� 1; �

i

) �

j

1

� 1; (1� �

i

2

) Æ �

i

(reall that in ase i = 1, there is an extra arrow to the right of both members).

20

Let us onsider the path

Y

2

h

i

;1

Y

2

i

�! Y

1

� Y

2

1

Y

1

��

i

2

�! Y

1

� Z

2

�

j

1

�1

Z

2

�! Z

1

� Z

2

�

i

�! U

giving rise to the superposition (among rules (R

i



) and (R

i

p

)

�

)

18

These vetors of terms are also n-minimized in the sense of T

i

, given that T

i

is onservative over

T

0

.

19

It goes without saying that suh rules do not apply in ase of trivial fatorizations (i.e. when

�

j

"

-resp. �

i

�

- are, up to a renaming, just identities). We allow applying the rule also in ase i = j

(although in priniple this is not needed).

20

Reall from Setion 4 that we allow j to be di�erent or equal to i.
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h

i

; �

i

2

i; �

j

1

� 1; �

i

h

i

; 1i; �

j

1

� 1; (1� �

i

2

) Æ �

i

h

i

; 1i; 1� �

i

2

; �

j

1

� 1; �

i

(R

i



)

�

�

�

�

�

�

�	

(R

i

p

)

�

�

�

�

�

�

�

�R

The related ritial pair is oriented as follows:

(R

0

p

)

�

h

i

; �

i

2

i; �

j

1

� 1; �

i

) h

i

; 1i; �

j

1

� 1; (1� �

i

2

) Æ �

i

We need another �nal superposition (among (R

0

p

)

�

and (Rdi)

�

): onsider the path

(here �

j

: Y

1

� Z �! Y

2

)

Y

h

i

;Æ

i

;Æ

i

i

�! Y

1

� Z � Z

�

j

�1

Z

�! Y

2

� Z

�

i

�! U

and the superposition

h

i

; Æ

i

i; h�

j

; �

Z

i; �

i

h

i

; Æ

i

; 1

Y

i; �

j

� 1

Y

; (1

Y

2

� Æ

i

) Æ �

i

h

i

; Æ

i

; Æ

i

i; �

j

� 1

Z

; �

i

(Rdi)

�

�

�

�

�

�

�

�	

(R

i

p

)

�

�

�

�

�

�

�

�R

where we used the fat that h

i

; Æ

i

; Æ

i

i = h

i

; Æ

i

i Æ (1

Y

1

� �

Z

) (�

Z

is the diagonal

h1

Z

; 1

Z

i) and the fat that (1

Y

1

��

Z

) Æ (�

j

� 1

Z

) = h�

j

; �

Z

i (�

Z

is the projetion

Y

1

�Z �! Z). We are near to the end of the ompletion proess; we �rst redue the

seond omponent of the above ritial pair by using two (Rpr)

�

-redution steps:

21

suppose that Æ

i

: Y �! Z has fatorization

Y

Æ

i

"

�! Y

0

Æ

i

m

�! Z;

then we have

h

i

; Æ

i

; 1

Y

i; �

j

� 1

Y

; (1

Y

2

� Æ

i

) Æ �

i

+

h

i

; Æ

i

; 1

Y

i; �

j

� Æ

i

"

; (1

Y

2

� Æ

i

m

) Æ �

i

+

h

i

; Æ

i

; Æ

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� Æ

i

m

) Æ �

i

21

This redution is important: without it, we may have problems in the termination proof.
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So our �nal produts rule is

(R

i

p

) h

i

; Æ

i

i; h�

j

; �

Z

i; �

i

) h

i

; Æ

i

; Æ

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� Æ

i

m

) Æ �

i

(reall we have an extra arrow to the right in both members in ase i = 1). Putting

types, �rst member is

(I) Y

h

i

;Æ

i

i

�! Y

1

� Z

h�

j

;�

Z

i

�! Y

2

� Z

�

i

�! U

whereas seond member is

(II) Y

h

i

;Æ

i

;Æ

i

"

i

�! Y

1

� Z � Y

0

�

j

�1

Y

0

�! Y

2

� Y

0

(1

Y

2

�Æ

i

m

)Æ�

i

�! U

We add a proviso for this rule: Æ

i

62 E

0

(that is, Æ

i

annot be a projetion). The

reason for this last proviso is that, in ase Æ

i

is a projetion, then the seond member

of (R

i

p

) an be re-written to the �rst by using rule (Rdi)

�

(thus ausing termination

problems). In fat, in ase Æ

i

is a projetion, we have that Æ

i

= Æ

i

"

and Æ

i

m

= 1

Z

,

hene the seond member is h

i

; Æ

i

; Æ

i

i; �

j

� 1

Z

; �

i

and we an rewrite it as follows

h

i

; Æ

i

; Æ

i

i; �

j

� 1

Z

; �

i

= h

i

; Æ

i

i Æ (1

Y

1

��

Z

); �

j

� 1

Z

; �

i

) h

i

; Æ

i

i; h�

j

; �

Z

i; �

i

thus getting the �rst member. To �nish, we observe that rules (R

i

p

)

�

and (R

0

p

)

�

an be

removed, beause their members beome joinable in the rewrite system R obtained

by adding (R

i

p

) to R

0

. We hek it for the former rule, leaving the latter (whih is

treated in a very similar way) to the reader.

First member of (R

i

p

)

�

is

Y

1

� Y

2

h�

Y

1

;�

Y

2

Æ�

i

i

�! Y

1

� Z

2

h�

Y

1

Æ�

j

1

;�

Z

2

i

�! Z

1

� Z

2

�

i

�! U

whereas the seond member is

Y

1

� Y

2

�

j

1

�1

Y

2

�! Z

1

� Y

2

(1

Z

1

��

i

)Æ�

i

�! U:

Applying a (Rpr)

�

-rewrite step to the seond member, we get (suppose that Y

2

�

i

"

�!

Y

0

2

�

i

m

�! Z

2

):

(�) �

j

1

� 1

Y

2

; (1

Z

1

� �

i

) Æ �

i

) �

j

1

� �

i

"

; (1

Z

1

� �

i

m

) Æ �

i

:

Let us now operate on �rst member by suessively using rules (R

i

p

); (Rpr)

�

; (R

j



) as

follows (to apply (R

i

p

), notie that �

Y

2

Æ �

i

= (�

Y

2

Æ �

i

"

) Æ �

i

m

, so by uniqueness this

25



is the fatorization of �

Y

2

Æ �

i

in the standard weak fatorization system of T

i

):

22

h�

Y

1

; �

Y

2

Æ �

i

i; h�

Y

1

Æ �

j

1

; �

Z

2

i; �

i

+

(R

i

p

)

h�

Y

1

; �

Y

2

Æ �

i

; �

Y

2

Æ �

i

"

i; h�

Y

1

Æ �

j

1

i � 1

Y

0

2

; (1

Z

1

� �

i

m

) Æ �

i

=

h�

Y

1

; �

Y

2

Æ �

i

; �

Y

2

Æ �

i

"

i; h�

Y

1

; �

Y

0

2

i Æ (�

j

1

� 1

Y

0

2

); (1

Z

1

� �

i

m

) Æ �

i

+

(Rpr)

�

h�

Y

1

; �

Y

2

Æ �

i

; �

Y

2

Æ �

i

"

i Æ h�

Y

1

; �

Y

0

2

i; �

j

1

� 1

Y

0

2

; (1

Z

1

� �

i

m

) Æ �

i

=

h�

Y

1

; �

Y

2

Æ �

i

"

i; �

j

1

� 1

Y

0

2

; (1

Z

1

� �

i

m

) Æ �

i

+

(R

j



)

�

j

1

� �

i

"

; (1

Z

1

� �

i

m

) Æ �

i

as in (�). In onlusion, we obtained the rewriting system R whih is desribed by

Table 1 (in the last two rules of the Table, Z; Y

0

and Y

2

are the odomains of Æ

i

; Æ

i

"

and �

j

, respetively, as in the fully displayed paths (I) and (II) above).

23

Reall that renamings of rules of R are available as rules of R. However, suh a

onvention an be slightly simpli�ed, given that the above rules are all losed under

the operation of omposing �rst (or last) arrow in eah member by the same single

renaming. Thus we an merely stipulate that if L ) R is a rule, then L

0

) R

0

is

also a rule, where L

0

is any alphabeti variant of L and R

0

is any alphabeti variant

of R.

The ontent of the present setion an be so summarized (reall that R is obtained

from R

�

by few ompletion steps):

Lemma 5.2 For well-oloured paths K

1

;K

2

, we have K

1

,

�

R

K

2

i� K

1

,

�

R

�

K

2

.

22

If �

i

is a projetion, rule (R

i

p

) does not apply, however in this ase 1

Z

1

� �

i

m

is the identity,

�

i

"

= �

i

and a single (R

j



)-rewrite step redues the �rst member as in (�).

23

Notie the following subtility onerning rule (R

1



) (a similar observation applies to rule (R

1

p

)

too): paths �

1

; �

0

and �

1

Æ �

0

are well-oloured in ase the omposed arrow �

1

Æ �

0

ollapses to an

arrow from T

0

. In this ase, rule (R

1



) does not apply, but the two paths are nevertheless joinable by

eliminating peaks from the following ,

�

R

-hain (aording to the instrutions given in the onuene

proof):

�

1

Æ �

0

( �

1

Æ �

0

; 1( �

1

; �

0

; 1) �

1

; �

0

:

The point behind that lies in the above mentioned properties of left extension of fatorization systems:

if �

1

Æ �

0

ollapses, then (�

1

e

Æ (�

1

�

Æ �

0

)

"

) Æ (�

1

�

Æ �

0

)

�

is, by uniqueness, the fatorization, in T

0

as

well as in T

1

, of the arrow �

1

Æ �

0

, hene we have

�

1

; �

0

) �

1

e

; �

1

�

Æ � ) �

1

e

Æ (�

1

�

Æ �

0

)

"

; (�

1

�

Æ �

0

)

�

) (�

1

e

Æ (�

1

�

Æ �

0

)

"

) Æ (�

1

�

Æ �

0

)

�

= �

1

Æ �

0

where last passage is now orret (it is an (R

2



)-step applied to arrows from T

0

).
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(R

1



) �

1

; �

1

;  ) �

1

Æ �

1

; 

(R

2



) �

2

; �

2

) �

2

Æ �

2

(R

"

) �; � ) � Æ �

"

; �

m

(R

�

) �; � ) �

e

; �

�

Æ �

(R

1

p

) h

1

; Æ

1

i; h�; �

Z

i; �

1

; � ) h

1

; Æ

1

; Æ

1

"

i; � � 1

Y

0

; (1

Y

2

� Æ

1

m

) Æ �

1

; �

where Æ

1

62 E

0

(R

2

p

) h

2

; Æ

2

i; h�; �

Z

i; �

2

) h

2

; Æ

2

; Æ

2

"

i; �� 1

Y

0

; (1

Y

2

� Æ

2

m

) Æ �

2

where Æ

2

62 E

0

Table 1: The system R

In Setion 9 we shall prove our main result, namely that

Theorem 5.3 R is anonial.

6 Loal onuene, I

In this setion we will prove the anoniity of the system R

0

whih, we reall, is the

system desribed by Table 2.

(R

1



) �

1

; �

1

;  ) �

1

Æ �

1

; 

(R

2



) �

2

; �

2

) �

2

Æ �

2

(R

"

) �; � ) � Æ �

"

; �

m

(R

�

) �; � ) �

e

; �

�

Æ �

Table 2: The system R

0

We begin by showing that R

0

is loally onuent: we single out all ritial pairs

arising from superpositions between the rules of R

0

and we prove that they are
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joinable. Most of the ases an be redued to the ritial pairs treated in the following

lemma.

Lemma 6.1 The paths �

i

Æ �

0

; �

j

and �

i

; �

0

Æ �

j

are joinable in R

0

.

Proof. Let �

i

e

and �

i

�

be the e=� omponents of �

i

and let us onsider the following

ommutative diagram, where "

1

Æ � orresponds to the "=� fatorization in T

0

of

�

i

�

Æ �

0

and "

2

Æ Æ

j

m

is the "=m fatorization of � Æ �

j

in T

j

.

-

�

i

�

i

e

H

H

H

H

H

H

Hj

-

"

1

-

�

0

6

�

i

�

6

�

-

"

2

-

�

j

6

Æ

j

m

Sine �

i

e

Æ "

1

belongs to E

i

(reall the de�nition of left extensions of fatorization

systems) and Æ

j

m

belongs toM

j

, we have (up to a renaming):

(�

i

Æ �

0

)

e

= �

i

e

Æ "

1

(�

i

Æ �

0

)

�

= �

(�

i

�

Æ �

0

Æ �

j

)

"

= "

1

Æ "

2

(�

i

�

Æ �

0

Æ �

j

)

m

= Æ

j

m

We an do the following rewriting steps:

�

i

Æ �

0

; �

j

)

R

�

�

i

e

Æ "

1

; � Æ �

j

)

R

"

�

i

e

Æ "

1

Æ "

2

; Æ

j

m

�

i

; �

0

Æ �

j

)

R

�

�

i

e

; �

i

�

Æ �

0

Æ �

j

)

R

"

�

i

e

Æ "

1

Æ "

2

; Æ

j

m

and this proves the lemma. a

In subsequent setions we proeed with a systemati analyses of the ases. To simplify

the exposition, we treat (R

1



) and (R

2



) together; however some appliations of (R

1



)

may require an additional arrow � to the right (we put it within round brakets).

6.1 Superposition between (R

i



) and (R

j



)

�

i

Æ �; 

j

; (�) �

i

; � Æ 

j

; (�)

�

i

; �; 

j

; (�)

(R

i



)

�

�

�

�

�

�	

(R

j



)

�

�

�

�

�

�R

If i = j, we an rewrite both members to �

i

Æ� Æ

i

. Otherwise, neessarily � belongs

to T

0

and we an apply Lemma 6.1.
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6.2 Superpositions between (R

i



) and (R

�

)

CASE 1

�

i

e

; �

i

�

Æ �

i

; (�) �

i

Æ �

i

; (�)

-

(R

i



)

�

i

; �

i

; (�)

(R

�

)

�

�

�

�

�

�

�	

(R

i



)

�

�

�

�

�

�

�R

CASE 2

�

e

; �

�

Æ �

i

; 

i

; (�) �; �

i

Æ 

i

; (�)

�; �

i

; 

i

; (�)

(R

�

)

�

�

�

�

�

�	

(R

i



)

�

�

�

�

�

�R

�

e

; �

�

Æ �

i

Æ 

i

; (�)

(R

i



)

�

�

�

�

�

�R

(R

�

)

�

�

�

�

�

�	

CASE 3

�

i

; �

i

e

; �

i

�

Æ  �

i

Æ �

i

; 

�

i

; �

i

; 

(R

�

)

�

�

�

�

�

�	

(R

i



)

�

�

�

�

�

�R

�

i

Æ �

i

e

; �

i

�

Æ 

?

(R

i



)

(�

i

Æ �

i

e

) Æ �

i

�

; 

=

By Lemma 6.1, with �

0

= �

i

�

.
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6.3 Superpositions between (R

i



) and (R

"

)

CASE 1

�

i

Æ �

i

"

; �

i

m

; (�) �

i

Æ �

i

; (�)

-

(R

i



)

�

i

; �

i

; (�)

(R

"

)

�

�

�

�

�

�

�	

(R

i



)

�

�

�

�

�

�

�R

CASE 2

� Æ �

i

"

; �

i

m

; 

i

; (�) �; �

i

Æ 

i

; (�)

�; �

i

; 

i

; (�)

(R

"

)

�

�

�

�

�

�	

(R

i



)

�

�

�

�

�

�R

� Æ �

i

"

; �

i

m

Æ 

i

; (�)

?

(R

i



)

�; �

i

"

Æ (�

i

m

Æ 

i

); (�)

=

By Lemma 6.1, with �

0

= �

i

"

.

CASE 3

�

i

; �

i

Æ 

"

; 

m

�

i

Æ �

i

; 

�

i

; �

i

; 

(R

"

)

�

�

�

�

�

�	

(R

i



)

�

�

�

�

�

�R

�

i

Æ �

i

Æ 

"

; 

m

(R

i



)

�

�

�

�

�

�R

(R

"

)

�

�

�

�

�

�	
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6.4 Superposition between (R

�

) and itself

�

e

; �

�

Æ �;  �; �

e

; �

�

Æ 

�; �; 

(R

�

)

�

�

�

�

�

�	

(R

�

)

�

�

�

�

�

�R

�

e

; (�

�

Æ �

e

) Æ �

�

; 

=

�

e

; �

�

Æ �

e

; �

�

Æ 

?

(R

�

)

By Lemma 6.1, with �

0

= �

�

.

6.5 Superpositions between (R

�

) and (R

"

)

CASE 1

�

e

; �

�

Æ � � Æ �

"

; �

m

�; �

(R

�

)

�

�

�

�

�

�	

(R

"

)

�

�

�

�

�

�R

�

e

; (�

�

Æ �

"

) Æ �

m

=

�

e

Æ (�

�

Æ �

"

); �

m

=

By Lemma 6.1, with �

0

= �

�

Æ �

"

.

CASE 2

31



�

e

; �

�

Æ �;  �; � Æ 

"

; 

m

�; �; 

(R

�

)

�

�

�

�

�

�	

(R

"

)

�

�

�

�

�

�R

�

e

; �

�

Æ � Æ 

"

; 

m

(R

"

)

�

�

�

�

�

�R

(R

�

)

�

�

�

�

�

�	

CASE 3

�; �

e

; �

�

Æ  � Æ �

"

; �

m

; 

�; �; 

(R

�

)

�

�

�

�

�

�	

(R

"

)

�

�

�

�

�

�R

�; �

"

Æ (�

m

)

e

; (�

m

)

�

Æ 

=

� Æ �

"

; (�

m

)

e

; (�

m

)

�

Æ 

?

(R

�

)

In �rst member we use the fat that the following diagram is ommutative

-

(�

m

)

e

-

�

?

�

"

6

(�

m

)

�

�

m

�

�

�

�

�

�

�

�*

Thus, reasoning as usual (by uniqueness of fatorizations - up to a renaming), we an

state that �

e

= �

"

Æ (�

m

)

e

and �

�

= (�

m

)

�

. We an apply Lemma 6.1, with �

0

= �

"

.
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6.6 Superposition between (R

"

) and itself

� Æ �

"

; �

m

;  �; � Æ 

"

; 

m

�; �; 

(R

"

)

�

�

�

�

�

�	

(R

"

)

�

�

�

�

�

�R

� Æ �

"

; �

m

Æ 

"

; 

m

?

(R

"

)

�; �

"

Æ (�

m

Æ 

"

); 

m

=

By Lemma 6.1, with �

0

= �

"

.

We an onlude:

Theorem 6.2 R

0

is loally onuent.

It remains to show the termination of R

0

. This result is a onsequene of Theo-

rem 9.8, however here we give a diret proof, whih uses less mahinery. We need a

omplexity measure for paths whih dereases with appliation of our rules. At this

aim, we de�ne:

�(�

i

) =

�

0 if �

i

2 E

i

1 otherwise

"(�

i

) =

�

0 if �

i

2M

i

1 otherwise

Let K be the path �

1

; : : : ; �

n

. We de�ne:

�(K) = h�(�

1

); : : : ; �(�

n

)i "(K) = h"(�

n

); : : : ; "(�

1

)i

(notie that �(K) = �(K

0

) and "(K) = "(K

0

) hold in ase K and K

0

are alphabeti

variants eah other).

Finally, we introdue the following order relation � between paths K;L:

� K � L if and only if either (i) or (ii) hold:

(i) jKj > jLj (where jKj denotes the length of K);

(ii) jKj = jLj and h�(K); "(K)i >

l

h�(L); "(L)i

(where >

l

denotes the lexiographi order between n-ple of integers).

It is a standard fat that
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Lemma 6.3 � is a terminating transitive relation.

Now we prove that � is a stable relation.

Lemma 6.4 K � K

0

implies L;K;R � L;K

0

; R (for all L;R).

Proof. If jKj > jK

0

j we immediately have L;K;R � L;K

0

; R. Suppose now jKj =

jK

0

j; we have to show that

h�(L); �(K); �(R); "(R); "(K); "(L)i >

l

h�(L); �(K

0

); �(R); "(R); "(K

0

); "(L)i:

This follows from the fat that either �(K) >

l

�(K

0

) or �(K) = �(K

0

) and "(K) >

l

"(K

0

). a

Lemma 6.5 Let L)

R

0

L

0

, then L � L

0

.

Proof. Sine � is stable, it is suÆient to analyze the following three ases.

(1) �

i

; �

i

)

(R

i



)

�

i

Æ �

i

.

We have j�

i

; �

i

j > j�

i

Æ �

i

j, hene �

i

; �

i

� �

i

Æ �

i

.

(2) �; � )

(R

�

)

�

e

; �

�

Æ �.

The two paths have the same length, moreover �(�) = 1 and �(�

e

) = 0 (otherwise

there is no way to apply (R

�

)). This implies that

h�(�); �(�); "(�); "(�)i >

l

h�(�

e

); �(�

�

Æ �); "(�

�

Æ �); "(�

e

)i

from whih �; � � �

e

; �

�

Æ � follows.

(3) �; � )

(R

"

)

� Æ �

"

; �

m

.

Clearly j�; �j = j� Æ �

"

; �

m

j. Moreover:

- �(�) � �(� Æ �

"

).

In fat, if �(�) = 0, then � 2 E

i

(i = 1; 2), whih implies � Æ �

"

2 E

i

, hene

�(� Æ �

"

) = 0.

- �(�) � �(�

m

).

Suppose that �(�

m

) = 1, that is �

m

= (�

m

)

e

Æ�, with � di�erent from identity. Sine

� = (�

"

Æ (�

m

)

e

) Æ� and �

"

Æ (�

m

)

e

belongs to E

k

, � is also the �-omponent of �, and

this means that �(�) = 1.

- "(�) > "(�

m

).

Otherwise we annot apply (R

"

). We get:

h�(�); �(�); "(�); "(�)i >

l

h�(� Æ �

"

); �(�

m

); "(�

m

); "(� Æ �

"

)i

and this proves the lemma. a

34



Sine � is a terminating transitive relation, the following theorem is proved.

Theorem 6.6 R

0

is terminating.

This onludes the proof of Theorem 5.1.

24

7 The system R

+

Proving diretly loal onuene of R leads to unneessary ompliations, this is why

we prefer to introdue another system (whih we all R

+

) and prove loal onuene

of the latter. In Setion 9 we shall prove termination of both R and R

+

and then

we shall make a more preise omparison between R and R

+

: from this omparison,

anoniity of R follows immediately.

In order to introdue R

+

we �rst onsider slight modi�ations of rules (R

�

) and

(R

i

p

).

Rule (R

�

) is enlarged as follows:

(R

�

)

+

h�; �i;  ) h�

e

; �i; (�

�

� 1) Æ 

(notie that in ase vetor � is empty, we get ordinary (R

�

)-rule).

Rules (R

i

p

) are on the other hand restrited so that only 1-omponent arrows are

`moved to the right' (let us all (R

i

p

)

+

the rules obtained by this restrition). In

onlusion, we let R

+

be the rewriting system of Table 3.

It should be notied that (as for R) also in R

+

alphabeti variants of the above

rules are available as rules. For instane, rule (R

i

p

)

+

has the following alphabeti

variant

Y

h

i

1

;d

i

;

i

2

i

�! Y

1

�X � Y

2

h�

j

1

;�

X

;�

j

2

i

�! Z

1

�X � Z

2

�

i

�! U

+

Y

h

i

1

;d

i

;d

i

"

;

i

2

i

�! Y

1

�X � Y

0

� Y

2

h�Æ�

j

1

;�

Y

0

;�Æ�

j

2

i

�! Z

1

� Y

0

� Z

2

(1

Z

1

�d

i

m

�1

Z

2

)Æ�

i

�! U

(where a further arrow must be inserted to the right in ase i = 1, where Y

0

is the

odomain of d

i

"

and where � is the projetion Y

1

�X�Y

0

�Y

2

�! Y

1

�X�Y

2

). Other

alphabeti variants are possible, e.g. by permuting the omponents of h

i

1

; d

i

; d

i

"

; 

i

2

i.

Suh alphabeti variants will be sometimes used during onuene proofs.

In the remaining part of this setion we ollet useful tehnial fats. We �rst

analyze the relationship between old and new �-extration rules.

24

Notie that all results in this Setion depends only on the de�nition of left extensions of weak

fatorization systems. As suh, they an be used to handle pushouts (for faithful and bijetive

on objets funtors) in Cat, the ategory of all small ategories. Realling that monoids are just

one-objet ategories, Theorem 5.1 speializes to a little result in pure string-rewriting.
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(R

1



) �

1

; �

1

;  ) �

1

Æ �

1

; 

(R

2



) �

2

; �

2

) �

2

Æ �

2

(R

"

) �; � ) � Æ �

"

; �

m

(R

�

)

+

h�; �i;  ) h�

e

; �i; (�

�

� 1) Æ 

(R

1

p

)

+

h

1

; d

1

i; h�; �

X

i; �

1

; � ) h

1

; d

1

; d

1

"

i; �� 1; (1 � d

1

m

) Æ �

1

; �

where d

1

62 E

0

(R

2

p

)

+

h

2

; d

2

i; h�; �

X

i; �

2

) h

2

; d

2

; d

2

"

i; �� 1; (1 � d

2

m

) Æ �

2

where d

2

62 E

0

Table 3: The system R

+

Lemma 7.1 If K ) K

0

by a single (R

�

)

+

-step, then there is K

00

suh that K

0

rewrites to K

00

by (at most) 2 (R

�

)

+

-rewrite steps and K rewrites to K

00

by a single

(R

�

)-rewrite step.

Proof. We have the following three (R

�

)

+

-rewrite steps:

h�; �i;  ) h�

e

; �i; (�

�

� 1) Æ  ) h�

e

; �

e

i; (�

�

� �

�

) Æ  )

) h�

e

; �

e

i

e

; h�

e

; �

e

i

�

Æ (�

�

� �

�

) Æ 

We need only to show that h�

e

; �

e

i

e

= h�; �i

e

and h�

e

; �

e

i

�

Æ (�

�

� �

�

) = h�; �i

�

.

Let us onsider the fatorization

Y Y

0

-

h�; �i

e

Z

1

� Z

2

h�; �i

�

�

�

�R

h�; �i

�

�

�

�

�	

and let us put h�; �i

�

= h�; �i. We have (h�; �i

e

Æ �

"

) Æ �

�

= �

e

Æ �

�

, hene (by

uniqueness of fatorization)

h�; �i

e

Æ �

"

= �

e

and �

�

= �

�

and similarly

h�; �i

e

Æ �

"

= �

e

and �

�

= �

�

:
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Thus

(�) h�; �i = h�; �i

e

Æ (h�

"

; �

"

i Æ (�

�

� �

�

)):

The arrow h�

"

; �

"

i Æ (�

�

� �

�

) belongs to M

0

as it is equal to h�; �i = h�; �i

�

; so if

we fatorize h�

"

; �

"

i as " Æ � and then � Æ (�

�

� �

�

) as "

0

Æ �

0

, we get that " Æ "

0

is

the identity (being equal to the �rst omponent of the "=�-fatorization of an arrow

in M

0

, namely h�

"

; �

"

i Æ (�

�

� �

�

)). This an happen only if " itself (whih is a

projetion) is in fat identity (up to a renaming); we thus established that h�

"

; �

"

i

belongs toM

0

- whih means that

(�)

0

h�

"

; �

"

i is a diagonal.

(this is lear as �

"

; �

"

are both projetions). From h�; �i

e

Æ�

"

= �

e

and h�; �i

e

Æ�

"

= �

e

,

we get

h�

e

; �

e

i = h�; �i

e

Æ h�

"

; �

"

i

As �rst omponent is in E

i

and seond omponent is inM

0

, we get by uniqueness of

fatorization,

h�

e

; �

e

i

e

= h�; �i

e

and

(�)

00

h�

e

; �

e

i

�

= h�

"

; �

"

i

whih gives the laim (ombined with h�; �i

�

= h�

"

; �

"

i Æ (�

�

��

�

) oming from (�)).

a

The above Lemma guarantees that there is no need in the loal onuene proof to

ompute superpositions between rule (R

�

)

+

and other rules ((R

�

)

+

itself inluded): it

is suÆient to ompute superpositions between (R

�

) and other rules.
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Using (R

�

)

+

instead of (R

�

) allows us to apply a less restritive rule during onuene proofs; this

makes some passages shorter (the only little prie we pay for that is that we shall

need to prove termination of (R

�

)

+

too). Next Corollary will be used in Setion 9 and

is a slightly more aurate reformulation of what omes from the proof of Lemma 7.1

(reall that, aording to (�)

0

and (�)

00

the third step was in fat a (Rdi)

�

-step, where

(Rdi)

�

is the diagonalization rule we met in Setion 5):

Lemma 7.2 Let (R

�

)

+1

be the following speial ase of rule (R

�

)

+

:

(R

�

)

+1

ha; �i; � ) ha

e

; �i; (a

�

� 1) Æ �:

If K ) K

0

by a single (R

�

) or (R

�

)

+

-rewrite step, then K rewrites to K

0

by using a

�nite number of (R

�

)

+1

-rewrite steps followed by a single (Rdi)

�

-rewrite step.

25

If K ) K

0

and K ) K

00

give rise to the ritial pair (K

0

; K

00

) and, say, K ) K

0

is a (R

�

)

+

-step,

we an �nd K

0

suh that K

0

)

�

R

+

K

0

and the pair (K

0

; K

00

) is a ritial pair generated by rule (R

�

)

(instead of rule (R

�

)

+

).
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In words: the e=� fatorization of ha

1

; : : : ; a

n

i is obtained by taking the omponen-

twise e=� fatorizations and then by applying a diagonalization step. The following

fat is very useful:

Lemma 7.3 If he

i

1

; : : : ; e

i

n

i 2 E

i

, the e

i

j

are pairwise distint.

Proof. As E

i

is losed under omposition with projetions, all e

i

j

are in E

i

. Let

he

i

j

1

; : : : ; e

i

j

m

i be a list of distint arrows ontaining exatly all the arrows among

e

i

1

; : : : ; e

i

n

. By the previous Lemma, he

i

j

1

; : : : ; e

i

j

m

i 2 E

i

. Aording to the de�nition

of he

i

j

1

; : : : ; e

i

j

m

i, there is a diagonal Æ suh that

he

i

j

1

; : : : ; e

i

j

m

i Æ Æ = he

i

1

; : : : ; e

i

n

i:

As Æ 2 M

0

, by uniqueness of e=�-fatorizations, Æ is a renaming (thus showing the

laim). a

Corollary 7.4 �

i

2 E

i

i� the omponents of �

i

are pairwise distint and all belong

to E

i

.

A onsequene of the above results is that e=�-fatorizations are stable under

ertain pullbaks, in the sense of the following:

Lemma 7.5 If � : Y

1

�! Y

2

has fatorization �

e

Æ�

�

, then for every Z, �� 1

Z

has

fatorization (�

e

� 1

Z

) Æ (�

�

� 1

Z

).

Proof. It is suÆient to show that the omponents of �

Y

1

Æ�

e

annot be equal to the

omponents of �

Z

. This is lear, otherwise we would have in our theories provable

equations of the kind t = x

i

, where t is a term not ontaining the variable x

i

: this

annot be, otherwise (after making term t a ground term by a substitution, if you

like) we would obtain degeneration, i.e. that all terms are provably equal. a

We now show that also rule (R

i

p

) an be roughly ahieved by �nitely many (R

i

p

)

+

-

rewrite steps. Let us use the notation K & L in order to express that there is K

0

suh that K )

�

R

+

K

0

and K

0

,

�

R

0

L.

Lemma 7.6 Let L be the path

L = Y

h

i

;Æ

i

i

�! Y

1

� Z

h�;�

Z

i

�! Y

2

� Z

�

i

�! U

(�)

�! V

(where the arrow � is missed in ase i = 2) and let R;R

0

be the following two paths:

R = h

i

; Æ

i

; Æ

i

"

i; � � 1

Y

0

; (1

Y

2

� Æ

i

m

) Æ �

i

; (�)

R

0

= h

i

; Æ

i

; 1

Y

i; �� 1

Y

; (1

Y

2

� Æ

i

) Æ �

i

; (�)

(where we supposed that Y

0

is the odomain of Æ

"

). We have:
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(i) R,

�

R

0

R

0

;

(ii) if Æ

i

2 T

0

, then L,

�

R

0

R;

(iii) in the general ase, L& R (and onsequently L& R

0

).

Proof. (i) was proved at the end of Setion 5 (it was atually used as simpli�ation

step during ompletion). (ii) is easy, beause we an move to the left (1 � Æ

i

m

) in R

by ,

�

R

0

-equivalene:

h

i

; Æ

i

; Æ

i

"

i; �� 1; (1� Æ

i

m

) Æ �

i

; (�) ,

�

R

0

h

i

; Æ

i

; Æ

i

i; �� 1; �

i

; (�),

�

R

0

L:

(iii) is proved by indution on the number of omponents of Æ. If suh number is

1, there is nothing to prove (beause either (R

i

p

)

+

or (ii) applies). So suppose it is

bigger than 1. If Æ 2 T

0

, we just proved a stronger laim; otherwise L and R (up to

an alphabeti variant) are

(1) Y

h;Æ;di

�! Y

1

� Z �X

h�;�

Z

;�

X

i

�! Y

2

� Z �X

�

�! U

(�)

�! V

and

(2) Y

h;Æ;d;hÆ;di

"

i

�! Y

1

� Z �X � Y

0

��1

Y

0

�! Y

2

� Y

0

(1

Y

2

�hÆ;di

m

)Æ�

�! U

(�)

�! V

respetively (with d 62 T

0

). To the former, we an apply a (R

i

p

)

+

-rewrite step thus

getting

(3) Y

h;Æ;d;d

"

i

�! Y

1

� Z �X � Y

00

0

h�;�

Z

i�1

Y

00

0

�! Y

2

� Z � Y

00

0

(1

Y

2

�1

Z

�d

m

)Æ�

�! U

(�)

�! V

(where we alled Y

00

0

the odomain of d

"

). By indution hypothesis, there is path

K

00

suh that (3) )

�

R

+

K

00

and K

00

,

�

R

0

(4), where (4) is the path (let Y

0

0

be the

odomain of Æ

"

):

(4) Y

h;Æ;d;Æ

"

;d

"

i

�! Y

1

�Z�X�Y

0

0

�Y

00

0

��1

Y

0

0

�1

Y

00

0

�! Y

2

�Y

0

0

�Y

00

0

(1

Y

2

�Æ

m

�d

m

)Æ�

�! U

(�)

�! V

As h; Æ; d; Æ

"

; d

"

i is equal to h; Æ; d; 1

Y

iÆ (1

Y

1

�1

Z

�1

X

�hÆ

"

; d

"

i), we an move right

1

Y

1

� 1

Z

� hÆ

"

; d

"

i by ,

�

R

0

-equivalene, thus getting the path

(5) Y

h;Æ;d;1

Y

i

�! Y

1

� Z �X � Y

��1

Y

�! Y

2

� Y

(1

Y

2

�hÆ;di)Æ�

�! U

(�)

�! V

whih we know from (i) it is ,

�

R

0

-equivalent to (2). In onlusion, we have

(1))

R

+ (3))

�

R

+

K

00

,

�

R

0

(4),

�

R

0

(5),

�

R

0

(2)

thus showing the laim a
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We need a �nal Lemma for next Setion:

Lemma 7.7 We have R

1

& R

2

, where R

1

; R

2

are the paths

R

1

= Y � Z

1

h�

i

1

;�

i

2

i�1

�! Y

1

� Y

2

� Z

1

�

Y

1

��

j

�! Y

1

� Z

2



i

�!W

(�)

�! V

R

2

= Y � Z

1

1��

j

�! Y � Z

2

(�

i

1

�1)Æ

i

�! W

(�)

�! V

(� is missed in ase i = 2).

Proof. Applying (an alphabeti variant of) Lemma 7.6 (iii), we have that

R

1

= h�

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i; h�

Y

1

; �

Z

1

Æ �

j

i; 

i

; (�)

&

h1

Y�Z

1

; �

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i; h1

Y �Z

1

� (�

Z

1

Æ �

j

)i; ((�

Y

Æ �

i

1

)� 1

Z

2

) Æ 

i

; (�)

=

h�

Y

; �

Z

1

; �

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i;

h1

Y�Z

1

� (�

Z

1

Æ �

j

)i; h�

Y

; �

Z

2

i Æ (�

i

1

� 1

Z

2

) Æ 

i

; (�)

,

�

R

0

(see Figure 1)

h�

Y

; �

Z

1

; �

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i; h�

Y

; �

2

Z

1

i Æ (1

Y

� �

j

); (�

i

1

� 1

Z

2

) Æ 

i

; (�)

,

�

R

0

h�

Y

; �

Z

1

; �

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i Æ h�

Y

; �

2

Z

1

i; 1

Y

� �

j

; (�

i

1

� 1

Z

2

) Æ 

i

; (�)

=

h�

Y

; �

Z

1

i; 1

Y

� �

j

; (�

i

1

� 1

Z

2

) Æ 

i

; (�)

=

1

Y�Z

1

; 1

Y

� �

j

; (�

i

1

� 1

Z

2

) Æ 

i

; (�)

,

�

R

0

1

Y

� �

j

; (�

i

1

� 1

Z

2

) Æ 

i

; (�) = R

2

as wanted. a

8 Loal onuene, II

In this setion we prove that R

+

is loally onuent. In order to show onuene of

a pair of paths (R

1

; R

2

), we shall use the following shema: we �nd L

1

; L

2

suh that

R

1

& L

1

and R

2

& L

2

and L

1

,

�

R

0

L

2

. Canoniity of R

0

(whih was proved in

Setion 6) guarantees that in suh a ondition K

1

;K

2

are joinable.

Throughout this setion we shall mention arrows ; d; �; �; �; � whose domains

and odomains are �xed as follows:
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Y � Z

1

Y

1

� Z

2

-

1

Y

��

j

Y � Z

1

� Y

1

� Y

2

� Z

1

Y � Z

1

� Z

2

-

1

Y�Z

1

�(�

Z

1

Æ�

j

)

?

h�

Y

;�

2

Z

1

i

?

h�

Y

;�

Z

2

i

Figure 1: Commutative diagram

Y

-

h; di

Y

1

�X

-

h�; �

X

i

Y

2

�X

-

�

U

-

�

V T

-

�

We also assume that d fatorizes in "=m-omponents as follows

Y X

-

d

Y

0

d

"

�

�R

d

m

�

��

We �rst analyze some situations whih are very frequent during loal onuene

proof.

Lemma 8.1 Let K

i

(i 2 f1; 2g) be the following path:

K

i

= h

i

; d

i

; d

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

(where � laks in ase i = 2). Then:

(i) The path K

0

i

= h

i

; d

i

i; (h�

j

; �

X

i Æ �

0

)

e

; (h�

j

; �

X

i Æ �

0

)

�

Æ �

i

; (�) is joinable with

K

i

in R

+

.

(ii) The path K

00

i

= h

i

; d

i

i; h�

j

; �

X

i Æ �

0

; �

i

; (�) is joinable with K

i

in R

+

.

Proof. (ii) is trivially redued to (i) (just apply (R

�

) inK

00

i

to deompose h�

j

; �

X

iÆ�

0

).

To prove (i), we have to fatorize the arrow h�

j

; �

X

i Æ �

0

in omponents e=�.

We �rst fatorize h�

j

; �

X

i: by Lemmas 7.2, 7.3, suh fatorization is obtained by

�rst fatorizing �

j

in e=� omponents and then diagonalizing with �

X

in ase �

X

appears among the omponents of �

j

e

. We have to distinguish whether �

X

is among

the omponents of �

j

e

or not.

Case 1 : �

X

is among the omponents of �

j

e

, hene �

j

has the following fatoriza-

tion in e=�-omponents:
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Y

1

�X Y

2

-

�

j

S �X

h��

j

; �

X

i

�

�

�

�R

�

j

�

�

�

�

��

Then:

h�

j

; �

X

i = h��

j

; �

X

; �

X

i Æ (�

j

�

� 1

X

) = h��

j

; �

X

i Æ [(1

S

��

X

) Æ (�

j

�

� 1

X

)℄

where X

�

X

�! X � X is a diagonal. We have two subases, depending whether �

X

appears in the "-omponent of (1

S

��

X

) Æ (�

j

�

� 1

X

) Æ �

0

or not.

Subase 1.1 : let us assume that (1

S

� �

X

) Æ (�

j

�

� 1

X

) Æ �

0

has the following

fatorization in T

0

S �X U

-

(1

S

��

X

)Æ(�

j

�

�1

X

)Æ�

0

S

0

�X

�

S

0

�1

X

H

H

H

H

H

H

H

Hj

�

�

�

�

�

�

�

�

�*

It follows that h�

j

; �

X

i Æ �

0

= h��

j

; �

X

i Æ (�

S

0

� 1

X

) Æ �; by the fat that h��

j

; �

X

i Æ

(�

S

0

� 1

X

) belongs to E

j

and by the uniqueness of deomposition we have:

(h�

j

; �

X

i Æ �

0

)

e

= h��

j

; �

X

i Æ (�

S

0

� 1

X

) = h��

j

Æ �

S

0

; �

X

i

(h�

j

; �

X

i Æ �

0

)

�

= �

It follows that K

0

i

= h

i

; d

i

i; h��

j

Æ �

S

0

; �

X

i; � Æ �

i

; (�). We an apply Lemma 7.6(iii)

(in fat, if i = 1 the arrow � belongs to the path) and we obtain K

0

i

& L

1

, where

L

1

= h

i

; d

i

; 1

Y

i; (��

j

Æ �

S

0

)� 1

Y

; (1

S

0

� d

i

) Æ � Æ �

i

; (�)

Let us onsider K

i

. We �rst observe that �

j

� 1

Y

0

an be deomposed in e=� om-

ponents as (�

j

e

� 1

Y

0

) Æ (�

j

�

� 1

Y

0

) by Lemma 7.5; therefore an appliation of (R

�

)

yields to

K

i

)

R

+ h

i

; d

i

; d

i

"

i; �

j

e

� 1

Y

0

; (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

i; h� Æ ��

j

; �

X

; �

Y

0

i; (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)
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where Y

1

�X � Y

0

�

�! Y

1

�X. We an apply Lemma 7.6(iii) on hd

i

; d

i

"

i and we get:

K

i

&

h

i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� hd

i

; d

i

"

i) Æ (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

;

(1

S

� hd

i

; d

i

"

i) Æ (1

S

� 1

X

� d

i

m

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

= (see Figure 2)

h

i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� d

i

) Æ (1

S

��

X

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� d

i

) Æ (�

S

0

� 1

X

) Æ � Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

; 1

Y

i; (� � 1

Y

) Æ (��

j

� 1

Y

); (�

S

0

� 1

Y

) Æ (1

S

0

� d

i

) Æ � Æ �

i

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

; 1

Y

i Æ (� � 1

Y

); (��

j

� 1

Y

) Æ (�

S

0

� 1

Y

); (1

S

0

� d

i

) Æ � Æ �

i

; (�)

=

h

i

; d

i

; 1

Y

i; (��

j

Æ �

S

0

)� 1

Y

; (1

S

0

� d

i

) Æ � Æ �

i

; (�)

whih oinides with L

1

, and this prove (i).

S �X S �X �X

-

1

S

��

X

S � Y S �X � Y

0
-

1

S

�hd

i

;d

i

"

i

?

1

S

�d

i

?

1

S

�1

X

�d

i

m

1

S

�hd

i

;d

i

i

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

Figure 2: Commutative diagram

Subase 1.2 : now (1

S

� �

X

) Æ (�

j

�

� 1

X

) Æ �

0

has the following fatorization in

T

0

:

43



S �X U

-

(1

S

��

X

)Æ(�

j

�

�1

X

)Æ�

0

S

0

�

S

Æ�

S

0

H

H

H

H

H

H

H

Hj

�

�

�

�

�

�

�

�

�*

We onsequently have

(h�

j

; �

X

i Æ �

0

)

e

= h��

j

; �

X

i Æ �

S

Æ �

S

0

= ��

j

Æ �

S

0

(h�

j

; �

X

i Æ �

0

)

�

= �

In the present subase we do not need manipulating K

0

i

; moreover by manipulating

K

i

as in the previous ase, we get

K

i

&

h

i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� d

i

) Æ (1

S

��

X

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� d

i

) Æ �

S

Æ �

S

0

Æ � Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; �

S

Æ �

S

0

Æ � Æ �

i

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

; 1

Y

i; ((� Æ ��

j

)� 1

Y

) Æ �

S

Æ �

S

0

; � Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

; 1

Y

i; h�

Y

1

; �

X

i Æ ��

j

Æ �

S

0

; � Æ �

i

; (�)

,

�

R

0

h

i

; d

i

i; ��

j

Æ �

S

0

; � Æ �

i

; (�)

whih oinides with K

0

i

, and this prove (i).

Case 2 : suppose now that �

X

does not belong to �

j

e

, namely �

j

has the following

fatorization in e=�-omponents:

Y

1

�X Y

2

-

�

j

S

�

j

e

�

�

�

�R

�

j

�

�

�

�

��

44



This implies that:

h�

j

; �

X

i

e

= h�

j

e

; �

X

i h�

j

; �

X

i

�

= �

j

�

� 1

X

We need to fatorize (�

j

�

� 1

X

) Æ �

0

in T

0

: again, we have two subases, depending

whether �

X

appears or not in the "-omponent.

Subase 2.1 : let (�

j

�

� 1

X

) Æ �

0

fatorize as follows:

S �X U

-

(�

j

�

� 1

X

) Æ �

0

S

0

�X

�

S

0

� 1

X

�

�

�

�R

�

�

�

�

��

Reasoning as in Case 1, it follows that:

(h�

j

; �

X

i Æ �

0

)

e

= h�

j

e

Æ �

S

0

; �

X

i (h�

j

; �

X

i Æ �

0

)

�

= �

We have

K

0

i

= h

i

; d

i

i; h�

j

e

Æ �

S

0

; �

X

i; � Æ �

i

; (�)

&

h

i

; d

i

; 1

Y

i; (�

j

e

Æ �

S

0

)� 1

Y

; (1

S

0

� d

i

) Æ � Æ �

i

; (�) (L

0

1

)

The arrow �

j

� 1

Y

0

deomposes in e=� omponents as (�

j

e

� 1

Y

0

) Æ (�

j

�

� 1

Y

0

) (see

Lemma 7.5); thus, by (R

�

), K

i

rewrites to

h

i

; d

i

; d

i

"

i; �

j

e

� 1

Y

0

; (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

,

�

R

0

(by Lemma 7.6(i))

h

i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

"

) Æ (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

=

h

i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

"

) Æ (1

S

� d

i

m

) Æ (�

j

�

� 1

X

); �

0

Æ �

i

; (�)

,

�

R

0

h

i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

=

h

i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

) Æ (�

S

0

� 1

X

) Æ � Æ �

i

; (�)

,

�

R

0

h

i

; d

i

; 1

Y

i; (�

j

e

� 1

Y

) Æ (�

S

0

� 1

Y

); (1

S

0

� d

i

) Æ � Æ �

i

; (�)
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whih oinides with L

0

1

, and this onludes Subase 2.1.

Subase 2.2.: let (�

j

�

� 1

X

) Æ �

0

fatorize as follows:

S �X U

-

(�

j

�

� 1

X

) Æ �

0

S

0

�

S

Æ �

S

0

�

�

�

�R

�

�

�

�

��

We have

(h�

j

; �

X

i Æ �

0

)

e

= �

j

e

Æ �

S

0

(h�

j

; �

X

i Æ �

0

)

�

= �

Reasoning as in Subase 2.1, we have

K

i

,

�

R

0

h

i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

=

h

i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

) Æ �

S

Æ �

S

0

Æ � Æ �

i

; (�)

,

�

R

0

h

i

; d

i

; 1

Y

i; h�

Y

1

; �

X

i Æ �

j

e

Æ �

S

0

; � Æ �

i

; (�)

,

�

R

0

h

i

; d

i

i; �

j

e

Æ �

S

0

; � Æ �

i

; (�)

whih oinides with K

0

i

. a

Lemma 8.2 Let K

j

(j 2 f1; 2g) be the following path:

K

j

= h

i

; d

i

; d

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

0

; �

j

; (�)

(where � laks in ase j = 2). Then the path

K

000

i

= h

i

; d

i

i; h�

j

; �

X

i Æ �

0

Æ �

j

; (�)

is joinable with K

j

in R

+

.

Proof. Here we annot apply the produts rule on K

000

i

, therefore we have to at on

K

j

; thus we have to deompose (1

Y

2

�d

i

m

) Æ�

0

in e=� omponents. Suppose that the

e=�-omponents of d

i

m

are

Y

0

X

-

d

i

m

S

Æ

i

�

�R

�

�

��
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Then by Lemma 7.5:

(1

Y

2

� d

i

m

)

e

= 1

Y

2

� Æ

i

(1

Y

2

� d

i

m

)

�

= 1

Y

2

� �

We deompose (1

Y

2

� d

i

m

) Æ �

0

as follows:

Y

2

� Y

0

Y

2

�X

-

1

Y

2

�d

i

m

Y

2

� S

?

1

Y

2

�Æ

i

1

Y

2

��

�

�

�

�

�

�

�

�*

V

?

�

0

Y

0

2

� S

0

?

�

Y

0

2

��

S

0

-

�

Sine 1

Y

2

� Æ

i

belongs to E

i

, we an state that

((1

Y

2

� d

i

m

) Æ �

0

)

e

= (1

Y

2

� Æ

i

) Æ (�

Y

0

2

� �

S

0

) = �

Y

0

2

� (Æ

i

Æ �

S

0

)

((1

Y

2

� d

i

m

) Æ �

0

)

�

= �

By (R

�

), we have

K

j

)

R

+
h

i

; d

i

; d

i

"

i; �

j

� 1

Y

0

; �

Y

0

2

� (Æ

i

Æ �

S

0

); � Æ �

j

; (�)
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Lemma 7.7 yields (by a &-step):

26

h

i

; d

i

; d

i

"

i; 1

Y

1

� 1

X

� (Æ

i

Æ �

S

0

); ((�

j

Æ �

Y

0

2

)� 1

S

0

) Æ � Æ �

j

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

i; 1

Y

1

� 1

X

� Æ

i

; (1

Y

1

� 1

X

� �

S

0

) Æ ((�

j

Æ �

Y

0

2

)� 1

S

0

) Æ � Æ �

j

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

Æ Æ

i

i; (�

j

� 1

S

) Æ (�

Y

0

2

� �

S

0

) Æ � Æ �

j

; (�)

=

h

i

; d

i

; d

i

"

Æ Æ

i

i; (�

j

� 1

S

) Æ (1

Y

2

� �) Æ �

0

Æ �

j

; (�)

=

h

i

; d

i

; d

i

"

Æ Æ

i

i; (1

Y

1

� 1

X

� �) Æ (�

j

� 1

X

) Æ �

0

Æ �

j

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

Æ Æ

i

i Æ (1

Y

1

� 1

X

� �); (�

j

� 1

X

) Æ �

0

Æ �

j

; (�)

=

h

i

; d

i

; d

i

i; (�

j

� 1

X

) Æ �

0

Æ �

j

; (�)

,

�

R

0

h

i

; d

i

i; h�

j

; �

X

i Æ �

0

Æ �

j

; (�)

whih oinides with K

000

i

. a

Let us now prove loal onuene of R

+

. To this aim, by Setion 6 results, it

suÆes to study the superpositions between the rule (R

i

p

)

+

and the other rules, itself

inluded (see also the observation following the proof of Lemma 7.1).

8.1 Superpositions between (R

j

p

)

+

and (R

i



)

CASE 1

We have a path of four arrows �

1

; �

2

; �

3

; �

4

and we apply (R

i



) on �

1

; �

2

and (R

j

p

)

+

on

�

2

; �

3

; �

4

(learly, if the rule applied is (R

1

p

)

+

, we have to add an arrow � to the path).

Let us �rst suppose i 6= j; in suh a ase �

2

must belong to T

0

:

26

We have a projetion �

Y

0

2

: Y

2

�! Y

0

2

, hene �

j

must be a pair (of vetors), whose omponent

having odomain Y

0

2

is obviously �

j

Æ �

Y

0

2

.
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�

i

Æ h

0

; d

0

i; h�; �

X

i; �

j

; (�) �

i

; h

0

; d

0

; d

0

"

i; �� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

j

; (�)

�

i

; h

0

; d

0

i; h�; �

X

i; �

j

; (�)

(R

i



)

�

�

�

�

�

�

�

�

�	

(R

j

p

)

+

�

�

�

�

�

�

�

�

�R

In this ase the two members of the ritial pair are,

�

R

0

-equivalent by Lemma 7.6(ii).

If i = j, then we have:

�

i

Æ h

i

; d

i

i; h�; �

X

i; �

i

; (�) �

i

; h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

�

i

; h

i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

i



)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

By applying Lemma 7.6(iii) to �rst member (where �

i

Æ h

i

; d

i

i = h�

i

Æ 

i

; �

i

Æ d

i

i) we

have a &-step to the path (let W be the domain of �

i

):

h�

i

Æ 

i

; �

i

Æ d

i

; 1

W

i; � � 1

W

; (1

Y

2

� �

i

Æ d

i

) Æ �

i

; (�) (L

1

)

By applying (R

i



) to the seond member, where �� 1

Y

0

is h� Æ�; �

Y

0

i (with Y

1

�X �

Y

0

�

�! Y

1

�X), we get

h�

i

Æ 

i

; �

i

Æ d

i

; �

i

Æ d

i

"

i; h� Æ �; �

Y

0

i; (1

Y

2

� d

i

m

) Æ �

i

; (�)

& Lemma 7.6(iii)

h�

i

Æ 

i

; �

i

Æ d

i

; �

i

Æ d

i

"

; 1

W

i; (� Æ �)� 1

W

; (1

Y

2

� �

i

Æ d

i

"

) Æ (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h�

i

Æ 

i

; �

i

Æ d

i

; �

i

Æ d

i

"

; 1

W

i; (� � 1

W

) Æ (�� 1

W

); (1

Y

2

� �

i

Æ d

i

"

Æ d

i

m

) Æ �

i

; (�)

,

�

R

0

h�

i

Æ 

i

; �

i

Æ d

i

; �

i

Æ d

i

"

; 1

W

i Æ (� � 1

W

); � � 1

W

; (1

Y

2

� �

i

Æ d

i

) Æ �

i

; (�)

=

h�

i

Æ 

i

; �

i

Æ d

i

; 1

W

i; � � 1

W

; (1

Y

2

� �

i

Æ d

i

) Æ �

i

; (�)

whih oinides with (L

1

).
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For future referene let us mark the following fat we established during the above

proof:

27

Lemma 8.3 Paths

�

i

Æ h

i

; d

i

i; h�; �

X

i; �

i

; (�)

�

i

Æ h

i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

are joinable in R

+

.

Let us go on by examining other superpositions.

CASE 2

We have a path of three arrows �

1

; �

2

; �

3

, we apply (R

j



) on �

1

; �

2

and (R

i

p

)

+

on the

whole path. If i = j everything trivially ompose; otherwise �

1

must belong to T

0

.

Therefore we have:

h

0

; d

0

i Æ h�

j

; �

X

i; �

i

; (�) h

0

; d

0

; d

0

"

i; �

j

� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

i

; (�)

h

0

; d

0

i; h�

j

; �

X

i; �

i

; (�)

(R

j



)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

The two members are ,

�

R

0

-equivalent by Lemma7.6(ii).

CASE 3

We have a path of three arrows �

1

; �

2

; �

3

and we apply (R

j



) on �

2

; �

3

and (R

i

p

)

+

on

the whole path. Again everything ompose if i = j; otherwise �

3

must belong to

T

0

. Moreover as i = 1 or j = 1, we need a fourth arrow �

4

(�

4

, in its turn, must be

followed in a well-oloured path

28

by a further arrow � in ase �

4

belongs to T

1

nT

0

).

We have:

27

The Lemma omes from the fat that the �rst step we applied to seond member was a (R

i



)-step.

28

Of ourse, only well-oloured paths our in our rewriting, so we are justi�ed in limiting ourselves

to suh paths.
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h

i

; d

i

i; h�

j

; �

X

i Æ �

0

; �; (�) h

i

; d

i

; d

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

0

; �; (�)

h

i

; d

i

i; h�

j

; �

X

i; �

0

; �; (�)

(R

j



)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

If � 2 T

j

nT

0

, we ompose h�

j

; �

X

i Æ �

0

with � and then apply Lemma 8.2. If

� 2 T

i

nT

0

, we ompose (1

Y

2

� d

i

m

) Æ �

0

with � and the onuene immediately

follows by Lemma 8.1(ii). If � 2 T

0

, we an in any ase apply one of the two previous

solutions (beause either i or j must be 2, hene lak of � does not matter).

CASE 4

We have a path of four arrows �

1

; �

2

; �

3

; �

4

and we apply (R

j



) on �

3

; �

4

and (R

i

p

)

+

on

�

1

; �

2

; �

3

. Suppose j = i; that is:

h

i

; d

i

i; h�; �

X

i; �

i

Æ �

i

; (�) h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; �

i

; (�)

h

i

; d

i

i; h�; �

X

i; �

i

; �

i

; (�)

(R

i



)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

Then we an redue both �rst member (by (R

i

p

)

+

) and seond member (by (R

i



)

+

)

to the path

h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

Æ �

i

; (�):

Suppose that i 6= j; in this ase �

3

2 T

0

and we have

h

i

; d

i

i; h�; �

X

i; �

0

Æ �

j

; (�) h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

0

; �

j

; (�)

h

i

; d

i

i; h�; �

X

i; �

0

; �

j

; (�)

(R

j



)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R
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If � 2 T

i

, we an trivially apply (R

i



) to the seond member and then get �rst member

by ,

�

R

0

-steps. The relevant ase is when � 2 T

j

: here we an rewrite �rst member

by (R

j



) to h

i

; d

i

i; h�; �

X

i Æ �

0

Æ �

j

; (�) and then we apply Lemma 8.2.

8.2 Superpositions between (R

i

p

)

+

and (R

�

)

CASE 1

�

e

; �

�

Æ h

i

; d

i

i; h�; �

X

i; �

i

; (�) �; h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

�; h

i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

�

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

where � fatorizes as follows

W Y

-

�

Z

�

e

�

�R

�

�

�

��

By applying Lemma 7.6(iii) to �rst member (where �

�

Æ h

i

; d

i

i = h�

�

Æ 

i

; �

�

Æ d

i

i),

we obtain, through a &-step:

�

e

; h�

�

Æ 

i

; �

�

Æ d

i

; 1

Z

i; �� 1

Z

; (1

Y

2

� �

�

Æ d

i

) Æ �

i

; (�) (L

1

)

Let us apply (R

�

) to the seond member; we get

�

e

; h�

�

Æ 

i

; �

�

Æ d

i

; �

�

Æ d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

�

e

; h�

�

Æ 

i

; �

�

Æ d

i

; �

�

Æ d

i

"

i; h� Æ �; �

Y

0

i; (1

Y

2

� d

i

m

) Æ �

i

; (�)

with Y

1

� X � Y

0

�

�! Y

1

� X. We an apply again Lemma 7.6(iii) and get, by a

&-step
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�

e

; h�

�

Æ 

i

; �

�

Æ d

i

; �

�

Æ d

i

"

; 1

Z

i; (� Æ �)� 1

Z

; (1

Y

2

� �

�

Æ d

i

"

) Æ (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

�

e

; h�

�

Æ 

i

; �

�

Æ d

i

; �

�

Æ d

i

"

; 1

Z

i; (� Æ �)� 1

Z

; (1

Y

2

� �

�

Æ d

i

) Æ �

i

; (�)

,

�

R

0

�

e

; h�

�

Æ 

i

; �

�

Æ d

i

; �

�

Æ d

i

"

; 1

Z

i Æ (� � 1

Z

); �� 1

Z

; (1

Y

2

� �

�

Æ d

i

) Æ �

i

; (�)

=

�

e

; h�

�

Æ 

i

; �

�

Æ d

i

; 1

Z

i; �� 1

Z

; (1

Y

2

� �

�

Æ d

i

) Æ �

i

; (�)

whih oinides with (L

1

).

CASE 2

�

i

; h�

0

; s

0

i Æ h�; �

X

i; �

i

; (�) h

i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

h

i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

�

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

where we suppose h

i

; d

i

i to have the following fatorization in omponents e=�

Y Y

1

�X

-

h

i

; d

i

i

Z

�

i

�

�

�

�R

h�

0

; s

0

i

�

�

�

��

We apply (R

�

)

+

on the seond member to the omponent h

i

; d

i

i of h

i

; d

i

; d

i

"

i and

we obtain

h�

i

; d

i

"

i; (h�

0

; s

0

i � 1

Y

0

) Æ (�� 1

Y

0

); (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h�

i

; d

i

"

i; (h�

0

; s

0

i Æ �)� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

,

�

R

0

h�

i

; 1

Y

i; (h�

0

; s

0

i Æ �)� 1

Y

; (1

Y

2

� d

i

"

) Æ (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h�

i

; 1

Y

i; (h�

0

; s

0

i Æ �)� 1

Y

; (1

Y

2

� d

i

) Æ �

i

; (�) (L

2

)
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We need to fatorize s

0

in omponents "=� in T

0

.

Z

0

� Z

00

X

-

s

0

Z

00

�

Z

00

�

�

�

�R

�

�

�

�

��

where Z

0

� Z

00

= Z. This implies that �

i

has the form h�

i

1

; �

i

2

i, where Y

�

i

1

�! Z

0

and

Y

�

i

2

�! Z

00

. By applying (R

�

)

+

on the �rst member to the arrow h�

0

; s

0

i Æ h�; �

X

i =

hh�

0

; s

0

i Æ �; s

0

i, in order to deompose s

0

, we obtain:

h�

i

1

; �

i

2

i; hh�

0

; s

0

i Æ �; �

Z

00

i; (1

Y

2

� �) Æ �

i

; (�)

whih, by Lemma 7.6(iii), beomes (through a &-step)

h�

i

1

; �

i

2

; 1

Y

i; (h�

0

; s

0

i Æ �) � 1

Y

; (1

Y

2

� �

i

2

) Æ (1

Y

2

� �) Æ �

i

; (�)

=

h�

i

; 1

Y

i; (h�

0

; s

0

i Æ �)� 1

Y

; (1

Y

2

� �

i

2

Æ �) Æ �

i

; (�) (L

1

)

Sine �

i

2

Æ � = �

i

Æ �

Z

00

Æ � = �

i

Æ s

0

= d

i

, we an onlude that (L

1

) oinides with

(L

2

).

CASE 3

h

i

; d

i

i; h�; �

X

i

e

; h�; �

X

i

�

Æ �

i

; (�) h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

h

i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

�

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

Conuene is an immediate appliation of Lemma 8.1(i) (taking as �

0

the identity).

CASE 4
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h

i

; d

i

i; h�; �

X

i; �

i

e

; �

i

�

Æ � h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; �

h

i

; d

i

i; h�; �

X

i; �

i

; �

(R

�

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

It suÆes to apply (R

i

p

)

+

to �rst member and the onuene immediately follows by

Lemma 6.1 (with �

0

= �

i

�

).

8.3 Superpositions between (R

i

p

)

+

and (R

"

)

CASE 1

� Æ "; h�

i

;

�

d

i

i; h�; �

X

i; �

i

; (�) �; h

i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

�; h

i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

"

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

where we suppose h

i

; d

i

i to have the following fatorization in "=m-omponents

Y Y

1

�X

-

h

i

; d

i

i

~

Y

"

�

�

�R

h�

i

;

�

d

i

i

�

�

��

Let us suppose that

�

d

i

has the following "=m-fatorization

~

Y X

-

�

d

i

~

Y

0

�

d

i

"

�

�

�R

�

d

i

m

�

�

��
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Then, by the uniqueness of deompositions, sine " Æ

�

d

i

"

Æ

�

d

i

m

= d

i

, we have:

" Æ

�

d

i

"

= d

i

"

�

d

i

m

= d

i

m

~

Y

0

= Y

0

We apply (R

i

p

)

+

to the �rst member and we obtain:

� Æ "; h�

i

;

�

d

i

;

�

d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

,

�

R

0

�; " Æ h�

i

;

�

d

i

;

�

d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

�; h" Æ �

i

; " Æ

�

d

i

; " Æ

�

d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

�; h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

whih oinides with the seond member.

CASE 2

h

i

; d

i

i Æ "; h��; hi; �

i

; (�) h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

h

i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

"

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

where we have fatorized h�; �

X

i in omponents "=m as follows

Y

1

�X Y

2

�X

-

h�; �

X

i

Z

"

�

�

�R

h��; hi

�

�

��

On the other hand, let h = h

"

Æ h

m

. Sine " Æ h

"

Æ h

m

= �

X

, by uniqueness of

fatorizations, h

m

must oinide with 1

X

. Therefore h = h

"

is the projetion

29

on X,

hene (up to renaming) we have:

" = �

Y

0

� 1

X

Z = Y

0

1

�X

29

As " Æ h

"

= �

X

, we have that h

"

omposed on the left with a projetion is �

X

: it follows that h

"

itself must be the projetion into X (with domain Z).
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Thus, �rst member oinides with

h

i

Æ �

Y

0

; d

i

i; h��; �

X

i; �

i

; (�)

whih, by (R

i

p

)

+

, beomes

h

i

Æ �

Y

0

; d

i

; d

i

"

i; ��� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

i Æ ("� 1

Y

0

); ��� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

i; (" � 1

Y

0

) Æ (��� 1

Y

0

); (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h

i

; d

i

; d

i

"

i; " Æ ��� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

and, sine " Æ �� = �, the last path oinides with the seond member.

CASE 3

h

i

; d

i

i; h�; �

X

i Æ �

i

"

; �

i

m

; (�) h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

h

i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

"

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

We have to fatorize �

i

. Suppose that `X belongs to the odomain of �

i

"

', that is

Y

2

�X U

-

�

i

Y

0

2

�X

�

Y

0

2

� 1

X

�

�

�R

�

i

m

�

�

��

Then the �rst member oinides with

h

i

; d

i

i; h� Æ �

Y

0

2

; �

X

i; �

i

m

; (�)
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whih is rewritten by (R

i

p

)

+

as

h

i

; d

i

; d

i

"

i; (� Æ �

Y

0

2

)� 1

Y

0

; (1

Y

0

2

� d

i

m

) Æ �

i

m

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

i; �� 1

Y

0

; (�

Y

0

2

� 1

Y

0

) Æ (1

Y

0

2

� d

i

m

) Æ �

i

m

; (�)

=

h

i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ (�

Y

0

2

� 1

X

) Æ �

i

m

; (�)

=

h

i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

whih oinides with the seond member.

If `X does not belong to the odomain of �

i

"

', that is �

i

"

= �

Y

2

Æ �

Y

0

2

, then the seond

member oinides with

h

i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

Y

2

Æ �

Y

0

2

Æ �

i

m

; (�)

=

h

i

; d

i

; d

i

"

i; � � 1

Y

0

; �

Y

2

Æ �

Y

0

2

Æ �

i

m

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

i; (� � 1

Y

0

) Æ �

Y

2

Æ �

Y

0

2

; �

i

m

; (�)

=

h

i

; d

i

; d

i

"

i; h�

Y

1

; �

X

i Æ � Æ �

Y

0

2

; �

i

m

; (�)

,

�

R

0

h

i

; d

i

; d

i

"

i Æ h�

Y

1

; �

X

i; � Æ �

Y

0

2

; �

i

m

; (�)

=

h

i

; d

i

i; � Æ �

Y

0

2

; �

i

m

; (�)

whih, by the fat that � Æ �

Y

0

2

is the same as h�; �

X

i Æ �

Y

2

Æ �

Y

0

2

, oinides with the

�rst member.

CASE 4

h

i

; d

i

i; h�; �

X

i; �

i

Æ �

"

; �

m

h

i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; �

h

i

; d

i

i; h�; �

X

i; �

i

; �

(R

"

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R
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It suÆes to apply (R

i

p

)

+

to �rst member and the onuene immediately follows by

Lemma 6.1 (with �

0

= �

"

).

8.4 Superpositions between (R

i

p

)

+

and (R

j

p

)

+

CASE 1

Here we have three arrows �

1

; �

2

; �

3

and we apply both rules to the whole path; the

ase i 6= j is trivial (it implies that �

1

and �

3

belongs to T

0

, so that everything

ompose). Let us suppose i = j. Arrow �

2

(up to an alphabeti variant) must be of

the form h�; �

1

X

; �

2

X

i. We have in priniple two ases (to be treated in a very similar

way) depending on whether �

1

X

and �

2

X

are the same projetion or not.

SUBCASE 1.1

K

1

K

2

h

i

; d

i

i; h�; �

X

; �

X

i; �

i

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�R

where

Y

-

h

i

; d

i

i

Y

1

�X

-

h�; �

X

; �

X

i

Y

2

�X �X V

-

�

i

and Y

d

i

"

�! Y

0

d

i

m

�! X orresponds to the fatorization "=m of d

i

. The two members

are:

K

1

= h

i

; d

i

; d

i

"

i ; h�; �

X

i � 1

Y

0

; (1

Y

2

� 1

X

� d

i

m

) Æ �

i

; (�)

= h

i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �; �

X

; �

Y

0

i ; (1

Y

2

� 1

X

� d

i

m

) Æ �

i

; (�)

K

2

= h

i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �; �

Y

0

; �

X

i ; (1

Y

2

� d

i

m

� 1

X

) Æ �

i

; (�)

By applying (R

i

p

)

+

on both members with respet to �

X

, we get the path

h

i

; d

i

; d

i

"

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �; �

1

Y

0

; �

2

Y

0

i ; (1

Y

2

� d

i

m

� d

i

m

) Æ �

i

; (�)

where �

1

Y

0

and �

2

Y

0

projet on the �rst and on the seond Y

0

respetively.

SUBCASE 1.2
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K

1

K

2

h

i

; d

i

; 

i

i; h�; �

1

X

; �

2

X

i; �

i

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�R

where

Y

-

h

i

; d

i

; 

i

i

Y

1

�X �X

-

h�; �

1

X

; �

2

X

i

Y

2

�X �X V

-

�

i

and Y

d

i

"

�! Y

0

d

i

m

�! X, Y



i

"

�! Y

00



i

m

�! X orrespond to the fatorization "=m of d

i

; 

i

.

The two members are:

K

1

= h

i

; d

i

; 

i

; 

i

"

i ; h� Æ �; �

1

X

; �

Y

00

i ; (1

Y

2

� 1

X

� 

i

m

) Æ �

i

; (�)

K

2

= h

i

; d

i

; d

i

"

; 

i

i ; h� Æ �; �

Y

0

; �

2

X

i ; (1

Y

2

� d

i

m

� 1

X

) Æ �

i

; (�)

where � denotes in both ases the projetion from the orresponding domains onto

Y

1

� X � X. By applying (R

i

p

)

+

on both members with respet to the suitable

projetion on X, we get the same path, namely

h

i

; d

i

; d

i

"

; 

i

; 

i

"

i ; h� Æ �; �

Y

0

; �

Y

00

i ; (1

Y

2

� d

i

m

� 

i

m

) Æ �

i

; (�)

CASE 2

Here we have a four-arrows path, (R

i

p

)

+

is applied to the �rst three arrows and (R

j

p

)

+

to the last three. We have

K

1

K

2

h

i

; d

i

i; h�

j

; 

j

; �

X

i; h�

i

; �

1

X

i; �

j

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

j

p

)

+

�

�

�

�

�

�R

where

Y

-

h

i

; d

i

i

Y

1

�X

-

h�

j

; 

j

; �

X

i

Y

2

�X �X

-

h�

i

; �

1

X

i

U �X V

-

�

j

and Y

2

�X � X

�

1

X

�! X is the projetion on the �rst X.

30

We also assume that d

i

and 

j

have the following fatorizations:

30

It annot be the projetion on seond X, otherwise the proviso for rule (R

j

p

)

+

is violated.
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Y X

-

d

i

Y

0

d

i

"

�

�

�R

d

i

m

�

�

��

Y

1

�X X

-



j

Z



j

"

�

�

�R



j

m

�

�

��

It follows that

K

1

= h

i

; d

i

; d

i

"

i ; h�

j

; 

j

i � 1

Y

0

; (1

Y

2

� 1

X

� d

i

m

) Æ h�

i

; �

1

X

i; �

j

; (�)

K

2

= h

i

; d

i

i; h�

j

; 

j

; �

X

; 

j

"

i ; �

i

� 1

Z

; (1

U

� 

j

m

) Æ �

j

; (�)

First member an be written as follows

h

i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �

j

; h�

Y

1

; �

X

i Æ 

j

; �

Y

0

i ; h(1

Y

2

� 1

X

� d

i

m

) Æ �

i

; �

X

i ; �

j

; (�)

We an apply (R

j

p

)

+

with respet to the projetion �

X

(we point out that X is the

odomain of h�

Y

1

; �

X

i Æ 

j

, whih fatorizes, in "=m omponents, as (h�

Y

1

; �

X

i Æ 

j

"

) Æ



j

m

). This yields to

h

i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �

j

; h�

Y

1

; �

X

i Æ 

j

; �

Y

0

; h�

Y

1

; �

X

i Æ 

j

"

i ;

((1

Y

2

� 1

X

� d

i

m

) Æ �

i

)� 1

Z

; (1

U

� 

j

m

) Æ �

j

; (�)

(L

1

)

By applying (R

i

p

)

+

to seond member with respet to the projetion �

X

, we get

h

i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �

j

; h�

Y

1

; �

X

i Æ 

j

; �

Y

0

; h�

Y

1

; �

X

i Æ 

j

"

i ;

(1

Y

2

� 1

X

� d

i

m

� 1

Z

) Æ (�

i

� 1

Z

) ; (1

U

� 

j

m

) Æ �

j

; (�) (L

2

)

Sine ((1

Y

2

� 1

X

� d

i

m

) Æ �

i

) � 1

Z

oinides with (1

Y

2

� 1

X

� d

i

m

� 1

Z

) Æ (�

i

� 1

Z

),

paths L

1

and L

2

oinide.

CASE 3

Here we have a �ve-arrows path, (R

i

p

)

+

is applied to the �rst three omponents and

(R

j

p

)

+

to the last three omponents. We distinguish the subases i 6= j and i = j.

SUBCASE 3.1

The third arrow must belong to T

0

, hene we have

L

1

L

2

h�

i

; 

i

i; h�; �

X

i; h

0

; d

0

i; h�; �

X

i; �

j

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

j

p

)

+

�

�

�

�

�

�R
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where

W

-

h�

i

; 

i

i

W

1

�X

-

h�; �

X

i

W

2

�X

-

h

0

; d

0

i

Y

1

�X

-

h�; �

X

i

Y

2

�X U

-

�

j

Therefore L

1

and L

2

are as follows (let W

0

; Y

0

be the odomains of 

i

"

; d

0

"

):

L

1

= h�

i

; 

i

; 

i

"

i ; � � 1

W

0

; (1

W

2

� 

i

m

) Æ h

0

; d

0

i; h�; �

X

i; �

j

; (�)

L

2

= h�

i

; 

i

i; h�; �

X

i; h

0

; d

0

; d

0

"

i ; �� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

j

; (�)

Applying (R

i

p

)

+

to L

2

, one gets

h�

i

; 

i

; 

i

"

i ; � � 1

W

0

; (1

W

2

� 

i

m

) Æ h

0

; d

0

; d

0

"

i ; �� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

j

; (�)

By an ,

�

R

0

-step, we get

h�

i

; 

i

; 

i

"

i ; � � 1

W

0

; (1

W

2

� 

i

m

); h

0

; d

0

; d

0

"

i ; �� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

j

; (�)

whih is ,

�

R

0

-equivalent to L

1

by Lemma 7.6(ii).

SUBCASE 3.2

L

1

L

2

h�

i

; 

i

i; h�; �

X

i; h

i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�R

where

W

-

h�

i

; 

i

i

W

1

�X

-

h�; �

X

i

W

2

�X

-

h

i

; d

i

i

Y

1

�X

-

h�; �

X

i

Y

2

�X U

-

�

i

Therefore L

1

and L

2

are as follows (let W

0

; Y

0

be the odomains of 

i

"

; d

i

"

):

L

1

= h�

i

; 

i

; 

i

"

i ; � � 1

W

0

; (1

W

2

� 

i

m

) Æ h

i

; d

i

i; h�; �

X

i; �

i

; (�)

L

2

= h�

i

; 

i

i; h�; �

X

i; h

i

; d

i

; d

i

"

i ; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

Applying (R

i

p

)

+

, L

2

rewrites to

h�

i

; 

i

; 

i

"

i ; � � 1

W

0

; (1

W

2

� 

i

m

) Æ h

i

; d

i

; d

i

"

i ; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

whih is onuent with L

1

by Lemma 8.3 (take �

i

to be 1

W

2

� 

i

m

)).

We so ompleted the proof of the following:

Theorem 8.4 R

+

is loally onuent.
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9 Termination

In order to show termination of R and of R

+

, we shall assoiate with our paths

ertain ommutative labelled trees. Suh trees are represented as terms built up from

the ountable set of variables fx

i

g

i�1

by using four

31

onstrutors f

i

(i 2 f0; 1g

2

) of

type TermMultiset �! Term.

R-trees (or, briey, trees) are indutively de�ned as follows:

� x

i

is an R-tree for every i � 1;

� if fT

1

; : : : ; T

n

g is a multiset of R-trees and i 2 f0; 1g

2

, then f

i

(T

1

; : : : ; T

n

) is an

R-tree.

As a next step, we introdue a relation > among our trees; we have T

1

> T

2

i� one

of the following two onditions is satis�ed:

� T

1

is f

i

(T

0

1

; : : : ; T

0

n

) and T

2

is f

j

(T

00

1

; : : : ; T

00

k

) and fT

0

1

; : : : ; T

0

n

g >

m

fT

00

1

; : : : ; T

00

k

g;

� T

1

is f

i

(T

0

1

; : : : ; T

0

n

) and T

2

is f

j

(T

0

1

; : : : ; T

0

n

) and i > j (in the lexiographi

sense).

Some omments are in order. First >

m

is the multiset extension of >; seondly the

de�nition is by indution on the height h(T

1

) of the tree T

1

. It is easily seen that

T

1

> T

2

implies h(T

1

) � h(T

2

).

32

In the following, we use � for the reexive losure

of >.

We have the following easy

Lemma 9.1 > is a transitive and terminating relation.

Proof. For transitivity, let us show that

T

1

> T

2

> T

3

implies T

1

> T

3

by indution on h(T

1

) + h(T

2

) + h(T

3

). We have two ases:

(i) suppose that T

1

> T

2

holds by the �rst lause, so that T

1

is f

i

(T

0

1

; : : : ; T

0

n

), T

2

is f

j

(T

00

1

; : : : ; T

00

k

) and fT

0

1

; : : : ; T

0

n

g >

m

fT

00

1

; : : : ; T

00

k

g; T

1

> T

3

follows from the

fat that >

m

is transitive (as > is transitive on lower height trees by indution

hypothesis);

(ii) suppose that T

1

> T

2

holds by the seond lause, so that T

1

is f

i

(T

0

1

; : : : ; T

0

n

),

T

2

is f

j

(T

0

1

; : : : ; T

0

n

) and i > j; if T

2

> T

3

holds by the �rst lause, then T

1

> T

3

holds by the same lause, if it holds by the seond lause, then T

1

> T

3

holds

by transitivity of lexiographi orders.

31

Atually only three suh onstrutors will be really used (f

h0;1i

is useless).

32

h(T ) is obviously de�ned as follows: variables have height 1, f

i

(T

1

; : : : ; T

n

) has height 1 +

max(h(T

1

); : : : ; h(T

n

)).
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For termination, suppose we have a hain

T

1

> T

2

> � � � T

i

> � � �

We show that this annot be by indution on h(T

1

). As >

m

is terminating (by

indutive hypothesis on >), �rst lause annot be used in�nitely many times; so

starting from a ertain T

k

on, only the seond lause applies, whih is absurd as suh

lause an be onseutively applied only at most 3 times. a

As our trees are represented as terms, it makes sense to speak about substitutions.

Substitutions are ompatible with > in the following sense:

Lemma 9.2 Let a suession fT

i

g

i�1

of trees be given and let T

0

, T

00

be suh that

T

0

> T

00

; we then have T

0

(T

i

=x

i

) > T

00

(T

i

=x

i

).

Proof. Immediate. a

Let us now turn to our paths. First, we need a de�nition. For an arrow �

i

, let us

put

e(�

i

) =

�

0 if �

i

2 E

0

1 otherwise

m(�

i

) =

�

0 if �

i

2 E

i

1 otherwise

�(�

i

) = hm(�

i

); e(a

i

)i:

Lemma 9.3 For every arrow � and for every " 2 E

0

, we have �(" Æ �) = �(�)

(whenever omposition makes sense).

Proof. If e(�) = 0 then learly e(" Æ �) = 0 too; vie versa, if e(" Æ �) = 0, then the

two "=m fatorizations (" Æ �) Æ 1 = (" Æ �

"

) Æ �

m

of " Æ � must be equal, so that �

m

is the identity; hene � = �

"

, that is � 2 E

0

. The proof of m(�) = 0 i� m(" Æ �) = 0

is similar. a

For a path K : Y �! Z and for �

0

: Z �! V , let K Æ �

0

be the path obtained

by omposing the last arrow of K with �

0

(that is, if K = K

0

; �, then K Æ �

0

is

K

0

; � Æ �

0

).

With a path K : X

n

�! X (resp. L : X

n

�! X

m

), we now assoiate an R-tree

T (K) (resp. a multiset of R-trees T (L)) as follows (de�nition is by indution on the

lengths jKj, jLj of K and L):

T (a) = f

�(a)

(x

i

1

; : : : ; x

i

k

); if a

"

= h�

i

1

; : : : ; �

i

k

i;

T (ha

1

; : : : ; a

m

i) = fT (a

1

); : : : ; T (a

m

)g;

T (K

0

; a) = f

�(a)

(T (K

0

Æ a

"

));

T (L

0

; ha

1

; : : : ; a

m

i) = fT (L

0

; a

1

); : : : ; T (L

0

; a

m

)g:
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Lemma 9.4 Let L : Y �! X

n

and K : X

n

�! X

m

. We have that

T (L;K) = T (K)(T (L

1

)=x

1

; : : : ; T (L

n

)=x

n

);

where L

1

= L Æ �

1

; : : : ; L

n

= L Æ �

n

.

Proof. The laim is shown by indution on the length jKj of K. If length is 1, then

K is just � = ha

1

; : : : ; a

m

i; if (a

j

)

"

is h�

i

j(1)

; : : : ; �

i

j(k

j

)

i, we have

T (L;�) = ff

�(a

j

)

(T (L

i

j(1)

); : : : ; T (L

i

j(k

j

)

))g

j=1;:::;m

= T (�)(T (L

1

)=x

1

; : : : ; T (L

n

)=x

n

):

If length is greater than 1, then K is K

0

; � (for � = ha

1

; : : : ; a

m

i), so that

T (L;K

0

; �) = ff

�(a

j

)

(T (L;K

0

Æ (a

j

)

"

)g

j=1;:::;m

= ff

�(a

j

)

(T (K

0

Æ (a

j

)

"

)(T (L

i

)=x

i

))g

j=1;:::;m

by indutive hypothesis; on the other hand

T (K

0

; �)(T (L

i

)=x

i

) = ff

�(a

j

)

(T (K

0

Æ (a

j

)

"

)g

j=1;:::;m

(T (L

i

)=x

i

)

= ff

�(a

j

)

(T (K

0

Æ (a

j

)

"

)(T (L

i

)=x

i

)g

j=1;:::;m

and the two members are equal by the indutive de�nition of substitution. a

Lemma 9.5 Let K

0

= �(K) for a list of renamings whose �rst omponent is iden-

tity;

33

we have T (K) = T (K

0

).

Proof. We �rst ollet some easy fats. Fix any path L : Y �! Z and a renaming

� : Z �! Z. We have:

(i) T (L) = T (L Æ �);

(ii) for every � = ha

1

; : : : ; a

n

i : Z �! X

n

and for every i = 1; : : : ; n, T (L; � Æ a

i

) =

T (L Æ �; a

i

): in fat,

T (L; � Æ a

i

) = f

�(�Æa

i

)

(T (L Æ (� Æ a

i

)

"

) = f

�(a

i

)

(T (L Æ � Æ (a

i

)

"

) = T (L Æ �; a

i

)

by uniqueness of fatorization and Lemma 9.3;

(iii) for every L

0

, T (L; � Æ �;L

0

) = T (L Æ �; �; L

0

), by (ii) and Lemma 9.4.

Now let K = �

1

; : : : ; �

k

, K

0

= �

0

1

; : : : ; �

0

k

and let � = f1 = �

0

; �

1

; : : : ; �

k

g (reall we

have �

i�1

Æ �

0

i

= �

i

Æ �

i

for all i). We have

T (K) = T (K Æ�

k

) = T (�

1

; : : : ; �

k�1

Æ�

0

k

) = T (�

1

; : : : ; �

k�1

Æ�

k�1

; �

0

k

) = � � � = T (K

0

)

as wanted. a

33

See Setion 4 for these onepts.
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Notie that the above Lemma yields in partiular that T (K) = T (K

0

) in ase K

0

is

an alphabeti variant of K: this is important, as we rewrite on equivalene lasses of

paths modulo alphabeti variants. Moreover the above Lemma (whih will be taitly

used many times during the termination proof) yields the possibility of replaing K

with any �(K) (where � has identity as �rst omponent) when omputing T (K):

this allows moving ertain arrows to last position in a tuple of arrows, assuming

that ertain projetions loated in an internal position of a path projet on last

omponents, et (see the Examples of Setion 4).

Lemma 9.6 Let Æ = hd

1

; : : : ; d

n

i : X

m

�! X

n

be an arrow whih is not in E

0

(i.e.

it is not a projetion); suppose that Æ

"

= h�

i

1

; : : : ; �

i

k

i : X

m

�! X

k

. We have that

T (Æ; 1

X

n

) > T (Æ

"

; 1

X

k

).

Proof. We have

T (Æ

"

; 1

X

k

) = ff

h0;0i

(f

h0;0i

(x

s

))g

s=i

1

;:::;i

k

and

T (Æ; 1

X

n

) = ff

h0;0i

(f

�(d

j

)

(x

i

j(1)

; : : : ; x

i

j(l

j

)

))g

j=1;:::;n

;

where we supposed that (d

j

)

"

= h�

i

j(1)

; : : : ; �

i

j(l

j

)

i. Now elements of the former

multiset are all distint and for every s = i

1

; : : : ; i

k

, there is j suh that s is among

j(1); : : : ; j(l

j

) (otherwise �

s

would be missed in Æ

"

). This means in partiular that for

suh s; j we have f

h0;0i

(x

s

) � f

�(d

j

)

(x

i

j(1)

; : : : ; x

i

j(l

j

)

) (where this inequality is strit

in ase the same j orresponds to di�erent s). Consequently the former multiset is

less or equal than the latter. It is stritly less indeed; in fat Æ annot be in E

0

for

two independent reasons: some of the �(d

j

) is not h0; 0i or some projetion among

h�

i

1

; : : : ; �

i

k

i appears at least twie in Æ. In both ases, this is a suÆient reason for

the latter multiset to be bigger. a

For a path K = �

1

; : : : ; �

k

, we de�ne (K) to be the vetor

hT (�

1

; : : : ; �

k

); T (�

1

; : : : ; �

k�1

); : : : ; T (�

1

)i

and for paths K;L, we put

K > L i� (K) > (L)

where seond member refers to the lexiographi extension of >

m

. Next Lemma says

that  is `almost stable by onatenation' as a omplexity measure:

Lemma 9.7 Let K : X

m

�! X

n

and K

0

: X

m

�! X

n

be two paths suh that

K > K

0

(notie that they agree on domains and odomains); then

(i) for every path L having odomain X

m

, we have L;K > L;K

0

;
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(ii) suppose that K = K

0

; ha

1

; : : : ; a

n

i, K

0

= K

0

0

; ha

0

1

; : : : ; a

0

n

i and that T (K

0

; a

i

) �

T (K

0

0

; a

0

i

) holds for all i = 1; : : : ; n; then for every path R having domain X

n

,

we have K;R > K

0

; R.

Proof. Claim (i) diretly follows from Lemmas 9.4, 9.2. Let us show (ii). Here it

is suÆient to prove that if T (K

0

; a

i

) � T (K

0

0

; a

0

i

) holds for every i = 1; : : : ; n, then

T (K; b) � T (K

0

; b) holds for every b : X

n

�! X (this yields the laim, by indution

on the length of R, beause the omplexity measure of a path is the vetor of trees

assoiated to left segments of the path itself). Supposing that b

"

is h�

i

1

; : : : ; �

i

k

i, we

have

T (K; b) = f

�(b)

(T (K

0

; a

i

1

); : : : ; T (K

0

; a

i

k

))

T (K

0

; b) = f

�(b)

(T (K

0

0

; a

0

i

1

); : : : ; T (K

0

0

; a

0

i

k

))

hene T (K; b) � T (K

0

; b) as wanted. a

Theorem 9.8 R and R

+

are terminating.

Proof. If we have K ) K

0

by rules (R

i



), thenK > K

0

always holds beause suh rules

are length-reduing (reall that in lexiographi orders for variable length vetors,

length is prinipal parameter).

Aording to the above Lemma, it is suÆient to show that for every other rule

L) R of R

+

[R, we have both

(1) T (L Æ �

i

) � T (R Æ �

i

);

for every i = 1; : : : ; n (here X

n

is the ommon odomain of L;R) and

(2) (L) > (R):

Notie that any (R

"

)-rewrite step is a speial ase of a (Rpr)

�

-rewrite step, where

(Rpr)

�

is the rewrite rule

(Rpr)

�

�; " Æ � ) � Æ "; �

(here " is any strit projetion). Moreover, we know from Lemma 7.2 that any (R

�

)

or (R

�

)

+

-rewrite step is a omposition of a �nite number of (R

�

)

+1

and of (Rdi

+1

)

�

-

rewrite steps, where (R

�

)

+1

is (any alphabeti variant of)

(R

�

)

+1

h�; ai; � ) h�; a

e

i; (1 � a

�

) Æ �

and (Rdi

+1

)

�

is (any alphabeti variant of)

(Rdi

+1

)

�

h�; a; ai; � ) h�; ai; (1 ��

X

) Æ �
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Consequently, it is suÆient to prove (1) and (2) for rules (Rpr)

�

, (R

�

)

+1

, (Rdi

+1

)

�

and (R

i

p

).

Proof of (1) for rule (Rpr)

�

:

�; " Æ � ) � Æ "; �:

Let b any omponent of �; as (" Æ b

"

) Æ b

m

is the fatorization of " Æ b, we have (taking

into aount Lemma 9.3):

T (�; " Æ b) = f

�(b)

(T (� Æ " Æ b

"

)) = T (� Æ "; b);

as wanted.

Proof of (2) for rule (Rpr)

�

: by the previous point, we have T (�; " Æ �) =

T (� Æ "; �); however T (�) > T (� Æ ") beause the projetion is strit.

Notie that the above established fat that T (�; " Æ �) and T (� Æ "; �) are ompo-

nentwise equal (together with Lemma 9.4), yields the following important information

to be used in the sequel: let us write K )

�

"

K

0

in order to express that K

0

is obtained

from K by a sequene of (Rpr)

�

-rewrite steps; we have that

34

(�) K )

�

"

K

0

implies T (K) = T (K

0

):

Proof of (1) for rule (R

�

)

+1

: �rst member of the rule is

X

n

h�;ai

�! Z �X

�

�! U

whereas seond member is (let a

e

= he

1

; : : : ; e

k

i)

X

n

h�;e

1

;:::;e

k

i

�! Z �X

k

(1�a

�

)Æ�

�! U:

Let b be any omponent of the vetor �; we �rst suppose that b

"

is the identity and

then redue to this ase. If b

"

is identity, we have

T (h�; ai; b) = f

�(b)

(T (�) [ fT (a)g)

T (h�; e

1

; : : : ; e

k

i; (1 � a

�

) Æ b) � f

�((1�a

�

)Æb)

(T (�) [ fT (e

j

)g

j=1;:::;k

):

(we put � here, beause we do not know what ((1 � a

�

) Æ b)

"

is, so we supposed -

worst ase - it is identity). We need to prove that T (a) > T (e

j

) for all j = 1; : : : ; k

(then �rst lause of the de�nition of orders among our trees applies). Suppose that

a fators as follows

34

(�) is shown as follows: suppose that K )

"

K

0

(in one step); then K = S

0

; L; S

00

and K

0

=

S

0

; R; S

00

, where L and R are the left and right side of a (Rpr)

�

-rule. We have that T (L;S

00

) =

T (R;S

00

) beause suh multisets of trees are obtained by replaing variables in the same multiset of

trees by equal trees (notie that T (L) and T (R) are not only equal, but also omponentwise equal);

the same happens to T (S

0

; L; S

00

) and T (S

0

; R; S

00

) (only a further substitution is operated to get

them).
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X

m+n

0

X

m

-

a

"

X

a

�

�

�

�R

a

m

�

�

�

�	

where n = m+ n

0

and �

"

is h�

1

; : : : ; �

m

i. We have

T (a) = f

�(a)

(x

1

; : : : ; x

m

):

Now observe that eah e

j

fators through a

"

(in fat, we have a = a

"

Æ((a

m

)

e

Æ(a

m

)

�

),

hene, by uniqueness of fatorizations, he

1

; : : : ; e

k

i = a

e

= a

"

Æ (a

m

)

e

), so that

T (e

j

) � f

�(e

j

)

(x

1

; : : : ; x

m

):

As �(a) = h1; 1i and �(e

j

) = h0;�i,

35

we have T (a) > f

�(e

j

)

(x

1

; : : : ; x

m

) by seond

lause in our de�nition of order among trees.

Let us now onsider the ase in whih b

"

is not identity; we apply )

�

"

-rewriting

to both members (being sure that the orresponding trees do not hange by (�)). We

have two subases. In the �rst subase Z = Z

0

�Z

00

(onsequently � is split as �

0

; �

00

)

and b

"

is the projetion Z

0

� Z

00

�X �! Z

00

�X. We have for �rst member

h�

0

; �

00

; ai; b )

�

"

h�

00

; ai; b

m

and

h�

0

; �

00

; a

e

i; (1 � a

�

) Æ b )

�

"

h�

00

; a

e

i; (1 � a

�

) Æ b

m

for seond member, thus reduing to the above speial ase (now (b

m

)

"

is identity).

In the seond subase, b

"

is the projetion Z

0

� Z

00

�X �! Z

00

. In this ase, both

members )

�

"

-rewrite to the path Y

�

00

�! Z

00

b

m

�! X.

Proof of (2) for rule (R

�

)

+1

: by the previous point, we have that the multiset of

trees orresponding to the �rst member of the rule is greater or equal to the multiset

of trees orresponding to the seond member. In ase they are equal, we need to

ompare T (�; a) and T (�; a

e

); as we saw above, the former is greater as a multiset,

beause for every omponent e

j

of a

e

, we have T (a) > T (e

j

).

Proof of (1) for rule (Rdi

+1

)

�

: �rst member of the rule is

Y

h�;a;ai

�! Z �X �X

�

�! U

whereas seond member is

Y

h�;ai

�! Z �X

(1��

X

)Æ�

�! U:

35

Of ourse rule does not apply in ase �rst omponent of �(a) is 0, beause in suh a ase a would

have trivial e=� fatorization as a Æ 1

X

.
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Let b be any omponent of the vetor �; we �rst suppose that b

"

is the identity and

then redue to this ase. If b

"

is identity, we have

T (h�; a; ai; b) = f

�(b)

(T (�) [ fT (a); T (a)g)

whih is trivially bigger than

f

�((1��

X

)Æb)

(T (�) [ fT (a)g) � T (h�; ai; (1 ��

X

) Æ b);

by �rst lause in de�nition of order for trees.

If b

"

is not identity, let Z = Z

0

�Z

00

(onsequently � splits as �

0

; a

00

) and let b

"

be

either i) h�

Z

00

; �

1

X

; �

2

X

i, or ii) h�

Z

00

; �

1

X

i, or iii) h�

Z

00

; �

2

X

i or �nally iv) �

Z

00

. In the last

three ases both members have a)

�

"

-rewriting to the same path (whih is h�

00

; ai; b

m

for ii)-iii) and �

00

; b

m

for iv)), so the orresponding trees are equal by (�). In the �rst

ase, �rst member)

�

"

-rewrites to h�

00

; a; ai; b

m

, whereas seond member)

�

"

-rewrites

to h�

00

; ai; (1 ��

X

) Æ b

m

, thus reduing to the above onsidered speial ase.

Proof of (2) for rule (Rdi

+1

)

�

: by the previous point, we have that the multiset of

trees orresponding to the �rst member of the rule is greater or equal to the multiset

of trees orresponding to the seond member. In ase they are equal, we need to

ompare T (�; a; a) and T (�; a): the former is learly bigger.

Proof of (1) for rule (R

i

p

): we reall that �rst member of (R

i

p

) is

Y

h;Æi

�! Y

1

� Z

h�;�

Z

i

�! Y

2

� Z

�

�! U

whereas seond member is

Y

h;Æ;Æ

"

i

�! Y

1

� Z � Y

0

��1

Y

0

�! Y

2

� Y

0

(1

Y

2

�Æ

m

)Æ�

�! U

(with an extra arrow to the right in ase i = 1). This rule is subjet to the proviso

that Æ annot be a projetion. Let b be any omponent of �; we �rst assume that b

"

is the identity (and then redue to this ase). We have that

T (h; Æi; h�; �

Z

i; b) = f

�(b)

(T (h; Æi; h�; �

Z

i)) = f

�(b)

(T (h; Æi; �) [ T (Æ; 1

Z

))

where [ refers to multiset union (notie that we used (�) above in missed intermediate

passages). We do not know what is ((1�Æ

m

)Æb)

"

: let so take worst ase (it is identity)

and proeed as follows by using (�) again:

T (h; Æ; Æ

"

i; �� 1; (1 � Æ

m

) Æ b) � f

�((1�Æ

m

)Æb)

(T (h; Æ; Æ

"

i; �� 1)) =

= f

�((1�Æ

m

)Æb)

(T (h; Æi; �) [ T (Æ

"

; 1

Y

0

)):

This tree is indeed smaller than f

�(b)

(T (h; Æi; �) [ T (Æ; 1

Z

)) (by the �rst lause of

the de�nition of trees order): in fat, by Lemma 9.6 we have T (Æ; 1

Z

) > T (Æ

"

; 1

Y

0

).
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Let us now turn to the general ase (b

"

may not be identity). In suh a ase, let

us transform both

Y

h;Æi

�! Y

1

� Z

h�;�

Z

i

�! Y

2

� Z

b

�! X

and

Y

h;Æ;Æ

"

i

�! Y

1

� Z � Y

0

��1

Y

0

�! Y

2

� Y

0

(1

Y

2

�Æ

m

)Æb

�! X

by)

�

"

-rewriting and then apply (�). Suppose we have Y

2

= Y

0

2

�Y

00

2

and Z = Z

0

�Z

00

(onsequently Æ and � are also splitted as Æ

0

; Æ

00

and �

0

; �

00

, respetively); let b fators

as follows:

Y

0

2

� Y

00

2

� Z

0

� Z

00

Y

00

2

� Z

00

-

b

"

X

b

�

�

�

�

�

�

�R

b

m

�

�

�

�

�

�

�	

where b

"

is the obvious projetion. We then have for the �rst member

h; Æi; h�; �

Z

i; b )

�

"

h; Æ

0

; Æ

00

i; h�

00

; �

Z

00

i; b

m

:

Let us also split Æ

m

: Y

0

�! Z

0

� Z

00

as �

0

; �

00

(as a onsequene, from hÆ

0

; Æ

00

i = Æ =

Æ

"

ÆÆ

m

, we have in partiular Æ

"

Æ�

00

= Æ

00

); an analogous transformation on the seond

member gives

h; Æ; Æ

"

i; � � 1; (1 � Æ

m

) Æ b )

�

"

h; Æ

0

; Æ

00

; Æ

"

i; �

00

� 1; (1 � �

00

) Æ b

m

:

Let us now fatorize �

00

= �

00

"

Æ �

00

m

; from Æ

"

Æ �

00

= Æ

00

, by uniqueness of fatorizations,

we get Æ

00

"

= Æ

"

Æ �

00

"

and Æ

00

m

= �

00

m

; thus, by further )

�

"

-rewrite steps, we get

h; Æ

0

; Æ

00

; Æ

"

i; �

00

� 1; (1 � �

00

) Æ b

m

)

�

"

h; Æ

0

; Æ

00

; Æ

00

"

i; �

00

� 1; (1 � Æ

00

m

) Æ b

m

:

Now

h; Æ

0

; Æ

00

i; h�

00

; �

Z

00

i; b

m

and

h; Æ

0

; Æ

00

; Æ

00

"

i; �

00

� 1; (1 � Æ

00

m

) Æ b

m

are �rst and seond member of a (R

i

p

)-rewrite rule and (b

m

)

"

is the identity. We an

so redue to the above partiular ase, exept that now there is no guarantee that

Æ

00

is not a projetion: this further ase has to be onsidered separately. However in

suh a ase, 1� Æ

00

m

is the identity, Æ

00

"

= Æ

00

and all what we need is to prove that trees

orresponding to the paths

Y

h;Æ

0

;Æ

00

i

�! Y

1

� Z

0

� Z

00

h�

00

;�

Z

00

i

�! Y

00

2

� Z

00
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Y

h;Æ

0

;Æ

00

;Æ

00

i

�! Y

1

� Z

0

� Z

00

� Z

00

�

00

�1

�! Y

00

2

� Z

00

are the same. Indeed they are both equal to T (h; Æ

0

; Æ

00

i; �

00

) [ T (Æ

00

; 1

Z

00

) (again by

(�)).

Proof of (2) for rule (R

i

p

): by the previous point, we have that the multiset of

trees orresponding to the �rst member of the rule is greater or equal to the multiset

of trees orresponding to the seond member. This does not prevent from them to

be equal, in some ases; hene, we ompare trees orresponding to

Y

h;Æi

�! Y

1

� Z

h�;�

Z

i

�! Y

2

� Z

and to

Y

h;Æ;Æ

"

i

�! Y

1

� Z � Y

0

��1

Y

0

�! Y

2

� Y

0

:

The former is T (h; Æi; �) [ T (Æ; 1

Z

) whereas the latter is T (h; Æi; �) [ T (Æ

"

; 1

Y

0

): as

Æ annot be a projetion, Lemma 9.6 applies, showing that the former is greater. a

From the previous setion results, we immediately get:

Corollary 9.9 R

+

is anonial. a

We now ompare rewrite systems R

+

and R: it will turn out that they are

essentially the same, hene in partiular anoniity of R will follow.

Lemma 9.10 If K )

�

R

+

K

0

, then there exists K

00

suh that K

0

)

�

R

+

K

00

and

K )

�

R

K

00

.

Proof. Statement is proved by noetherian indution on K (with respet to the order

> among paths whih has been used in the termination proof). If K = K

0

, the

statement is trivial; otherwise we have, for some K

0

,

K )

R

+ K

0

)

�

R

+

K

0

:

Now there is K

0

0

suh that

K

0

)

�

R

+

K

0

0

and K )

R

K

0

0

(if the)

R

+-step is done by a rule di�erent than (R

�

)

+

this is trivial, otherwise apply

Lemma 7.1). As R

+

is onuent, there exists K

00

0

suh that

K

0

0

)

�

R

+

K

00

0

and K

0

)

�

R

+

K

00

0

:

As K

0

0

< K (any kind of rewrite step dereases omplexity, as we saw in the termi-

nation proof), we an apply indutive hypothesis to K

0

0

, yielding K

00

suh that

K

0

)

�

R

+

K

00

0

)

�

R

+

K

00

and K )

R

K

0

0

)

�

R

K

00

as wanted. a
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Lemma 9.11 If K )

�

R

K

0

, then K ,

�

R

+

K

0

.

Proof. Statement is again proved by noetherian indution on K. The only relevant

ase is when we have K )

R

K

0

by a single (R

i

p

)-rewrite step, whih is overed by

Lemma 7.6 (iii). a

We an �nally omplete the

Proof of Theorem 5.3. As we know from Proposition 9.8 thatR is terminating,

we only have to prove its onuene. Suppose we have that

K )

�

R

K

0

and K )

�

R

K

00

:

Then K

0

,

�

R

+

K

00

by Lemma 9.11; as R

+

is anonial, K

0

and K

00

both)

�

R

+

-rewrite

to their ommon normal form N . By Lemma 9.10, there are N

0

; N

00

suh that

N )

�

R

+

N

0

; K

0

)

�

R

N

0

N )

�

R

+

N

00

; K

00

)

�

R

N

00

However N is in R

+

-normal form, hene N

0

= N = N

00

is a path to whih K

0

;K

00

both )

�

R

-redue. a

10 Examples and Related Work

In this Setion we illustrate our results in onrete ases. First, we gave in Setion

5 a de�nition of onstrutibility for theories referring to their assoiated Lawvere

ategories. Now we give a useful equivalent purely symboli de�nition:

Proposition 10.1 A theory T

0

= h


0

; Ax

0

i is onstrutible over a theory T = h
; Axi

i� T

0

is a onservative extension of T and there exists a lass E

0

of 


0

-terms suh

that:

(i) E

0

ontains the variables and is losed under renamings of terms;

(ii) for every 


0

-term t(x

1

; : : : ; x

n

) there exist a k-minimized 
-term u(x

1

; : : : ; x

k

)

and pairwise distint (with respet to provable identity in T

0

) 


0

-terms

v

1

(x

1

; : : : ; x

n

); : : : ; v

k

(x

1

; : : : ; x

n

)

belonging to E

0

suh that

`

T

0

t = u(v

1

; : : : ; v

k

);
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(iii) whenever u; u

0

are k (resp. k

0

)-minimized 
-terms and we have

`

T

0

u(v

1

; : : : ; v

k

) = u

0

(v

0

1

; : : : ; v

0

k

0

)

for pairwise distint (wrt T

0

-provability) terms v

1

; : : : ; v

k

2 E

0

and pairwise

distint (wrt T

0

-provability) terms v

0

1

; : : : ; v

0

k

0

2 E

0

, then k = k

0

and there is a

permutation � ating on the k-elements set,

36

suh that

`

T

0

v

0

�(i)

= v

i

(i = 1; : : : ; k) and `

T

u

0

= u(x

�(i)

=x

i

):

Proof. If T

0

is onstrutible over T , in T

0

there is a left extension (E

0

;M) of the

standard weak fatorization system (E ;M) of T. In order to �nd E

0

ful�lling the

above requirements it is suÆient to take the set of terms t(x

1

; : : : ; x

n

) suh that the

equivalene lass of t (seen as an arrow X

n

�! X in T

0

) belongs to E

0

. To see that (i)-

(iii) hold, we only have to show that if an arrow from T like he

1

; : : : ; e

m

i : X

n

�! X

m

belongs to E

0

, then the e

i

are pairwise distint and, vie versa, that if all e

i

belong to

E

0

and are pairwise distint, then he

1

; : : : ; e

n

i belongs to E

0

; these fats follow from

Corollary 7.4.

Vie versa, suppose that a lass E

0

of 


0

-terms ful�lling the above requirements is

given. We de�ne a left extension (E

0

;M) of the standard weak fatorization system

(E ;M) of T by taking as E

0

the set of arrows he

1

; : : : ; e

m

i : X

n

�! X

m

suh that

the e

i

are represented by distint (up to provable identity in T

0

) terms in E

0

.

First notie that, if � = ha

1

; : : : ; a

n

i 2 E

0

\ T, then � ia an n-tuple of distint

projetions by an immediate appliation of (iii) to (the symboli meaning of) the

ommutativity of the squares

Z = X X

-

(a

i

)

�

Y X

-

a

i

?

(a

i

)

"

?

1

X

We an easily fatorize arrows a having odomain X (just apply (ii) to �nd a

e

and

a

�

). To fatorize arrows ha

1

; : : : ; a

m

i : X

n

�! X

m

, it is suÆient to fatorize eah

a

i

as he

i1

; : : : ; e

ik

i

i Æ �

i

and then `diagonalize' as follows: let he

1

; : : : ; e

s

i be any list

of the distints elements of fe

ij

g and let Æ be a diagonal suh that he

1

; : : : ; e

s

i Æ Æ =

he

11

; : : : ; e

mk

m

i. We fatorize ha

1

; : : : ; a

m

i as he

1

; : : : ; e

s

iÆ(Æ Æ(�

1

�� � ���

m

)). Notie

that Æ Æ (�

1

�� � ���

m

) is still represented by a minimized vetor of terms: in fat, for

every i, as e

i1

; : : : ; e

ik

i

are all distint, Æ omposed with the projetion from X

P

k

i

onto the domain of �

i

is a projetion �

i

: X

s

�! X

k

i

(hene the i-th omponent of

36

Suh � is learly unique given that the v

i

are distint.
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Æ Æ (�

1

� � � � � �

m

) is �

i

Æ �

i

); moreover projetions f�

i

g altogether annot miss any

omponent of X

s

(by the very de�nition of the list he

1

; : : : ; e

s

i).

To show uniqueness of fatorizations suppose you have a ommutative square

Y

2

X

n

-

�

1

Z Y

1

-

�

2

?

�

1

?

�

2

with �

1

; �

2

2 E

0

and �

1

; �

2

2M. The �

1

; �

2

are lists formed by distint omponents

(by the de�nition of the lass E

0

); let us �rst show that eah omponent a of �

1

appears as a omponent of �

2

too (and vie versa, so that �

1

and �

2

di�er only

by a renaming). As �

1

is represented by a minimized vetor of terms, there is a

omponent s of �

1

suh that �

1

Æ s

"

ontains a; if s is the i-th omponent of �

1

, let r

be the orresponding i-th omponent of �

2

. By ommutativity of the square, we have

(�

1

Æs

"

)Æs

�

= (�

2

Ær

"

)Ær

�

; by (iii), there is a renaming � suh that �

1

Æs

"

Æ� = �

2

Ær

"

and � Æ r

�

= s

�

. The former shows that a is a omponent of �

2

.

We so established that �

1

; �

2

di�er only for a renaming, i.e. that there is a re-

naming � suh that �

1

Æ � = �

2

. Now � Æ �

2

= �

1

immediately follows from the

ommutativity of the above square and from the following

Claim. If � 2 E

0

and �; � 2 T

0

, then � Æ � = � Æ � implies � = �.

The laim is obvious in ase �; � are projetions, beause the omponents of �

are distint. In the general ase, it is suÆient to prove the Claim for �; � having

odomain X; if odomain is X, from (� Æ �

"

) Æ �

�

= (� Æ �

"

) Æ �

�

, we have (by (iii))

(�Æ�

"

)Æ� = �Æ �

"

and �Æ �

�

= �

�

for a renaming �. As �

"

Æ� and �

"

are projetions,

we just saw (this is the above mentioned obvious ase) that �

"

Æ � = �

"

, hene

� = �

"

Æ �

�

= �

"

Æ � Æ �

�

= �

"

Æ �

�

= �

as required. a

We say that T

0

is e�etively onstrutible over T i� it is onstrutible over T and

moreover for every term t, terms u; v

1

; : : : ; v

k

satisfying (ii) above are provided by

a total reursive funtion. As an immediate orollary to our main Theorem 5.3, we

have:

Theorem 10.2 Suppose that T

1

; T

2

are both e�etively onstrutible over T

0

and that

word problems for T

1

; T

2

are solvable; then word problem for T

1

+

T

0

T

2

is solvable too.

Proof. By Theorem 3.1, Lemma 4.1, 5.2 and Theorem 5.3, it is suÆient to show

that appliability of rules of R is e�etive whenever a path is given as a list of

terms, representing their respetive equivalene lasses (in order to be able to ompare
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normal forms, we need also to hek that it is e�etively reognizable whether two

paths are alphabeti variants eah other).

For rules (R

i



) we need to be able to reognize whether a ertain arrow �

i

omes

from T

0

: this happens i� �

e

2 E

0

(by uniqueness of e=� fatorization and by the

fat that E

0

� E

i

), a fat whih is e�etive by appealing to the solvability of word

problem for T

i

.

37

For rule (R

"

) we already observed in Setion 5 that "-extration

is e�etive in ase word problem is deidable. For rule (R

�

), one just use e�etive

onstrutibility, together with the fat that the e=� fatorization of ha

1

; : : : ; a

n

i an

be redued to the e=� fatorization of omponents, see Lemma 7.2. Finally, in order

to apply rules (R

i

p

) (and heking the relative proviso) it is suÆient to be able to

reognize projetions, a fat whih is redued one again to solvability of the input

word problems.

Last, we show that it is e�etively reognizable whether two paths are alphabeti

variants eah other. In ase they are both in normal form (whih is the relevant ase),

there is a quik proedure for that. First, for �

1

; : : : ; �

k

to be an alphabeti variant

of �

1

; : : : ; �

k

0

we need k = k

0

; seondly, as the omponents of �

1

and �

1

are distint

(beause paths are in normal form and (R

�

) does not apply), it is easily omputed -

provided it exists - the renaming �

1

suh that �

1

Æ�

1

= �

1

; at this point, we reursively

need to hek whether �

�1

1

Æ �

2

; : : : ; �

k

is an alphabeti variant of �

2

; : : : ; �

k

and so

on. a

Example. Commutative rings with unit are onstrutible over abelian groups. In

fat terms t(x

1

; : : : ; x

n

) in the theory of abelian groups an be represented as homo-

geneous linear polynomials in the indeterminates x

1

; : : : ; x

n

with integer oeÆients

(they are minimized i� no oeÆient is zero); terms in the theory of ommutative

rings with unit an be represented as arbitrary polynomials with integer oeÆients.

Class E

0

needed for onstrutibility is formed by moni monomials (1 inluded): in

fat, every integer polynomial an be uniquely expressed as a linear ombination (with

integer non-zero oeÆients) of distint moni monomials. a

Example. Let T be the theory of join-semilatties with zero and let T

0

be the

theory of semilattie-monoids we met in the Introdution. T

0

is onstrutible over T :

lass E

0

is given by terms of the form x

i

1

Æ � � � Æ x

i

k

(for k � 0). a

Example The theory of abelian groups endowed with an endomorphism f is

onstrutible over the theory of abelian groups: lass E

0

is given by terms of the form

f

n

(x

i

) (for n � 0). a

Example Di�erential rings (i.e. of rings endowed with a di�erentiation operator

� satisfying usual laws for derivatives of sums and produts) are onstrutible over

ommutative rings with unit: lass E

0

is given by terms of the form f�

k

x

i

g (for k � 0).

37

Clearly if term t represents a : X

n

�! X, then a is a projetion i� t ollapses to (i.e. it is

provably equal to) a variable x

i

(for i = 1; : : : ; n); a similar observation applies to vetor of terms.
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a

Notie that in the above examples the smaller theory is not ollapse-free. Addi-

tional examples of di�erent nature an be found in [3, 4℄. In order to build ounterex-

amples, a useful tool is the following Proposition (learly inspired from [3, 4℄):

Proposition 10.3 If T

0

is onstrutible over T , then the T -redut of any free T

0

-

algebra is a free T -algebra (on a bigger set of generators).

Proof. Let F

T

0

(G) be the free T

0

-algebra on the set G of generators; we show that its

T -redut is free over the set of elements of the form u(g

1

; : : : ; g

n

) where u(x

1

; : : : ; x

n

) 2

E

0

and g

1

; : : : ; g

n

are distint elements from G. Clearly the laim follows from the ase

in whih G is �nite. To have a quik proof we translate everything in the terminology

of funtorial semantis.

Let (E ;M) be the standard weak fatorization system of T and let (E

0

;M) be

its left extension to T

0

. For any funtor F having domain T

0

let us all jF j its

restrition to T; for any type Y let E

0

(Y;X) be T

0

(Y;X) \ E

0

. Fix a type Y and a

T -algebra A : T �! Set; we need to �nd a bijetive natural orrespondene between

set-theoreti funtions

�

N : E

0

(Y;X) �! A(X)

and natural transformations

N : jT

0

(Y;�)j �! A:

Given N , let

�

N be the restrition of N

X

to E

0

(Y;X) in the domain. Conversely, if

�

N

is given, we de�ne for every Z and � : Y �! Z

N

Z

(�) = A(�

�

)(

�

N(e

1

); : : : ;

�

N (e

k

))

where �

e

= he

1

; : : : ; e

k

i. In order to prove naturality ofN so de�ned, take � : Z �! Z

0

in T; we need to show the ommutativity of the square

jT(Y;Z

0

)j A(Z

0

)

-

N

Z

0

jT(Y;Z)j A(Z)

-

N

Z

?

jT(Y; �)j

?

A(�)

We have

A(�)(N

Z

(�)) = A(�)(A(�

�

)(

�

N(e

1

); : : : ;

�

N (e

k

))) = A(�

�

Æ �)(

�

N(e

1

); : : : ;

�

N(e

k

)):

On the other hand, let �

�

Æ � fatorize in "=�-omponents as follows:
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X

m

Z

0

-

�

X

k

Z

-

�

�

?

�

?

�

where � = h�

i

1

; : : : ; �

i

m

i. We have

N

Z

0

(jT(Y; �)(�)j) = N

Z

0

(� Æ �)

= N

Z

0

(�

e

Æ � Æ �)

= A(�)(

�

N (e

i

1

); : : : ;

�

N(e

i

m

))

= A(�)(A(�)(

�

N (e

1

); : : : ;

�

N(e

k

)))

= A(� Æ �)(

�

N(e

1

); : : : ;

�

N (e

k

))

= A(�

�

Æ �)(

�

N(e

1

); : : : ;

�

N(e

k

)):

Bijetivity and naturality of the orrespondene N  !

�

N are immediate. a

Counterexample. Boolean algebras are not onstrutible over join-semilatties

with zero. In fat the free join-semilattie with zero over an in�nite set G of generators

is just the set of �nite subsets of G; in this algebra, learly the strit part of the

partial order relation assoiated with the join is terminating. It is not so however in

the ountably generated free Boolean algebra, whih is atomless. a

Counterexample. Modal algebras (also K4-modal algebras, interior algebras,

diagonalizable algebras, et.) are not onstrutible over Boolean algebras: in fat, in

suh varieties, �nitely generated free algebras are atomi and in�nite,

38

whereas free

Boolean algebras are either �nite or atomless. a

Let us now give examples of normalization through our rewriting system R. In

order to apply normalization to paths of equivalene lasses of terms, algebrai nota-

tion for rules must be onverted into ordinary symboli notation. This is not diÆult

(all needed information is ontained in Setion 2 above), however some are is needed.

Suppose e.g. you want to apply produts rule to the path

X

3

-

ht; ui

X

2

-

hv; x

2

i

X

2

X

-

w

First u(x

1

; x

2

; x

3

) has to be minimized (this is the fatorization Æ = Æ

"

Æ Æ

m

in the

Table of rules of Setion 5). Suppose it minimizes as u

0

(x

1

; x

3

); the pair of projetions

hx

1

; x

3

i stays in �rst position, whereas u

0

(x

1

; x

2

) is moved in third position. However,

the term moved to last position for omposition with w(x

1

; x

2

) (the arrow 1� Æ

m

of

38

These are well-known results. For a proof making use of normal forms, see [7℄.
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the Table of rules), requires a renaming away from x

1

and onsequently it is the pair

hx

1

; u

0

(x

2

; x

3

)i. Thus the produts rule rewrite step produes

X

3

-

ht; u; x

1

; x

3

i

X

4

-

hv; x

3

; x

4

i

X

3

X

-

w(x

1

; u

0

(x

2

; x

3

))

In the examples below we onsider the following theories:

T

0

= Abelian groups with period 2

T

1

= Boolean rings

T

2

= T

0

+ an idempotent endomorphism f (i.e., suh that f(f(x

1

)) = f(x

1

))

We leave to the reader to hek that T

1

; T

2

are both onstrutible over T

0

.

Example. Let us onsider the following instane of word problem in the theory

T

1

+

T

0

T

2

:

f(x

1

� x

2

+ x

2

+ f(x

2

))

?

= f(x

1

� x

2

)

Let us rewrite a splitting path of �rst member in R.

X

2

-

hx

1

; x

2

; f(x

2

)i

X

3

-

x

1

� x

2

+ x

2

+ x

3

X X

-

f(x

1

)

+

R

�

X

2

-

hx

1

; x

2

; f(x

2

)i

X

3

-

hx

1

� x

2

; x

2

; x

3

i

X

3

X

-

f(x

1

+ x

2

+ x

3

)

+

(R

2

p

)

X

2

-

hx

1

; x

2

; f(x

2

); x

2

i

X

4

-

hx

1

� x

2

; x

2

; x

4

i

X

3

X

-

f(x

1

+ x

2

+ f(x

3

))

+

R

"

X

2

-

hx

1

; x

2

; x

2

i

X

3

-

hx

1

� x

2

; x

2

; x

3

i

X

3

X

-

f(x

1

+ x

2

+ f(x

3

))

+

(R

1



)

X

2

-

hx

1

� x

2

; x

2

; x

2

i

X

3

X

-

f(x

1

+ x

2

+ f(x

3

))

+

R

�

X

2

-

hx

1

� x

2

; x

2

i

X

2

X

-

f(x

1

+ x

2

+ f(x

2

))

+

R

"

X

2

-

x

1

� x

2

X X

-

f(x

1

)

where the last path orresponds to the splitting path of the term f(x

1

� x

2

). a
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Example. Let us onsider the following instane of word problem for T

1

+

T

0

T

2

:

f(x

1

) � f(x

2

) + f(x

1

) � (f(x

1

) + f(x

2

))

?

= f(x

1

)

We rewrite �rst member as follows.

X

2

-

hf(x

1

); f(x

2

); f(x

1

) + f(x

2

)i

X

3

-

hx

1

� x

2

; x

1

� x

3

i

X

2

X

-

x

1

+ x

2

+

R

�

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

; x

2

; x

1

+ x

2

i Æ hx

1

� x

2

; x

1

� x

3

i

X

2

X

-

x

1

+ x

2

=

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

� x

2

; x

1

� (x

1

+ x

2

)i

X

2

X

-

x

1

+ x

2

+

R

�

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

� x

2

; x

1

i

X

2

X

-

hx

1

; x

1

+ x

2

i Æ (x

1

+ x

2

)

=

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

� x

2

; x

1

i

X

2

X

-

x

1

+ x

1

+ x

2

+

R

"

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

� x

2

; x

1

i Æ x

2

X X

-

x

1

=

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

x

1

X X

-

x

1

+

(R

2



)

X

2

X

-

f(x

1

)

where the last path oinides with the seond term of the problem. a

We now make a omparison with results from [3, 4℄. Let T = (
; Ax) and T

0

=

(


0

; Ax

0

) be equational theories suh that T

0

is a onservative extension of T . Let G

be the set of 


0

-terms r suh that 6`

T

0

r = t for all 


0

-terms t with top symbol in


. Notie that G 6= ; i� V � G, where V is the set of variables. Moreover, G is

empty in ase T is not ollapse-free. We say that T

0

is BT-onstrutible over T i�

the following hold:

(I) V � G (hene T is ollapse-free);
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(II) for all 


0

-term t, there are an 
-term s and a vetor ~r of terms in G suh that

`

T

0

t = s(~r);

(III) for every pair s

1

; s

2

of 
-terms and for every pair of vetors ~r

1

; ~r

2

of terms from

G, we have

`

T

0

s

1

(~r

1

) = s

2

(~r

2

) i� `

T

s

1

(~z

1

) = s

2

(~z

2

)

where ~z

1

; ~z

2

are fresh vetors of variables abstrating ~r

1

; ~r

2

so that two terms

in ~r

1

; ~r

2

are abstrated by the same variable i� they are provably equal in T

0

.

We now show that if T

0

is BT-onstrutible over T , then T

0

is onstrutible over T

(in our sense). We use Proposition 10.1 above taking E

0

= G. Let us �rst show

uniqueness of fatorizations. Suppose that we have k (resp. k

0

)-minimized 
-terms

u; u

0

and that we have `

T

0

u(v

1

; : : : ; v

k

) = u

0

(v

0

1

; : : : ; v

0

k

0

) for pairwise distint (wrt

T

0

-provability) terms v

1

; : : : ; v

k

2 G and pairwise distint (wrt T

0

-provability) terms

v

0

1

; : : : ; v

0

k

0

2 G. Let w

1

; : : : ; w

s

be the terms whih are ommon to the lists v

1

; : : : ; v

k

and v

0

1

; : : : ; v

0

k

0

. For simpliity, let us also rearrange suh lists as

v

1

; : : : ; v

k

= w

1

; : : : ; w

s

; r

1

; : : : r

l

and v

0

1

; : : : ; v

0

k

0

= w

1

; : : : ; w

s

; r

0

1

; : : : ; r

0

l

0

:

Then, applying (III), we get

`

T

u(x

1

; : : : ; x

s

; y

1

; : : : ; y

l

) = u

0

(x

1

; : : : ; x

s

; z

1

; : : : ; z

l

0

)

whih annot be (unless l = l

0

= 0, yielding what we need) beause u and u

0

are

minimized: in fat, replaing e.g. all the y

i

by a ground term  we would get

`

T

u(x

1

; : : : ; x

s

; ; : : : ; ) = u

0

(x

1

; : : : ; x

s

; z

1

; : : : ; z

l

0

) = u(x

1

; : : : ; x

s

; y

1

; : : : ; y

l

)

ontrary to the fat that u is minimized.

Showing the existene of fatorization is a little more triky beause the require-

ments in (II) above look more liberal than those in Proposition 10.1(ii) (it is not

asked for s to be minimized, not for the ~r to be distint (up to probability) and

to ontain only at most the variables of the original t). We progressively re�ne the

fatorization in (II). First, if we have (let ~r = r

1

; : : : ; r

k

) `

T

0

t = s(r

1

; : : : ; r

k

) for non

distint r

i

, then we an identify variables in s(x

1

; : : : ; x

k

) and redue orrespondingly

the list r

1

; : : : ; r

k

to a list formed by distint elements. If furthermore s(x

1

; : : : ; x

k

)

is not minimized, then we an minimize it and remove the orresponding r

i

from

the list. Thus we obtained a fatorization of t(x

1

; : : : ; x

n

) as s(r

1

; : : : ; r

k

) where s

is k-minimized and the r

i

are pairwise distint (up to provability in T

0

) terms of G.

Suppose that the r

i

ontain additional variables, say that they ontain variables from

x

1

; : : : ; x

k

; ~y; we have (let ~x = x

1

; : : : ; x

k

)

`

T

0

t(~x) = s(r

1

(~x; ~y); : : : ; r

k

(~x; ~y))
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Let ~z be renamings of the ~y; we get

`

T

0

t(~x) = s(r

1

(~x; ~z); : : : ; r

k

(~x; ~z))

hene

`

T

0

s(r

1

(~x; ~y); : : : ; r

k

(~x; ~y)) = s(r

1

(~x; ~z); : : : ; r

k

(~x; ~z)):

We an now apply (III) to this situation; as s is minimized we must have

`

T

0

r

i

(~x; ~y) = r

i

(~x; ~z)

for all i = 1; : : : ; k (eventually up to a permutation). Replaing all the ~y by ground

terms ~ (we may use the same ground term for all of them), we get

`

T

0

r

i

(~x;~) = r

i

(~x; ~z) = r

i

(~x; ~y):

Now r

i

(~x;~) is provably equal to r

i

(~x; ~y), hene as the latter is in G so is the former

(G is losed under provably idential terms aording to its de�nition). For the same

reason, all the r

i

(~x;~) are pairwise distint (with respet to provable identity in T

0

)

beause so are the r

i

(~x; ~y). We �nally get

`

T

0

t(~x) = s(r

1

(~x;~); : : : ; r

k

(~x;~))

whih is a fatorization mathing all the requirements from Proposition 10.1(ii).

Summing up, the di�erene between the de�nition of onstrutibility of [3, 4℄ and

ours, lies in the fat that we do not need any spei� de�nition for the lass E

0

of

terms used in fatorizations.

The re�nement fatorization tehnique we used above for omparison with BT-

onstrutibility is interesting by itself. Combining it with the proof of Proposition

10.3, it is not diÆult to get the following third haraterization of onstrutibility:

Proposition 10.4 Let T

0

be a onservative extension of T . We have that T

0

is

onstrutible over T i� the T -redut of any T

0

-free algebra F

T

0

(G

0

) is a free T -algebra

over a set of generators G suh that

� G

0

� G;

� G is invariant under the T

0

-isomorphisms of F

T

0

(G

0

) whih are the extension

of a bijetion on the set of free generators G

0

.

To �nish, let us mention some possible diretions for future researh. Of ourse,

there is the problem of extending our results to ombined uni�ation. Seondly, one

may try to generalize ombined word problems to the ase in whih the de�nition of

onstrutibility is related to a weak fatorization system of the smaller theory whih

may not be the standard one (that is, lass E

0

is supposed to be larger than the
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lass of projetions). Results from Setion 6 are still valid, however it is not lear

what happens with ritial pairs arising from superpositions with produts rule. Suh

enlargements of the de�nition of onstrutibility are important beause they ould

over additional mathematially relevant examples. Finally, although quite diÆult,

it would be essential to be able to deal with theories extending T

1

+

T

0

T

2

with further

axioms. In priniple, as our ombination algorithm is obtained through rewriting, one

may try to apply some form of Knuth-Bendix ompletion to get deision proedures

in suh situations too.
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