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Motivations

The consensus is that natural deduction calculi are not suitable for
proof-search because they lack the “deep symmetries” characterizing
sequent calculi.

Proof-search strategies to build natural deduction derivations are
presented in:

- W. Sieg and J. Byrnes. Normal natural deduction proofs (in classical
logic). Studia Logica, 1998.

- W. Sieg and S. Cittadini. Normal natural deduction proofs (in
non-classical logics). LNCS, 2005.

But these strategies are highly inefficient.

It seems that that the only effective way to build derivations in
natural deduction calculi consists in translating tableaux/sequent
proofs.



Our contribution

We show that proof-search in natural deduction calculus for Cl
(Propositional Classical Logic) can be efficiently performed.

In particular:

we introduce Ncr, a variant of the usual natural deduction calculus
for Cl

we describe a proof-search procedure for Ncr not requiring
backtracking nor loop-checking.

Main related work:

- W. Sieg and J. Byrnes. Normal natural deduction proofs (in classical
logic). Studia Logica, 1998.

- D.M. Gabbay and N. Olivetti. Goal-Directed Proof Theory. 2000.
(in particular, the chapter devoted to goal-oriented proof-search for
classical logic)



Natural Deduction calculus

The natural deduction calculus has been introduced to capture logical
mathematical reasoning.

The formalization of logical deduction, especially as it has been
developed by Frege, Russel, and Hilbert, is rather far removed from
the forms of deduction used in practice in mathematical proofs.
Considerable formal advantages are achieved in return.

I intended, first of all, to set up a formal system which comes as close
as possible to actual reasoning. The result was a calculus of natural
deduction (NJ for intuitionist, NK for classical predicate logic).

[Gentzen, “Investigations into logical deduction”, 1934 ]



Natural Deduction calculus

Formulas A, B, . . . of Cl are built starting from a set V of
propositional variables:

A,B ::= ⊥ | p | A ∧ B | A ∨ B | A→ B p ∈ V
¬A ::= A→ ⊥

For each logical connective it is defined an introduction rule (I-rule)
and an elimination rule (E-rule)

I-rule
How to introduce a compound formula.
Infer a complex formula from already established components
E-rule
How to de-construct information about a compound formula.
Specify how components of assumed or established complex formulas
can be used as arguments.
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Localizing Hypothesis

A derivation D of B having open assumptions A1,. . . , An is represented
by a tree of the form

A1, . . . ,An

D
B

built according to the rules of the calculus.

In our presentation, it is more convenient to localize hypothesis

D
Γ ` B

The context Γ contains the assumptions A1, . . . ,An on which B depends.

NK : Natural Deduction calculus for Cl in sequent style



The calculus NK

Id
A, Γ ` A

¬A, Γ ` ⊥
⊥EC

Γ ` A

Γ ` A Γ ` B ∧I
Γ ` A ∧ B

Γ ` A0 ∧ A1 ∧Ek
Γ ` Ak

k ∈ {0, 1}

Γ ` Ak ∨Ik
Γ ` A0 ∨ A1

Γ ` A ∨ B A, Γ ` C B, Γ ` C
∨E

Γ ` C

A, Γ ` B
→ I

Γ ` A→ B

Γ ` A→ B Γ ` A →E
Γ ` B

Theorem (Completeness of NK)

A ∈ Cl iff there exists a derivation of ` A in NK
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A näıve proof-search strategy for NK

To perform proof-search, the basic idea is to orient rules application:

Apply I-rules bottom-up (⇑-expansion)

Apply the E-rules top-down (↓-expansion)

To get a derivation,⇑-expansion and↓-expansion must meet in the middle

Γ (open assumptions)

E-rules (↓-expansion)

meet

I-rules (⇑-expansion)

C (conclusion)



A näıve proof-search strategy for NK

To formalize the strategy, we introduce the judgments:

Γ ` A⇑
The sequent Γ ` A is obtained by⇑-expansion

Γ ` A↓
The sequent Γ ` A is obtained by ↓-expansion
(A has been extracted from the assumptions Γ).

F. Pfenning. Automated theorem proving. Lecture notes, 2004.

W. Sieg and J. Byrnes. Normal natural deduction proofs (in classical logic). Studia
Logica, 1998.

R. Dyckhoff and L. Pinto. Cut-elimination and a permutation-free sequent calculus
for intuitionistic logic. Studia Logica, 1998.

NK + arrows ↓,⇑ = Nc



Rules of Nc

Rules for⇑-expansion (to be applied bottom-up)

Γ ` A⇑ Γ ` B ⇑
∧I

Γ ` A ∧ B ⇑
A, Γ ` B ⇑

→ I
Γ ` A→ B ⇑

Γ ` A⇑
∨I0

Γ ` A ∨ B ⇑
Γ ` B ⇑

∨I1
Γ ` A ∨ B ⇑

Rules for ↓-expansion (to be applied top-down)

Γ ` A ∧ B ↓
∧E0

Γ ` A↓
Γ ` A ∧ B ↓

∧E1
Γ ` B ↓

Γ ` A→ B ↓ Γ ` A⇑
→ E

Γ ` B ↓
Id

A, Γ ` A↓

Note that the right-most premise of →E is an⇑-sequent
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Rules of Nc

To match⇑-expansion with ↓-expansion we need:

Coercion

Γ ` A↓
↓⇑

Γ ` A⇑
We can assume that A is prime (namely, A ∈ V ∪ {⊥})

(Classical) ⊥-elimination

¬A, Γ ` ⊥↓
⊥ECΓ ` A⇑

We can assume A ∈ V or A is a disjunction

∨-elimination

Γ ` A ∨ B ↓ A, Γ ` C ⇑ B, Γ ` C ⇑
∨E

Γ ` C ⇑
We can assume C prime or C is a disjunction (namely, C = C0 ∨C1).
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The calculus Nc

Id
A, Γ ` A↓

Γ ` A↓
↓⇑

Γ ` A⇑
(†) ¬A, Γ ` ⊥↓

⊥EC
Γ ` A⇑

(†)

Γ ` A⇑ Γ ` B ⇑
∧I

Γ ` A ∧ B ⇑
Γ ` A0 ∧ A1 ↓ ∧Ek

Γ ` Ak ↓
Γ ` Ak ⇑ ∨Ik

Γ ` A0 ∨ A1⇑
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(†)

A, Γ ` B ⇑
→ I

Γ ` A→ B ⇑
Γ ` A→ B ↓ Γ ` A⇑

→ E
Γ ` B ↓

(†) Assumptions

↓⇑ : A ∈ V ∪ {⊥}
⊥EC : A ∈ V or A = A0 ∨ A1

∨E : C ∈ V ∪ {⊥} or C = C0 ∨ C1



The calculus Nc

Derivations in Nc are by definition in normal form.
Actually, Nc-derivations correspond to NK-derivations in normal form.

For instance a detour of the kind

...
A, Γ ` B

→ I
Γ ` A→ B

...
Γ ` A →E

Γ ` B

!

[A], Γ

...
B → I

A→ B

Γ

...
B →E

B

with a maximal formula A→ B is not allowed in Nc.

�
��
@
@@
A, Γ ` B ↓

Γ ` A→ B ↓

...
Γ ` A⇑

→E
Γ ` B ↓

A→ B cannot be introduced in ↓-expansion!



The calculus Nc

Coercion rule
Γ ` A↓

↓⇑
Γ ` A⇑

is crucial to “coerce” derivations in normal form.
To simulate NK-derivations in Nc, we need the converse of coercion

Γ ` A⇑
⇑↓

Γ ` A↓

which allows one to build non-normal derivations:
. . .

A, Γ ` B ⇑
→ I

Γ ` A→ B ⇑
⇑↓

Γ ` A→ B ↓
. . .

Γ ` A⇑
→ E

Γ ` B ↓

Theorem (Normalization of NK)

Γ ` A is provable in NK iff Γ ` A⇑ is provable in Nc.



Proof-search strategy for Nc

We alternate⇑-expansion and ↓-expansion phases.

(1) ⇑-expansion

To prove Γ ` A⇑, backward apply introduction rules.

We stop whenever we get a leaf sequent Γ′ ` K ⇑ such that
K is prime or a disjunction

Γ′
1 ` K1⇑ . . . Γ′

n ` Kn⇑
...

Γ ` A⇑

Now, we have to expand the leaves



Proof-search strategy for Nc

We have three possible ways to expand a leaf Γ′ ` K ⇑.

(1.1) If K is prime, we can apply coercion.

Γ′ ` K ↓
↓⇑

Γ′ ` K ⇑
...

Γ ` A⇑
(1.2) If K is a propositional variable or a disjunction,

we can apply classical ⊥-elimination.

¬K , Γ′ ` ⊥↓
⊥EC

Γ′ ` K ⇑
...

Γ ` A⇑
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Proof-search strategy for Nc

(1.3) If K is prime or a disjunction, we can apply ∨-elimination.

Γ′ ` D0 ∨ D2 ↓ D0, Γ′ ` K ⇑ D1, Γ′ ` K ⇑
∨E

Γ′ ` K ⇑
...

Γ ` A⇑

In all cases, we generate new leaves that must be proved.

To prove an⇑-sequent, we continue the current⇑-expansion phase.

To prove a ↓-sequent, we start a new ↓-expansion phase.
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Proof-search strategy for Nc

(2) ↓-expansion

To prove Γ ` K ↓:
Select H ∈ Γ (head formula)
Starting from the axiom sequent

Γ ` H ↓

apply ∧,→-elimination rules with the goal to extract K from H.

Id
Γ ` H ↓ R1Γ ` H1 ↓ R2Γ ` H2 ↓
. . .

Γ ` K ↓

H ∈ Γ

R1, R2 · · · ∈ {∧Ek ,→ E}



Proof-search strategy for Nc

Γ ` H ↓
Γ ` H1 ↓
Γ ` H2 ↓

. . .

Γ ` K ↓

H ∈ Γ

The formulas H1,H2, . . . ,K obtained in the right are subformulas of H of
a special form, we call them strictly positive subformula of H.

Formally:

Sf+(H): the set of strictly positive subformula of H.

Q ∈ Sf+(H) iff:

Q ::= H | Q ′ ∧ A | A ∧ Q ′ | A→ Q ′

where Q ′ ∈ Sf+(H) and A is any formula.



Proof-search strategy for Nc

To narrow the search space, we refine ↓-expansion:

(2’) ↓-expansion

To prove Γ ` K ↓:
Select H ∈ Γ (head formula) such that K ∈ Sf+(H).
Starting from the axiom sequent Γ ` H ↓ apply ∧,→-elimination
rules with the goal to extract K from H.

Id
Γ ` H ↓
. . .

Γ ` K ↓
H ∈ Γ such that K ∈ Sf+(H)

Note that → E generates a new⇑-sequent, which must be⇑-expanded.

Id
Γ ` H ↓
. . .

Γ ` A→ B ↓ Γ ` A⇑
→ E

Γ ` B ↓
. . .

Γ ` K ↓
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A proof-search example

Let us search for a Nc-derivation of p ∨ ¬p

We start an⇑-expansion phase from the sequent:

` p ∨ ¬p⇑

We have now three choices:

` p⇑
∨I0` p ∨ ¬p⇑

(1) Apply ∨I0

` ¬p⇑
∨I1` p ∨ ¬p⇑

(2) Apply ∨I1

¬(p ∨ ¬p) ` ⊥↓
⊥EC` p ∨ ¬p⇑

(3) Apply ⊥EC
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A proof-search example

(1) Let us apply ∨I0. We have two choices:

` p↓ ↓⇑` p⇑
∨I0` p ∨ ¬p⇑

(1.1) Apply ↓⇑
Fail

¬p ` ⊥↓
⊥EC` p⇑
∨I0` p ∨ ¬p⇑

(1.2) Apply ⊥EC



A proof-search example

(1.2)
¬p ` ⊥↓

⊥EC` p⇑
∨I0` p ∨ ¬p⇑

We can extract ⊥ from ¬p starting a ↓-phase from the axiom sequent

¬p ` ¬p↓

and applying →E . We get

Id¬p ` ¬p ↓ ¬p ` p⇑
→ E¬p ` ⊥↓

⊥EC` p⇑
∨I0` p ∨ ¬p⇑



A proof-search example

We can⇑-expand the leaf ¬p ` p⇑ in two ways:

¬p ` p ↓
↓⇑

¬p ` p⇑
...

` p ∨ ¬p⇑

(1.2.1) Apply ↓⇑
Fail

¬p ` ⊥↓
⊥EC¬p ` p⇑

...
` p ∨ ¬p⇑

(1.2.2) Apply ⊥EC

Loop

Id¬p ` ¬p ↓ ¬p ` p⇑
→ E¬p ` ⊥↓

⊥EC¬p ` p⇑
...

` p ∨ ¬p⇑



A proof-search example

We have to backtrack and try (2), namely ∨I1
After some expansion step, we get

p ` ⊥⇑
→ I` ¬p⇑
∨I1` p ∨ ¬p⇑

and proof-search fails.
We need to backtrack once again.



A proof-search example

It remains to try (3), namely ⊥EC.
We get:

Id¬(p ∨ ¬p) ` ¬(p ∨ ¬p)↓ ¬(p ∨ ¬p) ` p ∨ ¬p⇑
→ E¬(p ∨ ¬p) ` ⊥↓

⊥EC` p ∨ ¬p⇑



A proof-search example

Now, we have three possible choices

¬(p ∨ ¬p) ` p⇑
∨I0¬(p ∨ ¬p) ` p ∨ ¬p⇑

...
` p ∨ ¬p⇑

(3.1) Apply ∨I0

¬(p ∨ ¬p) ` ¬p⇑
∨I1¬(p ∨ ¬p) ` p ∨ ¬p⇑

...
` p ∨ ¬p⇑

(3.2) Apply ∨I1

¬(p ∨ ¬p) ` ⊥↓
⊥EC¬(p ∨ ¬p) ` p ∨ ¬p⇑

...
` p ∨ ¬p⇑

(3.3) Apply ⊥EC



A proof-search example

All the three ways lead to a successful derivation, possibly with some
redundancies.

The most concise derivation corresponds to choice (3.2)

Id
p,¬(p ∨ ¬p) ` ¬(p ∨ ¬p)↓

Id
p,¬(p ∨ ¬p) ` p ↓

↓⇑
p,¬(p ∨ ¬p) ` p⇑

∨I0
p,¬(p ∨ ¬p) ` p ∨ ¬p⇑

p,¬(p ∨ ¬p) ` ⊥⇑
→ I¬(p ∨ ¬p) ` ¬p⇑
∨I1¬(p ∨ ¬p) ` p ∨ ¬p⇑

...
` p ∨ ¬p⇑

This corresponds to the standard derivation in normal form of p ∨ ¬p.



A proof-search example

Compare with the sequent derivation of the same formula p ∨ ¬p:

Axp ⇒ p
R →⇒ p,¬p
R∨⇒ p ∨ ¬p

very compact and plain

no choice points

no backtracking

sequents are decreasing hence branches have finite length
(termination)



Proof-search strategy for Nc

This näıve strategy suffers from the huge search space:

Contexts never decrease, hence an assumption might be used more
and more times

too many backtrack points

some mechanism is needed to guarantee termination
(e.g., loop-checking).

This is in disagreement with the proof-search strategies based on
standard sequent/tableaux calculi for Cl, where:

a formula occurrence can be used at most once along a branch

no backtracking is needed

termination is guaranteed by the fact that at each step at least a
formula is decomposed.

Can we recover these nice properties
in natural deduction proof-search?
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On assumptions control

An application of ⊥EC transfers the current right-formula A on the
left, negating it:

¬A, Γ ` ⊥↓
⊥EC

Γ ` A⇑
Note that this breaks the strict subformula property
From now on, the assumption ¬A cannot be thrown down.

Using assumption ¬A and ⊥EC, we can regain A on the right:

Id¬A,¬B, Γ1 ` ¬A↓ ¬A,¬B, Γ1 ` A⇑
→ E¬A,¬B, Γ1 ` ⊥↓ ⊥EC¬A, Γ1 ` B ⇑

...
¬A, Γ ` ⊥↓

⊥EC
Γ ` A⇑
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On assumptions control

By repeatedly applying this pattern, we get an infinite branch where
the right formula A can be used as many times we want:

...
¬A, Γ2 ` A⇑

...
¬A, Γ1 ` A⇑

...
¬A, Γ ` ⊥↓

⊥EC
Γ ` A⇑

Γ ⊆ Γ1 ⊆ Γ2

To get the same effect but in a more controlled way:

replace ⊥EC with restart rule [Gabbay&Olivetti,2000]



Restart

Restart rule allows one to restart from a previous right-formula:

. . .
Γ1 ` A⇑

Restart from A
Γ′ ` B ⇑

. . .

Γ ` A⇑
. . .

We apply Restart is in⇑-expansion, if the current right formula is
prime

Formulas usable for restart are stored in a restart set ∆

Γ ` A⇑ ∆ ::= F ,∆′

Restart
Γ ` F ⇑ ∆ ::= A,∆′ F ∈ V ∪ {⊥}

restart from A and store F in ∆

This leads to the natural deduction calculus Ncr (Nc with restart)



Restart

Restart rule allows one to restart from a previous right-formula:

. . .
Γ1 ` A⇑

Restart from A
Γ′ ` B ⇑

. . .

Γ ` A⇑
. . .

We apply Restart is in⇑-expansion, if the current right formula is
prime

Formulas usable for restart are stored in a restart set ∆

Γ ` A⇑ ∆ ::= F ,∆′

Restart
Γ ` F ⇑ ∆ ::= A,∆′ F ∈ V ∪ {⊥}

restart from A and store F in ∆

This leads to the natural deduction calculus Ncr (Nc with restart)



The calculus Ncr

Ncr = Nc − classical ⊥-elimination ⊥EC

+ restart
+ intuitionistic ⊥-elimination ⊥EI

Sequents need more structure:

⇑-sequent: Γ ` A⇑ ; ∆

logical meaning:
∧

Γ → (A ∨
∨

∆)

Γ: set of assumptions

A: right-formula (the formula to be proved)

∆: restart set (formulas available for restart)

Proof-search starts with an empty restart set.



The calculus Ncr

Ncr = Nc − classical ⊥-elimination ⊥EC

+ restart
+ intuitionistic ⊥-elimination ⊥EI

Sequents need more structure:

⇑-sequent: Γ ` A⇑ ; ∆

logical meaning:
∧

Γ → (A ∨
∨

∆)

Γ: set of assumptions

A: right-formula (the formula to be proved)

∆: restart set (formulas available for restart)

Proof-search starts with an empty restart set.



The calculus Ncr

Restart (to be improved to avoid loops)

Γ ` A⇑ ; F ,∆
Restart

Γ ` F ⇑ ; A,∆
F ∈ V ∪ {⊥}

∧-introduction

Γ ` A⇑ ; ∆ Γ ` B ⇑ ; ∆
∧I

Γ ` A ∧ B ⇑ ; ∆

∨-introduction

Γ ` A⇑ ; B,∆
∨I

Γ ` A ∨ B ⇑ ; ∆

Note that we need only one rule, which retains the first disjunct.
The second one can be recovered by restart.

→-introduction

A, Γ ` B ⇑ ; ∆
→ I

Γ ` A→ B ⇑ ; ∆
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On resource consumption

Before continuing the presentation of Ncr, we point out another issue on
proof-search in Nc (not solved by restart).

Let us consider a derivation of

p ∧ (p → q) → q

in the classical sequent calculus (G3-style):

Axp, p → q ⇒ p Axp, q ⇒ q
L→p, p → q ⇒ q

L∧
p ∧ (p → q)⇒ q

R →⇒ p ∧ (p → q) → q

The assumption p ∧ (p → q) is used once



On resource consumption

In contrast, to prove the same formula in Nc, we have to use the
assumption p ∧ (p → q) twice.

Id
p ∧ (p → q) ` p ∧ (p → q)↓

∧E1
p ∧ (p → q) ` p → q ↓

Id
p ∧ (p → q) ` p ∧ (p → q)↓

∧E0
p ∧ (p → q) ` p ↓

↓⇑
p ∧ (p → q) ` p⇑

→ E
p ∧ (p → q) ` q ↓

↓⇑
p ∧ (p → q) ` q⇑

→ I` (p ∧ (p → q)) → q⇑

Compare with the sequent derivation:

Axp, p → q ⇒ p Axp, q ⇒ q
L→p, p → q ⇒ q

L∧
p ∧ (p → q)⇒ q

R →⇒ p ∧ (p → q) → q



On resource consumption

This is due to the different behaviour in managing an assumption A ∧ B:

Sequent calculus

A,B, Γ⇒ ∆
L∧

A ∧ B, Γ⇒ ∆

Both the conjuncts A and B are retained on the left and are
available as assumptions.

Nc

Γ ` A ∧ B ↓
∧E0Γ ` A↓

Γ ` A ∧ B ↓
∧E1Γ ` B ↓

In both cases, one between the conjuncts A and B is lost.

To regain it, we need to re-prove Γ ` A ∧ B ↓, and this introduces
some overhead in proof-search.



On resource consumption

To overcome the problem, in ↓-expansion we do not throw down the
unused conjuncts, but we preserve them exploiting a resource set Θ.

At the beginning of a ↓-expansion phase, Θ is empty

Id
Γ ` H ↓ Θ ::= ∅ H ∈ Γ

Whenever an ∧-elimination rule is applied, Θ is updated by adding
the unused conjunct

Γ ` A ∧ B ↓ Θ
∧E0

Γ ` A↓ Θ ∪ {B}
Γ ` A ∧ B ↓ Θ

∧E1
Γ ` B ↓ Θ ∪ {A}

This is similar to the LL(Local Linear)-computation paradigm of
[Gabbay&Olivetti,2000]
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On resource consumption

To combine restart with LL-computation, ↓-sequents must be refined:

↓-sequent: Γ ; H ` A↓ ; ∆ ; Θ

logical meaning: (
∧

Γ ∧ H ) → ( (A ∧
∧

Θ) ∨
∨

∆ )

Γ ∪ {H}: available assumptions

H (head formula): assumption selected at the beginning of
↓-expansion, to settle the initial axiom sequent

A: right-formula (the formula to be proved)

∆: restart set (not used in ↓-expansion)

Θ: the resource set (updated by ∧-elimination applications)



On resource consumption

↓-expansion starts from an axiom sequent with empty resource set

Γ ; H ` H ↓ ; ∆ ; ∅

By applying ∧,→-elimination rules, we get a branch of the form

Id
Γ ; H ` H ↓ ; ∆ ; ∅

Γ ; H ` H1 ↓ ; ∆ ; Θ1

Γ ; H ` H2 ↓ ; ∆ ; Θ2

...

We remark that:

H1, H2, . . . ∈ Sf+(H) (the set of strictly pos. subformulas of H)

Θ1, Θ2, . . . ⊆ Sf+(H)



The calculus Ncr

∧-elimination

Γ ; H ` A ∧ B ↓ ; ∆ ; Θ
∧E0

Γ ; H ` A↓ ; ∆ ; B,Θ

Γ ; H ` A ∧ B ↓ ; ∆ ; Θ
∧E1

Γ ; H ` B ↓ ; ∆ ; A,Θ

→-elimination

Γ ; H ` A→ B ↓ ; ∆ ; Θ Γ,Θ ` A⇑ ; ∆
→ E

Γ ; H ` B ↓ ; ∆ ; Θ

The right-most premise starts a new⇑-expansion phase where:

the available assumptions are Γ ∪Θ
the assumption H is not usable any more, but it has been replaced
by the formulas in Θ (which are strictly positive subformulas of H).



The calculus Ncr
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The calculus Ncr

Coercion

To prove Γ ` p⇑ ; ∆ using coercion:

Non-deterministically select H ∈ Γ such that p ∈ Sf+(H)
[ Non-deterministically = No backtracking ! ]
Start a ↓-expansion phase from the axiom sequent

ΓH ; H ` H ↓ ; p,∆ ; ∅ ΓH = Γ \ {H}

with the goal to extract p from H.
Note that p has been added to the restart set.

Id
ΓH ; H ` H ↓ ; p,∆ ; ∅

...
ΓH ; H ` p ↓ ; p,∆ ; Θ

To close the gap, coercion rule must have the form:

ΓH ; H ` p↓ ; p,∆ ; Θ ↓⇑
H, Γ ` p⇑ ; ∆



The calculus Ncr

Restart

We split restart into two rules.

Rc

Restart from a compound formula D, namely D 6∈ V and D 6= ⊥.

Γ ` D ⇑ ; F ,∆
Rc

Γ ` F ⇑ ; D,∆
F ∈ V ∪ {⊥}

Rp

Restart from a propositional variable p and, to avoid infinite loops,
immediately apply coercion:

ΓH ; H ` p ↓ ; F , p,∆ ; Θ
↓⇑

H, Γ ` p⇑ ; F ,∆
Restart

H, Γ ` F ⇑ ; p,∆

ΓH = Γ \ {H}
F ∈ V ∪ {⊥}

More succinctly:

ΓH ; H ` p ↓ ; F , p,∆ ; Θ
Rp

H, Γ ` F ⇑ ; p,∆
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The calculus Ncr

intuitionistic ⊥-elimination

To prove Γ ` F ⇑ ; ∆, with F prime, using ⊥-elimination:

Non-deterministically select H ∈ Γ such that ⊥ ∈ Sf+(H)
Start a ↓-expansion phase from the axiom sequent

ΓH ; H ` H ↓ ; F ,∆ ; ∅ ΓH = Γ \ {H}

with the goal to extract ⊥ from H
Note that F has been added to the restart set.

Id
ΓH ; H ` H ↓ ; F ,∆ ; ∅

...
ΓH ; H ` ⊥↓ ; F ,∆ ; Θ

To close the gap, ⊥EI must have the form:

ΓH ; H ` ⊥↓ ; F ,∆ ; Θ
⊥EI

H, Γ ` F ⇑ ; ∆



The calculus Ncr

∨-elimination

To prove Γ ` F ⇑ ; ∆, with F prime, using ∨-elimination:

Non-deterministically select H ∈ Γ such that A ∨ B ∈ Sf+(H)
Start a ↓-expansion phase from the axiom sequent

ΓH ; H ` H ↓ ; F ,∆ ; ∅ ΓH = Γ \ {H}

with the goal to extract A ∨ B from H

Id
ΓH ; H ` H ↓ ; F ,∆ ; ∅

. . .

ΓH ; H ` A ∨ B ↓ ; F ,∆ ; Θ

Start an⇑-expansion phase to prove A, ΓH ,Θ ` F ⇑ ; ∆
Start an⇑-expansion phase to prove B, ΓH ,Θ ` F ⇑ ; ∆

In the⇑-expansion phases, H is replaced by the formulas in Θ.

ΓH ; H ` A ∨ B ↓ ; F ,∆ ; Θ A, ΓH ,Θ ` F ⇑ ; ∆ B, ΓH ,Θ ` F ⇑ ; ∆
∨E

H, Γ ` F ⇑ ; ∆



The calculus Ncr

Id
Γ ; H ` H ↓ ; ∆ ;

ΓH ; H ` p↓ ; p, ∆ ; Θ
↓⇑

H, Γ ` p⇑ ; ∆

ΓH ; H ` ⊥↓ ; F , ∆ ; Θ
⊥EI

H, Γ ` F ⇑ ; ∆

ΓH ; H ` p↓ ; F , p, ∆ ; Θ
Rp

H, Γ ` F ⇑ ; p, ∆

Γ ` D ⇑ ; F , ∆D
Rc

Γ ` F ⇑ ; D, ∆
D 6∈ V and p 6= ⊥

Γ ` A⇑ ; ∆ Γ ` B ⇑ ; ∆
∧I

Γ ` A ∧ B ⇑ ; ∆

Γ ; H ` A0 ∧ A1 ↓ ; ∆ ; Θ
∧Ek

Γ ; H ` Ak ↓ ; ∆ ; A1−k , Θ
k ∈ {0, 1}

Γ ` A⇑ ; B, ∆
∨I

Γ ` A ∨ B ⇑ ; ∆

ΓH ; H ` A ∨ B ↓ ; F , ∆ ; Θ A, ΓH , Θ ` F ⇑ ; ∆ B, ΓH , Θ ` F ⇑ ; ∆
∨E

H, Γ ` F ⇑ ; ∆

A, Γ ` B ⇑ ; ∆
→ I

Γ ` A → B ⇑ ; ∆

Γ ; H ` A → B ↓ ; ∆ ; Θ Γ, Θ ` A⇑ ; ∆
→ E

Γ ; H ` B ↓ ; ∆ ; Θ

p ∈ V, F ∈ V ∪ {⊥}, ΓH = Γ \ {H}, ∆D = ∆ \ {D}



Properties of Ncr

We can define a direct translation from Ncr-derivations into Nc, so
that Ncr can be viewed as a notational variant of Nc.

Differently from Nc, Ncr enjoys the strict subformula property.

Branches of Ncr have finite length.
Hence, the proof-search strategy is terminating (no loop-checking).

No backtracking is needed (choices are non-deterministic)

From the open proof-trees generated during a failed-proof search, we
can extract a classical interpretation falsifying the initial sequent.

This implies the completeness of Ncr.



Example 1

Let us prove p ∨ ¬p in Ncr

∅ ; p ` p ↓ ; ⊥, p ; ∅ Id

p ` ⊥⇑ ; p
Rp

` ¬p⇑ ; p
→ I

` p⇑ ; ¬p
Rc

` p ∨ ¬p⇑ ; ∅ ∨I

We have only one⇑-expansion phase followed by a trivial ↓-expansion
phase

Similar to the sequent derivation

Axp ⇒ p
R →⇒ p,¬p
R∨⇒ p ∨ ¬p
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Example 2

Let us prove p ∧ (p → q) → q in Ncr

(2) ∅ ; p ∧ (p → q) ` p ∧ (p → q)↓ ; q ; ∅ Id

(3) ∅ ; p ∧ (p → q) ` p → q ↓ ; q ; p
∧E1

(6) ∅ ; p ` p↓ ; q, p ; ∅ Id

(5) p ` p⇑ ; q
↓⇑

(4) ∅ ; p ∧ (p → q) ` q ↓ ; q ; p
→ E

(1) p ∧ (p → q) ` q⇑ ; ∅
↓⇑

(0) ` p ∧ (p → q) → q⇑ ; ∅ → I

Only one ∧-elimination, as in sequent calculus!

Axp, p → q ⇒ p Axp, q ⇒ q
L→p, p → q ⇒ q

L∧
p ∧ (p → q)⇒ q

R →⇒ p ∧ (p → q) → q
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↓⇑
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Related work and Conclusion

We have presented a procedure to build derivations in Ncr not
requiring backtracking nor loop-checking.
The strategy alternates⇑ and ↓-expansion phases.

* Each phase focuses on a formula and eagerly decomposes it.
* When in⇑-expansion we get a prime formula, we can:

(a) continue⇑-expansion, restarting from a non-prime formula Or
(b) non-deterministically select a head formula to start a new ↓-expansion

phase

There is some high-level analogy with focused calculi, nevertheless
Ncr cannot be classified as such (no polarization of connectives and
atoms).

Ncr-derivations have a direct translation into derivations of Gentzen
natural deduction calculus in normal form.

If we restrict ourselves to the {→,⊥}-fragment of the language, the
procedure behaves like the goal-oriented proof-search strategy of
[Gabbay&Olivetti,2000]



Related work and Conclusion

The idea of performing proof-search in natural deduction calculi
applying I-rules bottom-up and E-rules top-down, so to build
derivations in normal form, dates back to Sieg work.

The näıve proof-search strategy is highly inefficient, due to the huge
number of backtrack points; moreover, to guarantee termination,
one has to check that a configuration does not occur twice along a
branch.



Related work and Conclusion

Natural deduction-like calculi have also been employed to implement
first-order theorem provers, see e.g.

A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin. Automated first order
natural deduction. IICAI, 2005.

A. Indrzejczak. Natural Deduction, Hybrid Systems and Modal Logics, of
Trends in Logic, 2010

D. Pastre. Strong and weak points of the MUSCADET theorem prover -
examples from CASC-JC. AI Commun., 2002.

In these systems, the goal is to implement reasoning in first-order
logic in natural deduction style (introduction and elimination of
assumptions).
Proof-search requires the inspection of the whole database of
available assumptions.

Working implementation:
http://www.dista.uninsubria.it/~ferram/.

http://www.dista.uninsubria.it/~ferram/

