Proof-search in Natural Deduction calculus for classical propositional logic

Mauro Ferrari ${ }^{1}$, Camillo Fiorentini ${ }^{2}$
${ }^{1}$ DiSTA, Univ. degli Studi dell'Insubria, Varese, Italy
${ }^{2}$ DI, Univ. degli Studi di Milano, Via Comelico, Milano, Italy

Tableaux 2015
Wrocław, September 21, 2015

Motivations

- The consensus is that natural deduction calculi are not suitable for proof-search because they lack the "deep symmetries" characterizing sequent calculi.
- Proof-search strategies to build natural deduction derivations are presented in:
- W. Sieg and J. Byrnes. Normal natural deduction proofs (in classical logic). Studia Logica, 1998.
- W. Sieg and S. Cittadini. Normal natural deduction proofs (in non-classical logics). LNCS, 2005.

But these strategies are highly inefficient.

- It seems that that the only effective way to build derivations in natural deduction calculi consists in translating tableaux/sequent proofs.

Our contribution

We show that proof-search in natural deduction calculus for $\mathbf{C l}$ (Propositional Classical Logic) can be efficiently performed.
In particular:

- we introduce Ncr, a variant of the usual natural deduction calculus for $\mathbf{C l}$
- we describe a proof-search procedure for Ncr not requiring backtracking nor loop-checking.
- Main related work:
- W. Sieg and J. Byrnes. Normal natural deduction proofs (in classical logic). Studia Logica, 1998.
- D.M. Gabbay and N. Olivetti. Goal-Directed Proof Theory. 2000. (in particular, the chapter devoted to goal-oriented proof-search for classical logic)

Natural Deduction calculus

The natural deduction calculus has been introduced to capture logical mathematical reasoning.

The formalization of logical deduction, especially as it has been developed by Frege, Russel, and Hilbert, is rather far removed from the forms of deduction used in practice in mathematical proofs.
Considerable formal advantages are achieved in return.
I intended, first of all, to set up a formal system which comes as close as possible to actual reasoning. The result was a calculus of natural deduction (NJ for intuitionist, NK for classical predicate logic).
[Gentzen, "Investigations into logical deduction", 1934]

Natural Deduction calculus

- Formulas A, B, \ldots of $\mathbf{C l}$ are built starting from a set \mathcal{V} of propositional variables:

$$
\begin{array}{rll}
A, B & ::= & \perp|p| A \wedge B|A \vee B| A \rightarrow B \quad p \in \mathcal{V} \\
\neg A & ::= & A \rightarrow \perp
\end{array}
$$

Natural Deduction calculus

- Formulas A, B, \ldots of $\mathbf{C l}$ are built starting from a set \mathcal{V} of propositional variables:

$$
\begin{array}{cll}
A, B & ::= & \perp|p| A \wedge B|A \vee B| A \rightarrow B \quad p \in \mathcal{V} \\
\neg A & ::= & A \rightarrow \perp
\end{array}
$$

- For each logical connective it is defined an introduction rule (I-rule) and an elimination rule (E-rule)
- I-rule

How to introduce a compound formula.
Infer a complex formula from already established components

- E-rule

How to de-construct information about a compound formula.
Specify how components of assumed or established complex formulas can be used as arguments.

Localizing Hypothesis

A derivation \mathcal{D} of B having open assumptions A_{1}, \ldots, A_{n} is represented by a tree of the form

$$
\begin{gathered}
A_{1}, \ldots, A_{n} \\
\mathcal{D} \\
B
\end{gathered}
$$

built according to the rules of the calculus.
In our presentation, it is more convenient to localize hypothesis

$$
\begin{gathered}
\mathcal{D} \\
\Gamma \vdash B
\end{gathered}
$$

The context Γ contains the assumptions A_{1}, \ldots, A_{n} on which B depends.
NK: Natural Deduction calculus for $\mathbf{C l}$ in sequent style

The calculus NK

$$
\begin{aligned}
& \overline{A, \Gamma \vdash A} \mathrm{Id} \quad \frac{\neg A, \Gamma \vdash \perp}{\Gamma \vdash A} \perp E_{\mathrm{C}} \\
& \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge I \quad \frac{\Gamma \vdash A_{0} \wedge A_{1}}{\Gamma \vdash A_{k}} \wedge E_{k} \quad k \in\{0,1\} \\
& \frac{\Gamma \vdash A_{k}}{\Gamma \vdash A_{0} \vee A_{1}} \vee I_{k} \quad \begin{array}{llll}
\Gamma \vdash A \vee B & A, \Gamma \vdash C & B, \Gamma \vdash C \\
\Gamma \vdash C \\
\end{array} \\
& \frac{A, \Gamma \vdash B}{\Gamma \vdash A \rightarrow B} \rightarrow I \quad \Gamma \vdash A \rightarrow B \quad \Gamma \vdash A(\Gamma \vdash B \quad E
\end{aligned}
$$

The calculus NK

$$
\begin{aligned}
& \overline{A, \Gamma \vdash A} \mathrm{Id} \quad \frac{\neg A, \Gamma \vdash \perp}{\Gamma \vdash A} \perp E_{\mathrm{C}} \\
& \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge I \quad \frac{\Gamma \vdash A_{0} \wedge A_{1}}{\Gamma \vdash A_{k}} \wedge E_{k} \quad k \in\{0,1\} \\
& \frac{\Gamma \vdash A_{k}}{\Gamma \vdash A_{0} \vee A_{1}} \vee I_{k} \quad \begin{array}{llll}
\Gamma \vdash A \vee B & A, \Gamma \vdash C & B, \Gamma \vdash C \\
\end{array} \overline{ } \\
& \frac{A, \Gamma \vdash B}{\Gamma \vdash A \rightarrow B} \rightarrow I \quad \Gamma \vdash A \rightarrow B \quad \Gamma \vdash A(E \vdash B \quad \rightarrow
\end{aligned}
$$

Theorem (Completeness of NK)
$A \in \mathbf{C l}$ iff there exists a derivation of $\vdash A$ in $\mathbf{N K}$

A naïve proof-search strategy for NK

To perform proof-search, the basic idea is to orient rules application:

- Apply I-rules bottom-up (\uparrow-expansion)
- Apply the E-rules top-down (\downarrow-expansion)

To get a derivation, \uparrow-expansion and \downarrow-expansion must meet in the middle

A naïve proof－search strategy for NK

To formalize the strategy，we introduce the judgments：
－「ト A 介
The sequent $\Gamma \vdash A$ is obtained by \uparrow－expansion
－「ト $\downarrow \downarrow$
The sequent $\Gamma \vdash A$ is obtained by \downarrow－expansion （ A has been extracted from the assumptions Γ ）．

F．Pfenning．Automated theorem proving．Lecture notes， 2004.
W．Sieg and J．Byrnes．Normal natural deduction proofs（in classical logic）．Studia Logica， 1998.
R．Dyckhoff and L．Pinto．Cut－elimination and a permutation－free sequent calculus for intuitionistic logic．Studia Logica， 1998.

NK + arrows $\downarrow, \Uparrow=$ Nc

Rules of Nc

- Rules for \Uparrow-expansion (to be applied bottom-up)

$$
\begin{array}{cc}
\frac{\Gamma \vdash A \Uparrow}{\Gamma \vdash A \wedge B \Uparrow} \wedge I & \frac{A, \Gamma \vdash B \Uparrow}{\Gamma \vdash A \rightarrow B \Uparrow} \rightarrow I \\
\frac{\Gamma \vdash A \Uparrow}{\Gamma \vdash A \vee B \Uparrow} \vee I_{0} & \frac{\Gamma \vdash B \Uparrow}{\Gamma \vdash A \vee B \Uparrow} \vee I_{1}
\end{array}
$$

Rules of Nc

- Rules for \Uparrow-expansion (to be applied bottom-up)

$$
\begin{array}{cc}
\frac{\Gamma \vdash A \Uparrow}{\Gamma \vdash A \wedge B \Uparrow} \wedge I & \frac{A, \Gamma \vdash B \Uparrow}{\Gamma \vdash A \rightarrow B \Uparrow} \rightarrow I \\
\frac{\Gamma \vdash A \Uparrow}{\Gamma \vdash A \vee B \Uparrow} \vee I_{0} & \frac{\Gamma \vdash B \Uparrow}{\Gamma \vdash A \vee B \Uparrow} \vee I_{1}
\end{array}
$$

- Rules for \downarrow-expansion (to be applied top-down)

$$
\begin{gathered}
\frac{\Gamma \vdash A \wedge B \downarrow}{\Gamma \vdash A \downarrow} \wedge E_{0} \quad \frac{\Gamma \vdash A \wedge B \downarrow}{\Gamma \vdash B \downarrow} \wedge E_{1} \\
\frac{\Gamma \vdash A \rightarrow B \downarrow}{\Gamma \vdash B \downarrow} \quad \Gamma \vdash A \Uparrow \\
\end{gathered} \quad \frac{}{A, \Gamma \vdash A \downarrow} \mathrm{Id} \mathrm{C} \quad \mathrm{C} \quad \mathrm{C}
$$

Note that the right-most premise of $\rightarrow E$ is an \Uparrow-sequent

Rules of Nc

To match \Uparrow-expansion with \downarrow-expansion we need:

- Coercion

$$
\frac{\Gamma \vdash A \downarrow}{\Gamma \vdash A \Uparrow} \downarrow \Uparrow
$$

We can assume that A is prime (namely, $A \in \mathcal{V} \cup\{\perp\}$)

Rules of Nc

To match \Uparrow-expansion with \downarrow-expansion we need:

- Coercion

$$
\frac{\Gamma \vdash A \downarrow}{\Gamma \vdash A \Uparrow} \downarrow \Uparrow
$$

We can assume that A is prime (namely, $A \in \mathcal{V} \cup\{\perp\}$)

- (Classical) \perp-elimination

$$
\frac{\neg A, \Gamma \vdash \perp \downarrow}{\Gamma \vdash A \Uparrow} \perp E_{\mathrm{C}}
$$

We can assume $A \in \mathcal{V}$ or A is a disjunction

Rules of Nc

To match \Uparrow-expansion with \downarrow-expansion we need:

- Coercion

$$
\frac{\Gamma \vdash A \downarrow}{\Gamma \vdash A \Uparrow} \downarrow \Uparrow
$$

We can assume that A is prime (namely, $A \in \mathcal{V} \cup\{\perp\}$)

- (Classical) \perp-elimination

$$
\frac{\neg A, \Gamma \vdash \perp \downarrow}{\Gamma \vdash A \Uparrow} \perp E_{\mathrm{C}}
$$

We can assume $A \in \mathcal{V}$ or A is a disjunction

- V-elimination

$$
\frac{\Gamma \vdash A \vee B \downarrow \quad A, \Gamma \vdash C \Uparrow}{\Gamma \vdash C \Uparrow} \quad B, \Gamma \vdash C \Uparrow 1 \vee E
$$

We can assume C prime or C is a disjunction (namely, $C=C_{0} \vee C_{1}$).

The calculus Nc

$$
\begin{array}{ccc}
\frac{\Gamma, \Gamma \vdash A \downarrow}{} I d & \frac{\Gamma \vdash A \downarrow}{\Gamma \vdash A \Uparrow} \downarrow \Uparrow \quad(\dagger) & \frac{\neg A, \Gamma \vdash \perp \downarrow}{\Gamma \vdash A \Uparrow} \perp E_{\mathrm{C}} \\
\frac{\Gamma \vdash A \Uparrow}{\Gamma \vdash A \wedge B \Uparrow} \wedge I & \frac{\Gamma \vdash A_{0} \wedge A_{1} \downarrow}{\Gamma \vdash A_{k} \downarrow} \wedge E_{k} \\
\frac{\Gamma \vdash A_{k} \Uparrow}{\Gamma \vdash A_{0} \vee A_{1} \Uparrow} \vee I_{k} & \frac{\Gamma \vdash A \vee B \downarrow A, \Gamma \vdash C \Uparrow}{} B, \Gamma \vdash C \Uparrow \\
\frac{A, \Gamma \vdash B \Uparrow}{\Gamma \vdash A \rightarrow B \Uparrow} \rightarrow I & \frac{\Gamma \vdash A \rightarrow B \downarrow}{\Gamma \vdash B \downarrow} \quad \Gamma \vdash A \Uparrow
\end{array} \rightarrow E \text { I }
$$

(\dagger) Assumptions

$$
\begin{array}{ll}
\downarrow \Uparrow & : A \in \mathcal{V} \cup\{\perp\} \\
\perp E_{\mathrm{C}} & : A \in \mathcal{V} \text { or } A=A_{0} \vee A_{1} \\
\vee E & : C \in \mathcal{V} \cup\{\perp\} \text { or } C=C_{0} \vee C_{1}
\end{array}
$$

The calculus Nc

Derivations in Nc are by definition in normal form. Actually, Nc-derivations correspond to NK-derivations in normal form.
For instance a detour of the kind

$$
\begin{array}{cccc}
\vdots & & {[A], \Gamma} \\
\frac{A, \Gamma \vdash B}{\Gamma \vdash A \rightarrow B} \rightarrow I & \vdots \\
\hline \Gamma \vdash B & \Gamma \vdash A \\
\hline
\end{array} \quad \begin{array}{cc}
\vdots & \Gamma \\
\frac{\frac{B}{A \rightarrow B} \rightarrow I}{B} \\
\frac{B}{B}
\end{array} \rightarrow E
$$

with a maximal formula $A \rightarrow B$ is not allowed in Nc.

$$
\frac{\begin{array}{l}
A, \Gamma \star B \downarrow \\
\Gamma \vdash A \rightarrow B \downarrow
\end{array} \quad \vdots}{\Gamma \vdash A \Uparrow} \rightarrow E
$$

$A \rightarrow B$ cannot be introduced in \downarrow-expansion!

The calculus Nc

Coercion rule

$$
\frac{\Gamma \vdash A \downarrow}{\Gamma \vdash A \Uparrow} \downarrow \Uparrow
$$

is crucial to "coerce" derivations in normal form.
To simulate NK-derivations in Nc, we need the converse of coercion

$$
\frac{\Gamma \vdash A \Uparrow}{\Gamma \vdash A \downarrow} \Uparrow \downarrow
$$

which allows one to build non-normal derivations:

$$
\begin{array}{ll}
\frac{A, \Gamma \vdash B \Uparrow}{\Gamma \vdash A \rightarrow B \Uparrow} \rightarrow I & \cdots \\
\frac{\Gamma \vdash A \rightarrow B \downarrow}{\Gamma \vdash} \text { 泣 } & \Gamma \vdash A \Uparrow \\
\Gamma \vdash B \downarrow
\end{array} E
$$

Theorem (Normalization of NK)

$\Gamma \vdash A$ is provable in NK iff $\Gamma \vdash A$ 介 is provable in $\mathbf{N c}$.

Proof-search strategy for Nc

We alternate \Uparrow-expansion and \downarrow-expansion phases.
(1) \Uparrow-expansion

To prove $\Gamma \vdash A$ 介, backward apply introduction rules.
We stop whenever we get a leaf sequent $\Gamma^{\prime} \vdash K \Uparrow$ such that K is prime or a disjunction

$$
\Gamma_{1}^{\prime} \vdash K_{1} \Uparrow \quad \ldots \quad \Gamma_{n}^{\prime} \vdash K_{n} \Uparrow
$$

$$
\Gamma \vdash A \Uparrow
$$

Now, we have to expand the leaves

Proof-search strategy for Nc

We have three possible ways to expand a leaf $\Gamma^{\prime} \vdash K \Uparrow$.

Proof-search strategy for Nc

We have three possible ways to expand a leaf $\Gamma^{\prime} \vdash K \Uparrow$.
(1.1) If K is prime, we can apply coercion.

$$
\begin{gathered}
\frac{\Gamma^{\prime} \vdash K \downarrow}{\Gamma^{\prime} \vdash K \Uparrow} \downarrow \Uparrow \\
\vdots \\
\Gamma \vdash A \Uparrow
\end{gathered}
$$

Proof-search strategy for Nc

We have three possible ways to expand a leaf $\Gamma^{\prime} \vdash K \Uparrow$.
(1.1) If K is prime, we can apply coercion.

$$
\frac{\Gamma^{\prime} \vdash K \downarrow}{\Gamma^{\prime} \vdash K \Uparrow} \downarrow \Uparrow
$$

$$
\Gamma \vdash A \Uparrow
$$

(1.2) If K is a propositional variable or a disjunction, we can apply classical \perp-elimination.

$$
\frac{\neg K, \Gamma^{\prime} \vdash \perp \downarrow}{\Gamma^{\prime} \vdash K \Uparrow} \perp E_{\mathrm{C}}
$$

$$
\Gamma \vdash A \Uparrow
$$

Proof-search strategy for Nc

(1.3) If K is prime or a disjunction, we can apply \vee-elimination.

$$
\frac{\Gamma^{\prime} \vdash D_{0} \vee D_{2} \downarrow}{} \quad D_{0}, \Gamma^{\prime} \vdash K \Uparrow \quad D_{1}, \Gamma^{\prime} \vdash K \Uparrow \quad \vee E
$$

$$
\Gamma \vdash A \Uparrow
$$

Proof-search strategy for Nc

(1.3) If K is prime or a disjunction, we can apply \vee-elimination.

$$
\begin{array}{ccc}
\Gamma^{\prime} \vdash D_{0} \vee D_{2} \downarrow & D_{0}, \Gamma^{\prime} \vdash K \Uparrow & D_{1}, \Gamma^{\prime} \vdash K \Uparrow \\
\Gamma^{\prime} \vdash K \Uparrow & \\
& \vdots & \\
& \Gamma \vdash A \Uparrow &
\end{array}
$$

In all cases, we generate new leaves that must be proved.

- To prove an \Uparrow-sequent, we continue the current \Uparrow-expansion phase.
- To prove a \downarrow-sequent, we start a new \downarrow-expansion phase.

Proof-search strategy for Nc

(2) \downarrow-expansion

To prove $\Gamma \vdash K \downarrow$:

- Select $H \in \Gamma$ (head formula)
- Starting from the axiom sequent

$$
\Gamma \vdash H \downarrow
$$

apply \wedge, \rightarrow-elimination rules with the goal to extract K from H.

$$
\begin{array}{ll}
\frac{\Gamma \vdash H \downarrow}{} \mathrm{Id} & \\
\hline \Gamma \vdash \mathcal{R}_{1} \downarrow \\
\hline \Gamma \vdash \mathcal{R}_{2} \downarrow & H \in \Gamma \\
\ldots \vdash K & \\
\mathcal{R}_{1}, \mathcal{R}_{2} \cdots \in\left\{\wedge E_{k}, \rightarrow E\right\} \\
&
\end{array}
$$

Proof-search strategy for Nc

$$
\frac{\frac{\Gamma \vdash H \downarrow}{\Gamma \vdash H_{1} \downarrow}}{\Gamma \vdash H_{2} \downarrow} \quad H \in \Gamma
$$

The formulas H_{1}, H_{2}, \ldots, K obtained in the right are subformulas of H of a special form, we call them strictly positive subformula of H.
Formally:

- $\mathrm{Sf}^{+}(H)$: the set of strictly positive subformula of H.
- $Q \in \mathrm{Sf}^{+}(H)$ iff:

$$
Q::=H\left|Q^{\prime} \wedge A\right| A \wedge Q^{\prime} \mid A \rightarrow Q^{\prime}
$$

where $Q^{\prime} \in \mathrm{Sf}^{+}(H)$ and A is any formula.

Proof-search strategy for Nc

To narrow the search space, we refine \downarrow-expansion:
(2') \downarrow-expansion
To prove $\Gamma \vdash K \downarrow$:

- Select $H \in \Gamma$ (head formula) such that $K \in \operatorname{Sf}^{+}(H)$.
- Starting from the axiom sequent $\Gamma \vdash H \downarrow$ apply \wedge, \rightarrow-elimination rules with the goal to extract K from H.

$$
\begin{aligned}
& \overline{\Gamma \vdash H \downarrow} \text { Id } \\
& \Gamma \vdash K \downarrow
\end{aligned} \quad H \in \Gamma \text { such that } K \in \operatorname{Sf}^{+}(H)
$$

Proof-search strategy for Nc

To narrow the search space, we refine \downarrow-expansion:
(2') \downarrow-expansion
To prove $\Gamma \vdash K \downarrow$:

- Select $H \in \Gamma$ (head formula) such that $K \in \operatorname{Sf}^{+}(H)$.
- Starting from the axiom sequent $\Gamma \vdash H \downarrow$ apply \wedge, \rightarrow-elimination rules with the goal to extract K from H.

$$
\begin{aligned}
& \overline{\Gamma \vdash H \downarrow} \text { Id } \\
& \Gamma \vdash K \downarrow
\end{aligned} \quad H \in \Gamma \text { such that } K \in \operatorname{Sf}^{+}(H)
$$

Note that $\rightarrow E$ generates a new \Uparrow-sequent, which must be \Uparrow-expanded.

$$
\begin{aligned}
& \overline{\Gamma \vdash H \downarrow} \mathrm{Id} \\
& \frac{\Gamma \vdash A \rightarrow B \downarrow}{\Gamma \vdash B \downarrow} \quad \Gamma \vdash A \Uparrow \rightarrow E \\
& \Gamma \vdash K \downarrow
\end{aligned}
$$

A proof-search example

Let us search for a Nc-derivation of $p \vee \neg p$
We start an \Uparrow-expansion phase from the sequent:

$$
\vdash p \vee \neg p \Uparrow
$$

A proof-search example

Let us search for a Nc-derivation of $p \vee \neg p$
We start an \Uparrow-expansion phase from the sequent:

$$
\vdash p \vee \neg p \Uparrow
$$

We have now three choices:
$\frac{\vdash p \Uparrow}{\vdash p \vee \neg p \Uparrow} \vee I_{0}$
$\frac{\vdash \neg p \Uparrow}{\vdash p \vee \neg p \Uparrow} \vee I_{1}$
$\frac{\neg(p \vee \neg p) \vdash \perp \downarrow}{\vdash p \vee \neg p \Uparrow} \perp E_{\mathrm{C}}$
(1) Apply $\vee I_{0}$
(2) Apply $\vee I_{1}$
(3) Apply $\perp E_{\mathrm{C}}$

A proof-search example

(1) Let us apply $\vee I_{0}$. We have two choices:

$$
\frac{\frac{\vdash p \downarrow}{\vdash p \Uparrow} \downarrow \Uparrow}{\vdash p \vee \neg p \Uparrow} \vee I_{0}
$$

$$
\frac{\neg p \vdash \perp \downarrow}{\vdash p \Uparrow} \perp E_{\mathrm{C}}
$$

(1.1) Apply $\downarrow \uparrow$

Fail
(1.2) Apply $\perp E_{\mathrm{C}}$

A proof-search example

(1.2)

$$
\frac{\neg p \vdash \perp \downarrow}{\vdash p \Uparrow} \perp E_{\mathrm{C}}
$$

We can extract \perp from $\neg p$ starting a \downarrow-phase from the axiom sequent

$$
\neg p \vdash \neg p \downarrow
$$

and applying $\rightarrow E$. We get

$$
\frac{\overline{\neg p \vdash \neg p \downarrow} \mathrm{Id} \quad \neg p \vdash p \Uparrow}{\frac{\neg p \vdash \perp \downarrow}{\vdash p \Uparrow} \perp E_{\mathrm{C}}} \rightarrow E
$$

A proof-search example

We can \Uparrow-expand the leaf $\neg p \vdash p \Uparrow$ in two ways:

$$
\begin{aligned}
& \frac{\neg p \vdash p \downarrow}{\neg p \vdash p \Uparrow} \downarrow \Uparrow \\
& \frac{\neg p \vdash \perp \downarrow}{\neg p \vdash p \Uparrow} \perp E_{\mathrm{C}} \\
& \vdash p \vee \neg p \text { 介 } \\
& \vdash p \vee \neg p \Uparrow \\
& \text { (1.2.1) Apply } \downarrow \Uparrow \\
& \text { Fail } \\
& \left.\frac{\neg p \vdash \neg p \downarrow}{} \mathrm{Id} \quad \neg p \vdash p \Uparrow\right) \\
& \vdash p \vee \neg p \Uparrow
\end{aligned}
$$

A proof-search example

We have to backtrack and try (2), namely $\vee I_{1}$ After some expansion step, we get

$$
\frac{\frac{p \vdash \perp \Uparrow}{\vdash \neg p \Uparrow}}{\vdash p \vee \neg p \Uparrow} \vee I_{1}
$$

and proof-search fails.
We need to backtrack once again.

A proof-search example

It remains to try (3), namely $\perp E_{\mathrm{C}}$. We get:

$$
\frac{\neg(p \vee \neg p) \vdash \neg(p \vee \neg p) \downarrow}{} \mathrm{Id} \quad \neg(p \vee \neg p) \vdash p \vee \neg p \Uparrow 1
$$

A proof-search example

Now, we have three possible choices

$$
\begin{aligned}
& \frac{\neg(p \vee \neg p) \vdash p \Uparrow}{\neg(p \vee \neg p) \vdash p \vee \neg p \Uparrow} \vee I_{0} \quad \frac{\neg(p \vee \neg p) \vdash \neg p \Uparrow}{\neg(p \vee \neg p) \vdash p \vee \neg p \Uparrow} \vee I_{1} \\
& \vdash p \vee \neg p \Uparrow \\
& \text { (3.1) Apply } \vee I_{0} \\
& \frac{\neg(p \vee \neg p) \vdash \perp \downarrow}{\neg(p \vee \neg p) \vdash p \vee \neg p \Uparrow} \perp E_{\mathrm{C}} \\
& \vdash p \vee \neg p \text { 介 } \\
& \text { (3.3) Apply } \perp E_{C}
\end{aligned}
$$

A proof-search example

All the three ways lead to a successful derivation, possibly with some redundancies.

The most concise derivation corresponds to choice (3.2)

$$
\begin{aligned}
& \vdots \\
& \vdash p \vee \neg p \Uparrow
\end{aligned}
$$

This corresponds to the standard derivation in normal form of $p \vee \neg p$.

A proof-search example

Compare with the sequent derivation of the same formula $p \vee \neg p$:

$$
\begin{gathered}
\frac{p \Rightarrow p}{\Rightarrow \mathrm{Ax}} \\
\frac{\Rightarrow p, \neg p}{\Rightarrow p \vee \neg p} R \backslash
\end{gathered}
$$

- very compact and plain
- no choice points
- no backtracking
- sequents are decreasing hence branches have finite length (termination)

Proof-search strategy for Nc

This naïve strategy suffers from the huge search space:

- Contexts never decrease, hence an assumption might be used more and more times
- too many backtrack points
- some mechanism is needed to guarantee termination (e.g., loop-checking).

Proof-search strategy for Nc

This naïve strategy suffers from the huge search space:

- Contexts never decrease, hence an assumption might be used more and more times
- too many backtrack points
- some mechanism is needed to guarantee termination (e.g., loop-checking).

This is in disagreement with the proof-search strategies based on standard sequent/tableaux calculi for $\mathbf{C I}$, where:

- a formula occurrence can be used at most once along a branch
- no backtracking is needed
- termination is guaranteed by the fact that at each step at least a formula is decomposed.

Proof-search strategy for Nc

This naïve strategy suffers from the huge search space:

- Contexts never decrease, hence an assumption might be used more and more times
- too many backtrack points
- some mechanism is needed to guarantee termination (e.g., loop-checking).

This is in disagreement with the proof-search strategies based on standard sequent/tableaux calculi for $\mathbf{C I}$, where:

- a formula occurrence can be used at most once along a branch
- no backtracking is needed
- termination is guaranteed by the fact that at each step at least a formula is decomposed.

Can we recover these nice properties in natural deduction proof-search?

On assumptions control

- An application of $\perp E_{\mathrm{C}}$ transfers the current right-formula A on the left, negating it:

$$
\frac{\neg A, \Gamma \vdash \perp \downarrow}{\Gamma \vdash A \Uparrow} \perp E_{\mathrm{C}}
$$

Note that this breaks the strict subformula property From now on, the assumption $\neg A$ cannot be thrown down.

On assumptions control

- An application of $\perp E_{\mathrm{C}}$ transfers the current right-formula A on the left, negating it:

$$
\frac{\neg A, \Gamma \vdash \perp \downarrow}{\Gamma \vdash A \Uparrow} \perp E_{\mathrm{C}}
$$

Note that this breaks the strict subformula property
From now on, the assumption $\neg A$ cannot be thrown down.

- Using assumption $\neg A$ and $\perp E_{\mathrm{C}}$, we can regain A on the right:

$$
\begin{gathered}
\frac{\neg A, \neg B, \Gamma_{1} \vdash \neg A \downarrow}{} \mathrm{Id} \quad \neg A, \neg B, \Gamma_{1} \vdash A \Uparrow \\
\frac{\neg A, \neg B, \Gamma_{1} \vdash \perp \downarrow}{\neg A, \Gamma_{1} \vdash B \Uparrow} \perp E_{\mathrm{C}} \\
\vdots \\
\frac{\neg A, \Gamma \vdash \perp \downarrow}{\Gamma \vdash A \Uparrow} \perp E_{\mathrm{C}}
\end{gathered}
$$

On assumptions control

- By repeatedly applying this pattern, we get an infinite branch where the right formula A can be used as many times we want:

$$
\begin{array}{cr}
\neg A, \Gamma_{2} \vdash A \Uparrow & \\
\vdots & \Gamma \subseteq \Gamma_{1} \subseteq \Gamma_{2} \\
\neg A, \Gamma_{1} \vdash A \Uparrow & \\
\vdots & \\
\frac{\neg A, \Gamma \vdash \perp \downarrow}{\Gamma \vdash A \Uparrow} \perp E_{\mathrm{C}} &
\end{array}
$$

To get the same effect but in a more controlled way: replace $\perp E_{\mathrm{C}}$ with restart rule [Gabbay\&Olivetti, 2000]

Restart

Restart rule allows one to restart from a previous right-formula:

$$
\begin{aligned}
& \frac{\Gamma_{1} \vdash A \Uparrow}{\Gamma^{\prime} \vdash B \Uparrow} \text { Restart from } A \\
& \quad \ldots \\
& \Gamma \vdash A \Uparrow
\end{aligned}
$$

- We apply Restart is in \Uparrow-expansion, if the current right formula is prime
- Formulas usable for restart are stored in a restart set Δ

$$
\begin{gathered}
\Gamma \vdash A \Uparrow \\
\Gamma \vdash F \Uparrow
\end{gathered} \quad \Delta::=F, \Delta^{\prime} \text { Restart } \quad F \in \mathcal{V} \cup\{\perp\}
$$

Restart

Restart rule allows one to restart from a previous right-formula:

$$
\begin{aligned}
& \frac{\Gamma_{1} \vdash A \Uparrow}{\Gamma^{\prime} \vdash B \Uparrow} \text { Restart from } A \\
& \quad \ldots \\
& \Gamma \vdash A \Uparrow
\end{aligned}
$$

- We apply Restart is in \Uparrow-expansion, if the current right formula is prime
- Formulas usable for restart are stored in a restart set Δ

$$
\begin{gathered}
\Gamma \vdash A \Uparrow \\
\Gamma \vdash F \Uparrow
\end{gathered} \quad \Delta::=F, \Delta^{\prime}, \text { Restart } \quad F \in \mathcal{V} \cup\{\perp\}
$$

This leads to the natural deduction calculus Ncr (Nc with restart)

The calculus Ncr

$$
\begin{array}{rll}
\text { Ncr }=\mathbf{N c} & - & \text { classical } \perp \text {-elimination } \perp E_{\mathrm{C}} \\
& + & \text { restart } \\
& + & \text { intuitionistic } \perp \text {-elimination } \perp E_{\mathrm{I}}
\end{array}
$$

The calculus Ncr

$$
\begin{array}{rll}
\text { Ncr }=\mathbf{N c} & - & \text { classical } \perp \text {-elimination } \perp E_{\mathrm{C}} \\
& + & \text { restart } \\
& + & \text { intuitionistic } \perp \text {-elimination } \perp E_{\mathrm{I}}
\end{array}
$$

Sequents need more structure:

$$
\begin{array}{cl}
\Uparrow \text {-sequent: } & \ulcorner\vdash A \Uparrow ; \Delta \\
\text { logical meaning: } & \wedge\ulcorner\rightarrow(A \vee \vee \Delta)
\end{array}
$$

- 「: set of assumptions
- A: right-formula (the formula to be proved)
- Δ : restart set (formulas available for restart)

Proof-search starts with an empty restart set.

The calculus Ncr

- Restart (to be improved to avoid loops)

$$
\frac{\Gamma \vdash A \Uparrow ; F, \Delta}{\Gamma \vdash F \Uparrow ; A, \Delta} \text { Restart } \quad F \in \mathcal{V} \cup\{\perp\}
$$

The calculus Ncr

- Restart (to be improved to avoid loops)

$$
\frac{\Gamma \vdash A \Uparrow ; F, \Delta}{\Gamma \vdash F \Uparrow ; A, \Delta} \text { Restart } \quad F \in \mathcal{V} \cup\{\perp\}
$$

- \wedge-introduction

$$
\frac{\Gamma \vdash A \Uparrow ; \Delta \quad \Gamma \vdash B \Uparrow ; \Delta}{\Gamma \vdash A \wedge B \Uparrow ; \Delta} \wedge I
$$

The calculus Ncr

- Restart (to be improved to avoid loops)

$$
\frac{\Gamma \vdash A \Uparrow ; F, \Delta}{\Gamma \vdash F \Uparrow ; A, \Delta} \text { Restart } \quad F \in \mathcal{V} \cup\{\perp\}
$$

- \wedge-introduction

$$
\frac{\Gamma \vdash A \Uparrow ; \Delta \quad \Gamma \vdash B \Uparrow ; \Delta}{\Gamma \vdash A \wedge B \Uparrow ; \Delta} \wedge I
$$

- V-introduction

$$
\frac{\Gamma \vdash A \Uparrow ; B, \Delta}{\Gamma \vdash A \vee B \Uparrow ; \Delta} \vee I
$$

Note that we need only one rule, which retains the first disjunct. The second one can be recovered by restart.

The calculus Ncr

- Restart (to be improved to avoid loops)

$$
\frac{\Gamma \vdash A \Uparrow ; F, \Delta}{\Gamma \vdash F \Uparrow ; A, \Delta} \text { Restart } \quad F \in \mathcal{V} \cup\{\perp\}
$$

- \wedge-introduction

$$
\frac{\Gamma \vdash A \Uparrow ; \Delta \quad \Gamma \vdash B \Uparrow ; \Delta}{\Gamma \vdash A \wedge B \Uparrow ; \Delta} \wedge I
$$

- V-introduction

$$
\frac{\Gamma \vdash A \Uparrow ; B, \Delta}{\Gamma \vdash A \vee B \Uparrow ; \Delta} \vee I
$$

Note that we need only one rule, which retains the first disjunct.
The second one can be recovered by restart.

- \rightarrow-introduction

$$
\frac{A, \Gamma \vdash B \Uparrow ; \Delta}{\Gamma \vdash A \rightarrow B \Uparrow ; \Delta} \rightarrow I
$$

On resource consumption

Before continuing the presentation of Ncr, we point out another issue on proof-search in Nc (not solved by restart).

Let us consider a derivation of

$$
p \wedge(p \rightarrow q) \rightarrow q
$$

in the classical sequent calculus (G3-style):

$$
\left.\begin{array}{c}
\frac{p, p \rightarrow q \Rightarrow p}{} \mathrm{Ax} \quad \frac{p, q \Rightarrow q}{} \mathrm{Ax} \\
\frac{p, p \rightarrow q \Rightarrow q}{p \wedge(p \rightarrow q) \Rightarrow q} L \wedge \\
\Rightarrow p \wedge(p \rightarrow q) \rightarrow q \\
\Rightarrow
\end{array}\right)
$$

The assumption $p \wedge(p \rightarrow q)$ is used once

On resource consumption

In contrast, to prove the same formula in Nc, we have to use the assumption $p \wedge(p \rightarrow q)$ twice.

$$
\begin{gathered}
\frac{p \wedge(p \rightarrow q) \vdash p \wedge(p \rightarrow q) \downarrow}{p \wedge(p \rightarrow q) \vdash p \rightarrow q \downarrow} \wedge E_{1} \\
\frac{p \wedge(p \rightarrow q) \vdash p \wedge(p \rightarrow q) \downarrow}{\frac{p \wedge(p \rightarrow q) \vdash p \downarrow}{p \wedge(p \rightarrow q) \vdash q \downarrow}} \mathrm{Id} \\
\frac{p \wedge(p \rightarrow q) \vdash p \Uparrow}{p \Uparrow}
\end{gathered} E_{0}
$$

Compare with the sequent derivation:

$$
\left.\begin{array}{c}
\hline \frac{p, p \rightarrow q \Rightarrow p}{} \mathrm{Ax} \overline{p, q \Rightarrow q} \mathrm{Ax} \\
\frac{p, p \rightarrow q \Rightarrow q}{p \wedge(p \rightarrow q) \Rightarrow q} L \wedge \\
\Rightarrow p \wedge(p \rightarrow q) \rightarrow q \\
\Rightarrow
\end{array}\right)
$$

On resource consumption

This is due to the different behaviour in managing an assumption $A \wedge B$:

- Sequent calculus

$$
\frac{A, B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta} L \wedge
$$

Both the conjuncts A and B are retained on the left and are available as assumptions.

- Nc

$$
\frac{\Gamma \vdash A \wedge B \downarrow}{\Gamma \vdash A \downarrow} \wedge E_{0} \quad \frac{\Gamma \vdash A \wedge B \downarrow}{\Gamma \vdash B \downarrow} \wedge E_{1}
$$

In both cases, one between the conjuncts A and B is lost.
To regain it, we need to re-prove $\Gamma \vdash A \wedge B \downarrow$, and this introduces some overhead in proof-search.

On resource consumption

To overcome the problem, in \downarrow-expansion we do not throw down the unused conjuncts, but we preserve them exploiting a resource set Θ.

On resource consumption

To overcome the problem, in \downarrow-expansion we do not throw down the unused conjuncts, but we preserve them exploiting a resource set Θ.

- At the beginning of a \downarrow-expansion phase, Θ is empty

$$
\overline{\Gamma \vdash H \downarrow} \quad \Theta::=\emptyset \text { Id } \quad H \in \Gamma
$$

On resource consumption

To overcome the problem, in \downarrow-expansion we do not throw down the unused conjuncts, but we preserve them exploiting a resource set Θ.

- At the beginning of a \downarrow-expansion phase, Θ is empty

$$
\overline{\Gamma \vdash H \downarrow} \quad \Theta::=\emptyset \text { Id } \quad H \in \Gamma
$$

- Whenever an \wedge-elimination rule is applied, Θ is updated by adding the unused conjunct

$$
\frac{\Gamma \vdash A \wedge B \downarrow}{\Gamma \vdash A \downarrow \quad \Theta \cup\{B\}} \wedge E_{0}
$$

$$
\frac{\Gamma \vdash A \wedge B \downarrow}{\Gamma \vdash B \downarrow} \Theta \ominus(\Theta) \wedge E_{1}
$$

This is similar to the $L L$ (Local Linear)-computation paradigm of [Gabbay\&Olivetti, 2000]

On resource consumption

To combine restart with LL-computation, \downarrow-sequents must be refined:

$$
\begin{array}{cl}
\downarrow \text {-sequent: } & \ulcorner; H \vdash A \downarrow ; \Delta ; \Theta \\
\text { logical meaning: } & (\wedge\ulcorner\wedge H) \rightarrow((A \wedge \wedge \Theta) \vee \vee \Delta)
\end{array}
$$

- $\Gamma \cup\{H\}$: available assumptions
- H (head formula): assumption selected at the beginning of \downarrow-expansion, to settle the initial axiom sequent
- A: right-formula (the formula to be proved)
- Δ : restart set (not used in \downarrow-expansion)
- Θ : the resource set (updated by \wedge-elimination applications)

On resource consumption

\downarrow-expansion starts from an axiom sequent with empty resource set

$$
\Gamma ; H \vdash H \downarrow ; \Delta ; \emptyset
$$

By applying \wedge, \rightarrow-elimination rules, we get a branch of the form

$$
\frac{\frac{\Gamma ; H \vdash H \downarrow ; \Delta ; \emptyset}{\text { Г; }} \mathrm{Id}}{\frac{\Gamma ; H \vdash H_{1} \downarrow ; \Delta ; \Theta_{2} \downarrow ; \Delta ; \Theta_{2}}{}}
$$

We remark that:

- $H_{1}, H_{2}, \ldots \in \mathrm{Sf}^{+}(H) \quad$ (the set of strictly pos. subformulas of H)
- $\Theta_{1}, \Theta_{2}, \ldots \subseteq \operatorname{Sf}^{+}(H)$

The calculus Ncr

- \wedge-elimination

$$
\frac{\Gamma ; H \vdash A \wedge B \downarrow ; \Delta ; \Theta}{\Gamma ; H \vdash A \downarrow ; \Delta ; B, \Theta} \wedge E_{0}
$$

$$
\frac{\Gamma ; H \vdash A \wedge B \downarrow ; \Delta ; \Theta}{\Gamma ; H \vdash B \downarrow ; \Delta ; A, \Theta} \wedge E_{1}
$$

The calculus Ncr

- \wedge-elimination

$$
\frac{\Gamma ; H \vdash A \wedge B \downarrow ; \Delta ; \Theta}{\Gamma ; H \vdash A \downarrow ; \Delta ; B, \Theta} \wedge E_{0} \quad \frac{\Gamma ; H \vdash A \wedge B \downarrow ; \Delta ; \Theta}{\Gamma ; H \vdash B \downarrow ; \Delta ; A, \Theta} \wedge E_{1}
$$

- \rightarrow-elimination

$$
\frac{\Gamma ; H \vdash A \rightarrow B \downarrow ; \Delta ; \Theta \quad \Gamma, \Theta \vdash A \Uparrow ; \Delta}{\Gamma ; H \vdash B \downarrow ; \Delta ; \Theta} \rightarrow E
$$

The right-most premise starts a new \Uparrow-expansion phase where:

- the available assumptions are $\Gamma \cup \Theta$
- the assumption H is not usable any more, but it has been replaced by the formulas in Θ (which are strictly positive subformulas of H).

The calculus Ncr

- Coercion

To prove $\Gamma \vdash p \Uparrow ; \Delta$ using coercion:

- Non-deterministically select $H \in \Gamma$ such that $p \in \operatorname{Sf}^{+}(H)$ [Non-deterministically $=$ No backtracking!]
- Start a \downarrow-expansion phase from the axiom sequent

$$
\Gamma_{H} ; H \vdash H \downarrow ; p, \Delta ; \emptyset \quad \Gamma_{H}=\Gamma \backslash\{H\}
$$

with the goal to extract p from H.
Note that p has been added to the restart set.

$$
\begin{gathered}
\overline{\Gamma_{H} ; H \vdash H \downarrow ; p, \Delta ; \emptyset} \mathrm{Id} \\
\vdots \\
\Gamma_{H} ; H \vdash p \downarrow ; p, \Delta ; \Theta
\end{gathered}
$$

To close the gap, coercion rule must have the form:

$$
\frac{\Gamma_{H} ; H \vdash p \downarrow ; p, \Delta ; \Theta}{H, \Gamma \vdash p \Uparrow ; \Delta} \downarrow \Uparrow
$$

The calculus Ncr

- Restart

We split restart into two rules.

The calculus Ncr

- Restart

We split restart into two rules.

- R

Restart from a compound formula D, namely $D \notin \mathcal{V}$ and $D \neq \perp$.

$$
\frac{\Gamma \vdash D \Uparrow ; F, \Delta}{\Gamma \vdash F \Uparrow ; D, \Delta} R_{c} \quad F \in \mathcal{V} \cup\{\perp\}
$$

The calculus Ncr

- Restart

We split restart into two rules.

- R_{c}

Restart from a compound formula D, namely $D \notin \mathcal{V}$ and $D \neq \perp$.

$$
\frac{\Gamma \vdash D \Uparrow ; F, \Delta}{\Gamma \vdash F \Uparrow ; D, \Delta} \mathrm{R}_{\mathrm{c}} \quad F \in \mathcal{V} \cup\{\perp\}
$$

- R_{p}

Restart from a propositional variable p and, to avoid infinite loops, immediately apply coercion:

$$
\begin{array}{cl}
\Gamma_{H} ; H \vdash p \downarrow ; F, p, \Delta ; \Theta & \Gamma_{H}=\Gamma \backslash\{H\} \\
-H, \Gamma \vdash \bar{p} \Uparrow ; \bar{F}, \Delta-\downarrow \Uparrow & F \in \mathcal{V} \cup\{\perp\}
\end{array}
$$

More succinctly:

$$
\frac{\Gamma_{H} ; H \vdash p \downarrow ; F, p, \Delta ; \Theta}{H, \Gamma \vdash F \Uparrow ; p, \Delta} \mathrm{R}_{\mathrm{p}}
$$

The calculus Ncr

- intuitionistic \perp-elimination

To prove $\Gamma \vdash F$ 介; Δ, with F prime, using \perp-elimination:

- Non-deterministically select $H \in \Gamma$ such that $\perp \in \mathrm{Sf}^{+}(H)$
- Start a \downarrow-expansion phase from the axiom sequent

$$
\Gamma_{H} ; H \vdash H \downarrow ; F, \Delta ; \emptyset \quad \Gamma_{H}=\Gamma \backslash\{H\}
$$

with the goal to extract \perp from H
Note that F has been added to the restart set.

$$
\begin{gathered}
\overline{\Gamma_{H} ; H \vdash H \downarrow ; F, \Delta ; \emptyset} \mathrm{Id} \\
\vdots \\
\Gamma_{H} ; H \vdash \perp \downarrow ; F, \Delta ; \Theta
\end{gathered}
$$

To close the gap, $\perp E_{\mathrm{I}}$ must have the form:

$$
\frac{\Gamma_{H} ; H \vdash \perp \downarrow ; F, \Delta ; \Theta}{H, \Gamma \vdash F \Uparrow ; \Delta} \perp E_{I}
$$

The calculus Ncr

- V-elimination

To prove $\Gamma \vdash F$ 介; Δ, with F prime, using \vee-elimination:

- Non-deterministically select $H \in \Gamma$ such that $A \vee B \in \mathrm{Sf}^{+}(H)$
- Start a \downarrow-expansion phase from the axiom sequent

$$
\Gamma_{H} ; H \vdash H \downarrow ; F, \Delta ; \emptyset \quad \Gamma_{H}=\Gamma \backslash\{H\}
$$

with the goal to extract $A \vee B$ from H

$$
\begin{gathered}
\overline{\Gamma_{H} ; H \vdash H \downarrow ; F, \Delta ; \emptyset} \mathrm{Id} \\
\Gamma_{H} ; H \vdash A \vee B \downarrow ; F, \Delta ; \Theta
\end{gathered}
$$

- Start an \Uparrow-expansion phase to prove $A, \Gamma_{H}, \Theta \vdash F \Uparrow ; \Delta$
- Start an \Uparrow-expansion phase to prove $B, \Gamma_{H}, \Theta \vdash F \Uparrow ; \Delta$

In the \Uparrow-expansion phases, H is replaced by the formulas in Θ.

$$
\frac{\Gamma_{H} ; H \vdash A \vee B \downarrow ; F, \Delta ; \Theta \quad A, \Gamma_{H}, \Theta \vdash F \Uparrow ; \Delta \quad B, \Gamma_{H}, \Theta \vdash F \Uparrow ; \Delta}{H, \Gamma \vdash F \Uparrow ; \Delta} \vee E
$$

The calculus Ncr

$$
\begin{aligned}
& \overline{\Gamma ; H \vdash H \downarrow ; \Delta ;} \mathrm{Id} \quad \frac{\Gamma_{H} ; H \vdash p \downarrow ; p, \Delta ; \Theta}{H, \Gamma \vdash p \Uparrow ; \Delta} \downarrow \Uparrow \quad \frac{\Gamma_{H} ; H \vdash \perp \downarrow ; F, \Delta ; \Theta}{H, \Gamma \vdash F \Uparrow ; \Delta} \perp E_{\mathrm{I}} \\
& \frac{\Gamma_{H} ; H \vdash p \downarrow ; F, p, \Delta ; \Theta}{H, \Gamma \vdash F \Uparrow ; p, \Delta} \mathrm{R}_{\mathrm{p}} \quad \frac{\Gamma \vdash D \Uparrow ; F, \Delta_{D}}{\Gamma \vdash F \Uparrow ; D, \Delta} \mathrm{R}_{\mathrm{c}} \quad D \notin \mathcal{V} \text { and } p \neq \perp \\
& \frac{\Gamma \vdash A \Uparrow ; \Delta \quad \Gamma \vdash B \Uparrow ; \Delta}{\Gamma \vdash A \wedge B \Uparrow ; \Delta} \wedge I \quad \frac{\Gamma ; H \vdash A_{0} \wedge A_{1} \downarrow ; \Delta ; \Theta}{\Gamma ; H \vdash A_{k} \downarrow ; \Delta ; A_{1-k}, \Theta} \wedge E_{k} \quad k \in\{0,1\} \\
& \frac{\Gamma \vdash A \Uparrow ; B, \Delta}{\Gamma \vdash A \vee B \Uparrow ; \Delta} \vee I \\
& \frac{\Gamma_{H} ; H \vdash A \vee B \downarrow ; F, \Delta ; \Theta \quad A, \Gamma_{H}, \Theta \vdash F \Uparrow ; \Delta}{H, \Gamma \vdash F \Uparrow ; \Delta} \quad B, \Gamma_{H}, \Theta \vdash F \Uparrow ; \Delta \mathrm{F} V E \\
& \frac{A, \Gamma \vdash B \Uparrow ; \Delta}{\Gamma \vdash A \rightarrow B \Uparrow ; \Delta} \rightarrow I \quad \frac{\Gamma ; H \vdash A \rightarrow B \downarrow ; \Delta ; \Theta \quad \Gamma, \Theta \vdash A \Uparrow ; \Delta}{\Gamma ; H \vdash B \downarrow ; \Delta ; \Theta} \rightarrow E \\
& p \in \mathcal{V}, F \in \mathcal{V} \cup\{\perp\}, \Gamma_{H}=\Gamma \backslash\{H\}, \Delta_{D}=\Delta \backslash\{D\}
\end{aligned}
$$

Properties of Ncr

- We can define a direct translation from Ncr-derivations into Nc, so that Ncr can be viewed as a notational variant of Nc.
- Differently from Nc, Ncr enjoys the strict subformula property.
- Branches of Ncr have finite length. Hence, the proof-search strategy is terminating (no loop-checking).
- No backtracking is needed (choices are non-deterministic)
- From the open proof-trees generated during a failed-proof search, we can extract a classical interpretation falsifying the initial sequent.

This implies the completeness of Ncr.

Example 1

Let us prove $p \vee \neg p$ in Ncr

$$
\vdash p \vee \neg p \Uparrow ; \emptyset
$$

Example 1

Let us prove $p \vee \neg p$ in Ncr

$$
\frac{\vdash p \Uparrow ; \neg p}{\vdash p \vee \neg p \Uparrow ; \emptyset} \vee I
$$

Example 1

Let us prove $p \vee \neg p$ in Ncr

$$
\frac{\frac{\vdash \neg p \Uparrow ; p}{\vdash p \Uparrow ; \neg p} \mathrm{R}_{\mathrm{c}}}{\vdash p \vee \neg p \Uparrow ; \emptyset} \vee I
$$

Example 1

Let us prove $p \vee \neg p$ in Ncr

$$
\frac{\frac{p \vdash \perp \Uparrow ; p}{\vdash \neg p \Uparrow ; p} \rightarrow I}{\vdash p \Uparrow ; \neg p} \mathrm{R}_{\mathrm{c}} \mathrm{~F}^{\vdash p \vee \neg p \Uparrow ; \emptyset} \vee I
$$

Example 1

Let us prove $p \vee \neg p$ in Ncr

$$
\begin{gathered}
\frac{\overline{\emptyset ; p \vdash p \downarrow ; \perp, p ; \emptyset}}{\frac{p \vdash \perp \Uparrow ; p}{\vdash}} \mathrm{R}_{\mathrm{p}} \\
\frac{\vdash \neg p \Uparrow ; p}{\vdash p \Uparrow ; \neg p} \mathrm{R}_{\mathrm{c}} \\
\frac{\vdash p \vee \neg p \Uparrow ; \emptyset}{} \mathrm{FI}
\end{gathered}
$$

Example 1

Let us prove $p \vee \neg p$ in Ncr

$$
\frac{\overline{\emptyset ; p \vdash p \downarrow ; \perp, p ; \emptyset}}{\frac{p \vdash \perp \Uparrow ; p}{} \mathrm{R}_{\mathrm{p}}}
$$

We have only one \Uparrow-expansion phase followed by a trivial \downarrow-expansion phase

Similar to the sequent derivation

$$
\begin{gathered}
\frac{p \Rightarrow p}{\Rightarrow A x} \\
\underset{\Rightarrow p, \neg p}{\Rightarrow p \vee \neg p} R \vee
\end{gathered}
$$

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in Ncr

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in Ncr

$$
\overline{(0) \quad \vdash p \wedge(p \rightarrow q) \rightarrow q \Uparrow ; \emptyset} \rightarrow I
$$

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in Ncr

$$
\frac{\text { (1) } p \wedge(p \rightarrow q) \vdash q \Uparrow ; \emptyset}{(0) \vdash p \wedge(p \rightarrow q) \rightarrow q \Uparrow ; \emptyset} \rightarrow I
$$

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in Ncr (2) $\emptyset ; p \wedge(p \rightarrow q) \vdash p \wedge(p \rightarrow q) \downarrow ; q ; \emptyset$ Id

$$
\frac{\text { (1) } p \wedge(p \rightarrow q) \vdash q \Uparrow ; \emptyset}{(0) \vdash p \wedge(p \rightarrow q) \rightarrow q \Uparrow ; \emptyset} \rightarrow I
$$

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in Ncr

$$
\begin{gathered}
\frac{(2) ~}{} \text {; } p \wedge(p \rightarrow q) \vdash p \wedge(p \rightarrow q) \downarrow ; q ; \emptyset \\
\text { (3) } \emptyset ; p \wedge(p \rightarrow q) \vdash p \rightarrow q \downarrow ;
\end{gathered} E_{1}
$$

$$
\frac{\text { (1) } p \wedge(p \rightarrow q) \vdash q \Uparrow ; \emptyset}{(0) \vdash p \wedge(p \rightarrow q) \rightarrow q \Uparrow ; \emptyset} \rightarrow I
$$

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in Ncr

$$
\begin{aligned}
& \frac{(2) \emptyset ; p \wedge(p \rightarrow q) \vdash p \wedge(p \rightarrow q) \downarrow ; q ; \emptyset}{\text { (3) } \emptyset ; p \wedge(p \rightarrow q) \vdash p \rightarrow q \downarrow ; q ; p} \wedge E_{1} \\
& \frac{(4) \emptyset ; p \wedge(p \rightarrow q) \vdash q \downarrow ; q ; p}{\frac{(1) p \wedge(p \rightarrow q) \vdash q \Uparrow ; \emptyset}{(0) \vdash p \wedge(p \rightarrow q) \rightarrow q \Uparrow ; \emptyset}} \rightarrow I
\end{aligned}
$$

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in Nor

$$
\begin{gathered}
\frac{(2) \emptyset ; p \wedge(p \rightarrow q) \vdash p \wedge(p \rightarrow q) \downarrow ; q ; \emptyset}{(3) \emptyset ; p \wedge(p \rightarrow q) \vdash p \rightarrow q \downarrow ; q ; p} \wedge E_{1} \frac{\overline{(6) \emptyset ; p \vdash p \downarrow ; q, p ; \emptyset}}{\text { Id }} \downarrow \Uparrow \text { (5) } p \vdash p \Uparrow ; q \\
\frac{(4) \emptyset ; p \wedge(p \rightarrow q) \vdash q \downarrow ; q ; p}{} \downarrow \Uparrow \\
\frac{(1) p \wedge(p \rightarrow q) \vdash q \Uparrow ; \emptyset}{(0) \vdash p \wedge(p \rightarrow q) \rightarrow q \Uparrow ; \emptyset} \rightarrow I
\end{gathered}
$$

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in $\mathbf{N c r}$

$$
\begin{array}{r}
\overline{(2) \emptyset ; p \wedge(p \rightarrow q) \vdash p \wedge(p \rightarrow q) \downarrow ; q ; \emptyset} \mathrm{Id} \stackrel{(6) \emptyset ;}{(3) \emptyset ; p \wedge(p \rightarrow q) \vdash p \rightarrow q \downarrow ; q ; p} \wedge E_{1} \frac{(5)}{(4) \emptyset ; p \wedge(p \rightarrow q) \vdash q \downarrow ; q ; p} \downarrow \Uparrow \\
\frac{(1) p \wedge(p \rightarrow q) \vdash q \Uparrow ; \emptyset}{(0) \vdash p \wedge(p \rightarrow q) \rightarrow q \Uparrow ; \emptyset} \rightarrow I
\end{array}
$$

Only one \wedge-elimination, as in sequent calculus!

Example 2

Let us prove $p \wedge(p \rightarrow q) \rightarrow q$ in $\mathbf{N c r}$

$$
\begin{array}{r}
\frac{(2) \emptyset ; p \wedge(p \rightarrow q) \vdash p \wedge(p \rightarrow q) \downarrow ; q ; \emptyset}{\text { (2) }} \wedge \overline{(6) \emptyset ;} \\
\frac{(3) \emptyset ; p \wedge(p \rightarrow q) \vdash p \rightarrow q \downarrow ; q ; p}{(4) \emptyset ; p \wedge(p \rightarrow q) \vdash q \downarrow ; q ; p} \frac{(5)}{(1) p \wedge(p \rightarrow q) \vdash q \Uparrow ; \emptyset} \\
\frac{(0) \vdash p \wedge(p \rightarrow q) \rightarrow q \Uparrow ; \emptyset}{(0)} \rightarrow I
\end{array}
$$

Only one \wedge-elimination, as in sequent calculus!

Related work and Conclusion

- We have presented a procedure to build derivations in Ncr not requiring backtracking nor loop-checking.
The strategy alternates \Uparrow and \downarrow-expansion phases.
* Each phase focuses on a formula and eagerly decomposes it.
* When in \uparrow-expansion we get a prime formula, we can:
(a) continue \uparrow-expansion, restarting from a non-prime formula Or
(b) non-deterministically select a head formula to start a new \downarrow-expansion phase

There is some high-level analogy with focused calculi, nevertheless Ncr cannot be classified as such (no polarization of connectives and atoms).

- Ncr-derivations have a direct translation into derivations of Gentzen natural deduction calculus in normal form.
- If we restrict ourselves to the $\{\rightarrow, \perp\}$-fragment of the language, the procedure behaves like the goal-oriented proof-search strategy of [Gabbay\&Olivetti,2000]

Related work and Conclusion

- The idea of performing proof-search in natural deduction calculi applying I-rules bottom-up and E-rules top-down, so to build derivations in normal form, dates back to Sieg work.
The naïve proof-search strategy is highly inefficient, due to the huge number of backtrack points; moreover, to guarantee termination, one has to check that a configuration does not occur twice along a branch.

Related work and Conclusion

- Natural deduction-like calculi have also been employed to implement first-order theorem provers, see e.g.
A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin. Automated first order natural deduction. IICAI, 2005.
A. Indrzejczak. Natural Deduction, Hybrid Systems and Modal Logics, of Trends in Logic, 2010
D. Pastre. Strong and weak points of the MUSCADET theorem prover examples from CASC-JC. AI Commun., 2002.

In these systems, the goal is to implement reasoning in first-order logic in natural deduction style (introduction and elimination of assumptions).
Proof-search requires the inspection of the whole database of available assumptions.

- Working implementation:
http://www.dista.uninsubria.it/~ferram/.

