A terminating evaluation-driven variant of G3i

Mauro Ferrari ${ }^{1}$, Camillo Fiorentini ${ }^{2}$, Guido Fiorino ${ }^{3}$
${ }^{1}$ DiSTA, Univ. degli Studi dell'Insubria, Varese, Italy
${ }^{2}$ DI, Univ. degli Studi di Milano, Via Comelico, Milano, Italy
${ }^{3}$ DISCO, Univ. degli Studi di Milano-Bicocca, Milano, Italy

Tableaux 2013
LORIA Laboratory, Nancy, 19 September 2013

Motivations

G3i

Single-succedent sequent calculus for intuitionistic propositional logic IPL where weakening and contraction are "absorbed" into the rules.

$$
\begin{array}{cc}
\overline{\perp, \Gamma \Rightarrow H} \perp L & \overline{H, \Gamma \Rightarrow H} \mathrm{Id} \\
\frac{A, B, \Gamma \Rightarrow H}{A \wedge B, \Gamma \Rightarrow H} \wedge L & \frac{\Gamma \Rightarrow A \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge R \\
\frac{A, \Gamma \Rightarrow H \quad B, \Gamma \Rightarrow H}{A \vee B, \Gamma \Rightarrow H} \vee L & \frac{\Gamma \Rightarrow A_{j}}{\Gamma \Rightarrow A_{0} \vee A_{1}} \vee R_{j} \\
\frac{A \rightarrow B, \Gamma \Rightarrow A \quad B, \Gamma \Rightarrow H}{A \rightarrow B, \Gamma \Rightarrow H} \rightarrow L & \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow R
\end{array}
$$

Troelstra \& Schwichtenberg, Basic Proof Theory, 1996

Motivations

It is well-known that G3i is not suited for backward proof-search.
The problem arises from the rule

$$
\frac{A \rightarrow B, \Gamma \Rightarrow A \quad B, \Gamma \Rightarrow H}{A \rightarrow B, \Gamma \Rightarrow H} \rightarrow L
$$

In bottom-up proof-search, this rules might generate non-terminating branches.

$$
\begin{aligned}
& A \rightarrow B, \Gamma \Rightarrow A \quad B, \Gamma \Rightarrow A \\
& \\
& \frac{A \rightarrow B, \Gamma \Rightarrow A}{A \rightarrow B, \Gamma \Rightarrow H} \quad B, \Gamma \Rightarrow H
\end{aligned} L
$$

Motivations

To narrow the search space and get a terminating proof-search procedure, one has to implement some auxiliary mechanism.

- Loop-checking

Whenever the "same" sequent occurs twice along a branch of the proof under construction, the search is cut.

- Histories (an efficient implementation of loop-checking).

In the construction of a branch, some of the right formulas are stored in the history.
Some rule applications require a local check to the history set.
A. Heuerding et al., Efficient loop-check for backward proof search in some non-classical propositional logics, Tableaux 96.
J. M. Howe., Two loop detection mechanisms: A comparison, Tableaux 97.
D.M. Gabbay and N. Olivetti, Goal-Directed Proof Theory, 2000.

Our approach

We show that terminating proof-search for G3i can be performed only exploiting the information contained in the sequent to be proved.

- History based approach

Auxiliary sets of formulas are introduced.

- Our approach

Termination is controlled by an evaluation relation defined on sequents.

Labelled sequents

The proof-search strategy alternates two phases (unblocked and blocked).
The strategy is embedded in the calculus by annotating sequents with a label $I \in\{\mathrm{u}, \mathrm{b}\}$.

- Unblocked sequent (u-sequent)

$$
\Gamma \stackrel{u}{\Rightarrow} H \quad \Gamma \text { is a set of formulas }
$$

Any rule can be backward applied (like ordinary sequents)

- Blocked sequent (b-sequent)

$$
\Gamma \stackrel{b}{\Rightarrow} H
$$

Only right rules can be applied and left context is blocked (see right-focused sequents)

Proof-search starts from an u-sequent (u-phase).

Towards Gbu

$\mathbf{G 3 i}+\underset{\mathrm{b}, \mathrm{u}}{\text { Labels }}+\underset{\text { Evaluation }}{\text { relation }} \Longrightarrow \mathbf{G b u}$

- Labels

Mark the current phase

- Evaluation relation
- Used in the definition of the rules for right implication.
- Crucial to get termination.

Overview of the calculus Gbu

- Axiom rules

$$
\overline{\perp, \Gamma \stackrel{l}{\Rightarrow} H} \perp L \quad \overline{H, \Gamma \stackrel{\prime}{\Rightarrow} H} \text { Id } \quad I \in\{\mathrm{~b}, \mathrm{u}\}
$$

Axiom rules of G3i + labels

- Rules for \wedge, \vee and left \rightarrow

Rules of $\mathbf{G 3 i}+$ labels

- Right \rightarrow

Two labelled variants of the rule $\rightarrow R$ of $\mathbf{G 3 i}$.
Labels are determined by the evaluation relation

Rules preserving the u-phase

Backward proof-search starts from an u-sequent.

- Left and right conjunction

$$
\frac{A, B, \Gamma \stackrel{\mu}{\Rightarrow} H}{A \wedge B, \Gamma \stackrel{\mu}{\Rightarrow} H} \wedge L \quad \frac{\Gamma \stackrel{u}{\Rightarrow} A}{\Gamma \stackrel{\mu}{\Rightarrow} A \wedge B} \stackrel{\mu}{\Rightarrow} B
$$

- Left disjunction

$$
\frac{A, \Gamma \stackrel{u}{\Rightarrow} H \quad B, \Gamma \stackrel{山}{\Rightarrow} H}{A \vee B, \Gamma \stackrel{\mu}{\Rightarrow} H} \vee L
$$

Note
In left-rules, the main formula does not belong to Γ.

Switch from u-phase to b-phase

- Right disjunction

$$
\frac{\Gamma \stackrel{b}{\Rightarrow} A_{j}}{\Gamma \stackrel{u}{\Rightarrow} A_{0} \vee A_{1}} \vee R_{j} \quad j \in\{0,1\}
$$

- Left implication

$$
\frac{A \rightarrow B, \Gamma \stackrel{b}{\Rightarrow} A \quad B, \Gamma \stackrel{u}{\Rightarrow} H}{A \rightarrow B, \Gamma \stackrel{u}{\Rightarrow} H} \rightarrow L
$$

Rules preserving the b-phase

In a b-phase only right rules can be applied (right focus).

- Right conjunction

$$
\frac{\Gamma \stackrel{b}{\Rightarrow} A \quad \Gamma \stackrel{b}{\Rightarrow} B}{\Gamma \stackrel{b}{\Rightarrow} A \wedge B} \wedge R
$$

- Right disjunction

$$
\frac{\Gamma \stackrel{b}{\Rightarrow} A_{j}}{\Gamma \stackrel{b}{\Rightarrow} A_{0} \vee A_{1}} \vee R_{j} \quad j \in\{0,1\}
$$

Evaluation relations

An evaluation relation $\vdash_{\mathcal{E}}$ is a relation between a set of formulas Γ and a formula A.

Intuitively

$$
\Gamma \vdash_{\mathcal{E}} A
$$

means

$$
\text { the truth of } A \text { is entailed by } \Gamma
$$

The calculus Gbu does not rely on a specific evaluation relation $\vdash_{\mathcal{E}}$. We can use any $\vdash_{\mathcal{E}}$ satisfying the next properties

Properties of $\vdash_{\mathcal{E}}$

(1) $\Gamma \vdash_{\mathcal{E}} A$ iff $\Gamma \cap \operatorname{Subf}(A) \vdash_{\mathcal{E}} A$.

To evaluate A in Γ, only the formulas of Γ which are subformulas of A are relevant.
(2) $A, \Gamma \vdash_{\mathcal{E}} A$.
(3) $\Gamma \vdash_{\mathcal{E}} A$ and $\Gamma \vdash_{\mathcal{E}} B$ implies $\Gamma \vdash_{\mathcal{E}} A \wedge B$.
© $\Gamma \vdash_{\mathcal{E}} A$ or $\Gamma \vdash_{\mathcal{E}} B$ implies $\Gamma \vdash_{\mathcal{E}} A \vee B$.
(0) $\Gamma \vdash_{\mathcal{E}} B$ implies $\Gamma \vdash_{\mathcal{E}} A \rightarrow B$.

- Semantical condition

Let \mathcal{K} be a Kripke model and α a world of \mathcal{K}.
If $\mathcal{K}, \alpha \Vdash \Gamma($ all the formulas of Γ are forced in $\alpha)$ and $\Gamma \vdash_{\mathcal{E}} A$ then $\mathcal{K}, \alpha \Vdash A$.

The evaluation relation $\vdash_{\tilde{\mathcal{E}}}$

In our implementation of $\mathbf{G b u}$, we use the evaluation relation $\vdash_{\tilde{\mathcal{E}}}$
To check if $\Gamma \vdash_{\tilde{\mathcal{E}}} A$:
(i) Replace every $B \in \operatorname{Subf}(A) \cap \Gamma$ by \top
(ii) Apply the following boolean simplifications inside formulas:

$$
\begin{gathered}
K \wedge T \leadsto K \quad K \wedge \perp \leadsto \perp \quad K \vee T \leadsto T \quad K \vee \perp \leadsto K \\
K \rightarrow T \leadsto T \quad T \rightarrow K \leadsto K \quad \perp \rightarrow K \leadsto T
\end{gathered}
$$

$\Gamma \vdash_{\tilde{\mathcal{E}}} A$ iff at the end of steps (i)-(ii) we get T.

Example

Let

$$
\Gamma=\{A, B\}
$$

Examples of formulas F such that

$$
\left\ulcorner\vdash_{\tilde{\mathcal{E}}} F\right.
$$

F	Replace	Simplify
$(A \wedge B) \vee C$	$(T \wedge T) \vee C$	$\leadsto T$
$C \rightarrow(A \vee D)$	$C \rightarrow T \vee D$	$\leadsto T$

The evaluation relation $\vdash_{\tilde{\mathcal{E}}}$

Formal definition of $\vdash_{\tilde{\mathcal{E}}}$

$\mathcal{B}(A)$: formula obtained by applying boolean simplifications to A.

$$
\Gamma \vdash_{\tilde{\mathcal{E}}} A \quad \operatorname{IfF} \quad \mathcal{R}(A, \Gamma)=\top
$$

Proposition
$\vdash_{\tilde{\mathcal{E}}}$ is an evaluation relation

Rules for right-implication

Backward application of right-implication to

$$
\begin{gathered}
\Gamma \stackrel{I}{\Rightarrow} A \rightarrow B \quad I \in\{\mathrm{~b}, \mathrm{u}\} \\
\Gamma \vdash_{\mathcal{E}} A ?
\end{gathered}
$$

- If $\Gamma \vdash_{\mathcal{E}} A$:

$$
\frac{\Gamma^{\prime} \Rightarrow B}{\Gamma \stackrel{\prime}{\Rightarrow} A \rightarrow B} \rightarrow R_{1}
$$

The phase $I \in\{b, u\}$ does not change.
A is not added to the left context (difference from G3i)

- If $\Gamma \nmid \mathcal{E} A$:

$$
\frac{A, \Gamma \stackrel{\mu}{\Rightarrow} B}{\Gamma \stackrel{!}{\Rightarrow} A \rightarrow B} \rightarrow R_{2}
$$

This is the only rule that unblocks a b-phase.

The calculus Gbu

$$
\begin{aligned}
& {\overline{\perp, \Gamma}{ }^{\prime} H}_{\perp L}^{\perp, \Gamma \stackrel{I}{\Rightarrow} H} \text { Id } \\
& \frac{A, B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H}{A \wedge B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H} \wedge L \quad \frac{\Gamma \stackrel{!}{\Rightarrow} A \quad \Gamma \stackrel{!}{\Rightarrow} B}{\Gamma \stackrel{!}{\Rightarrow} A \wedge B} \wedge R \\
& \frac{A, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H \quad B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H}{A \vee B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H} \vee L \quad \frac{\Gamma \stackrel{\mathrm{~b}}{\Rightarrow} A_{j}}{\Gamma \stackrel{\prime}{\Rightarrow} A_{0} \vee A_{1}} \vee R_{j} \quad j \in\{0,1\} \\
& \frac{A \rightarrow B, \Gamma \stackrel{\mathrm{~b}}{\Rightarrow} A B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H}{A \rightarrow B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H} \rightarrow L \quad \frac{\Gamma \stackrel{!}{\Rightarrow} B}{\Gamma \stackrel{\prime}{\Rightarrow} A \rightarrow B} \rightarrow R_{1} \quad \frac{A, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} B}{\Gamma \stackrel{\prime}{\Rightarrow} A \rightarrow B} \rightarrow R_{2} \\
& \text { if } \Gamma \vdash_{\mathcal{E}} A \\
& \text { if } \Gamma \nvdash_{\mathcal{E}} A
\end{aligned}
$$

The calculus Gbu

Erasing the labels and weakening rule $\rightarrow R_{1}$, we get G3i.

$$
\begin{array}{rc}
\stackrel{\perp, \Gamma \Rightarrow H}{\perp L} & \overline{H, \Gamma \Rightarrow H} \mathrm{Id} \\
\frac{A, B, \Gamma \Rightarrow H}{A \wedge B, \Gamma \Rightarrow H} \wedge L & \frac{\Gamma \Rightarrow A\ulcorner\Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge R \\
\frac{A, \Gamma \Rightarrow H \quad B, \Gamma_{\Rightarrow} H}{A \vee B, \Gamma \Rightarrow H} \vee L & \frac{\Gamma \Rightarrow A_{j}}{\Gamma \Rightarrow A_{0} \vee A_{1}} \vee R_{j} \\
\frac{A \rightarrow B, \Gamma \Rightarrow A B, \Gamma \Rightarrow H}{A \rightarrow B, \Gamma \Rightarrow H} \rightarrow L & \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow R_{1} \\
& \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow R_{2} \\
\text { if } \Gamma \vdash_{\varepsilon} A & \text { if } \Gamma \nvdash \varepsilon A
\end{array}
$$

Properties of Gbu-trees

Structure of a branch of a Gbu-tree with root $\Gamma \stackrel{\text { u }}{\Rightarrow} H$
u-phase

$$
\begin{aligned}
& A, \Gamma_{2} \stackrel{u}{\Rightarrow} B \\
& \quad \text { Phase switch (rule } \rightarrow R_{2} \text {) } \\
& \Gamma_{2} \stackrel{b}{\Rightarrow} A \rightarrow B \quad \Gamma_{2} \nvdash \mathcal{E} A \\
& \quad \text { b-phase } \\
& \Gamma_{2} \stackrel{b}{\Rightarrow} H_{2} \\
& \quad \text { Phase switch (rule } \rightarrow L \text { or } \vee R \text {) } \\
& \Gamma_{1} \stackrel{u}{\Rightarrow} H_{1} \\
& \quad \text { u-phase } \\
& \Gamma^{\stackrel{u}{\Rightarrow} H}
\end{aligned}
$$

Properties of Gbu-trees

Let \mathcal{B} be a branch with root sequent σ.
Let $|\sigma|$ be the size of σ (= number of symbols occurring in σ).

- The construction of \mathcal{B} ends when:
(i) an axiom rule of Gbu is applied Or
(ii) no rule of Gbu can be applied.
- Gbu has the subformula property.

Hence, for every formula A occurring in $\mathcal{B}, A \in \operatorname{Subf}(\sigma)$.

Properties of Gbu-trees

Let \mathcal{B} be a branch with root sequent σ.

- Along \mathcal{B}, we have at most $|\sigma|$ applications of $\rightarrow R_{2}$.

Idea
When in the bottom up construction of \mathcal{B} the rule

$$
\frac{A, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} B}{\Gamma \stackrel{\mathrm{~b}}{\Rightarrow} A \rightarrow B} \rightarrow R_{2}
$$

is applied, we have

$$
\Gamma \nvdash \mathcal{E} A \quad A \text { actually adds new information to } \Gamma
$$

By properties of $\vdash_{\mathcal{E}}$, it follows that: for every $\Gamma^{\prime} \stackrel{\prime}{\Rightarrow} H^{\prime}$ in \mathcal{B} below $\Gamma^{\mathrm{b}} A \rightarrow B, A \notin \Gamma^{\prime}$.

Hence, we cannot apply twice $\rightarrow R_{2}$ to the same formula $A \rightarrow B$.
Since $A \rightarrow B \in \operatorname{Subf}(\sigma)$, there are at most $|\sigma|$ applications of $\rightarrow R_{2}$.

Properties of Gbu-trees

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{3}, \Gamma_{3} \stackrel{\mathrm{u}}{\Rightarrow} B_{3} \\
\Gamma_{3} \stackrel{\mathrm{~b}}{\Rightarrow} A_{3} \rightarrow B_{3}
\end{array} \rightarrow R_{2} \quad \Gamma_{3} \nvdash_{\mathcal{E}} A_{3} \quad \Gamma_{3} \vdash_{\mathcal{E}} A_{1}\right. \\
& \text { (} u+b \text {)-phase (3) } \\
& \begin{array}{l}
A_{2}, \Gamma_{2} \stackrel{\mathrm{u}}{\Rightarrow} B_{2} \\
\Gamma_{2} \stackrel{\mathrm{~b}}{\Rightarrow} A_{2} \rightarrow B_{2}
\end{array} \rightarrow R_{2} \\
& \text { (} u+b \text {)-phase (2) } \\
& A_{1}, \Gamma_{1} \stackrel{\text { u }}{\Rightarrow} B_{1} \\
& \Gamma_{1} \stackrel{\mathrm{~b}}{\Rightarrow} A_{1} \rightarrow B_{1} \rightarrow R_{2} \\
& \text { (} \mathrm{u}+\mathrm{b} \text {)-phase (1) }
\end{aligned}
$$

By properties of $\vdash_{\mathcal{E}}$, it follows that:

$$
A_{1}, \Gamma_{1} \vdash_{\mathcal{E}} A_{1} \quad \Gamma_{2} \vdash_{\mathcal{E}} A_{1} \quad \Gamma_{3} \vdash_{\mathcal{E}} A_{1}
$$

Hence, the main formulas $A_{j} \rightarrow B_{j}$ of $\rightarrow R_{2}$ are pairwise disjoint.

Properties of Gbu-trees

Let \mathcal{B} be a branch with root sequent σ.

- In \mathcal{B} we have at most:

$$
\begin{array}{ll}
|\sigma| & \text { switches from } \mathrm{b} \text { to } \mathrm{u}\left(\rightarrow R_{2} \text { applications }\right) \\
|\sigma|+1 & \text { switches from } \mathrm{u} \text { to } \mathrm{b}
\end{array}
$$

- The size of sequents can only increase by an application of rule $\rightarrow L$ (switch from u to b)

$$
\left\{\begin{array}{l}
A \rightarrow B, \Gamma \stackrel{b}{\Rightarrow} A \\
A \rightarrow B, \Gamma \stackrel{u}{\Rightarrow} H
\end{array} \rightarrow L\right.
$$

The length of \mathcal{B} is at most $|\sigma|^{2}$ (optimal bound).
Buss and R. lemhoff. The depth of intuitionistic cut free proofs. 2003

Soundness and Completeness of Gbu

$$
\begin{array}{ccc}
\Gamma \Rightarrow H \text { is provable in } \mathbf{G} 3 i & \Longleftrightarrow & \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H \text { is provable in } \mathbf{G b u} \\
A \in \mathbf{I P L} & \Longleftrightarrow & \stackrel{\mathrm{u}}{\Rightarrow} A \text { is provable in } \mathbf{G b u}
\end{array}
$$

- Soundness (\Longleftarrow)

Trivial

$$
\stackrel{\Gamma}{\Gamma \stackrel{\square}{\Rightarrow} H} \text { in Gbu } \quad \mapsto \quad \Gamma_{\Rightarrow}^{\Pi *} H \text { in G3i }
$$

- Completeness (\Longrightarrow)

Tricky

$$
\stackrel{\Pi}{\Gamma \Rightarrow H} \text { in G3i } \quad \stackrel{?}{\mapsto} \quad \stackrel{\Gamma_{*}}{\Gamma \stackrel{u}{\Rightarrow} H} \text { in Gbu }
$$

Is there a translation from $\mathbf{G} 3 \mathbf{i}$ into $\mathbf{G b u}$?

Completeness of Gbu

We prove completeness using Kripke semantics along the lines of
L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intuitionistic propositional logic. 1995
M. Ferrari, C. Fiorentini, and G. Fiorino. Contraction-free linear depth sequent calculi for intuitionistic propositional logic with the subformula property and minimal depth counter-models, JAR, 2013

- We introduce a refutation calculus Rbu for asserting intuitionistic unprovability (a dual calculus of Gbu).
- From an Rbu-derivation of $\Gamma \stackrel{\mu}{\Rightarrow} H$ we can extract a countermodel \mathcal{K} of $\Gamma \Rightarrow H$, namely:
- \mathcal{K} is a Kripke model such that, at its root, all formulas in Γ are forced and H is not forced.
- If the search for a Gbu-derivation of $\Gamma \stackrel{u}{\Rightarrow} H$ fails, then we can build an Rbu-derivation of $\Gamma \stackrel{u}{\Rightarrow} H$.

The proof-search procedure

We provide a terminating proof-search procedure based on backward application of rules of Gbu.

Input: $\Gamma \stackrel{\mathrm{u}}{\Rightarrow} H$
Output:
(i) A Gbu-derivation of $\Gamma \stackrel{\mu}{\Rightarrow} A$ OR
(ii) A Rbu-derivation of $\Gamma \stackrel{\mu}{\Rightarrow} A$
(i) can be immediately translated to a G3i-derivation of $\Gamma \Rightarrow A$
(ii) yields a countermodel for $\Gamma \Rightarrow A$.

A proof-search example (1)

Let us search for a derivation for the formula

$$
W=((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q \quad(\text { Weak Pierce Law) }
$$

Backward proof-search starts with the unblocked sequent

$$
\stackrel{\mathrm{u}}{\Rightarrow} W
$$

We can only apply $\rightarrow R_{2}$ with main formula W.

A proof-search example (2)

$$
\begin{aligned}
W=A \rightarrow q \quad A= & (B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p \\
& \frac{A \stackrel{u}{\Rightarrow} q_{2}}{\stackrel{u}{\Rightarrow} W_{1}} \rightarrow R_{2}
\end{aligned}
$$

Sequent 2
We can only apply $\rightarrow L$ with main formula A.

A proof-search example (3)

$$
\begin{gathered}
W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p \\
\frac{A^{\mathrm{b}} \Rightarrow B \rightarrow p_{3} \quad \frac{q^{\mathrm{u}} q_{4}}{\Rightarrow} \mathrm{Id}}{\frac{A_{\Rightarrow}^{\mathrm{u}} q_{2}}{\Rightarrow W_{1}} \rightarrow R_{2}} \rightarrow L
\end{gathered}
$$

Sequent 3 is blocked.
We can only apply $\rightarrow R_{2}$ with main formula $B \rightarrow p$

A proof-search example (4)

$$
\begin{gathered}
W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p \\
\frac{A^{\mathrm{b}} A \stackrel{\mathrm{~b}}{\Rightarrow} B \rightarrow p_{5}}{p_{3}} \rightarrow R_{2} \quad \frac{A^{\mathrm{u}} q_{2}}{q^{\mathrm{u}} q_{4}} \rightarrow \mathrm{Id} \\
\frac{\mathrm{u}}{\Rightarrow} W_{1}
\end{gathered} R_{2} \mathrm{l} .
$$

Sequent 5
We can apply $\rightarrow L$ with main formula B or A (backtrack point).
We choose A.

A proof-search example (5)

$$
\begin{aligned}
& W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p
\end{aligned}
$$

Sequent 6 is blocked

We can only apply $\rightarrow R_{2}$ with main formula $p \rightarrow q$

A proof-search example (6)

$$
\begin{aligned}
& W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p \\
& \frac{p, B, A \stackrel{\mathrm{u}}{\Rightarrow} q_{8}}{B, A \stackrel{\mathrm{~b}}{\Rightarrow} p \rightarrow q_{6}} \rightarrow R_{2} \quad \overline{p, A \stackrel{\mathrm{u}}{\Rightarrow} p_{7}} \rightarrow L \\
& \frac{B, A \mathrm{~A}}{\Rightarrow} p_{5} \\
& \frac{A^{\mathrm{b}} B \rightarrow p_{3}}{\Rightarrow} \rightarrow R_{2} \\
& \\
& \frac{A^{\mathrm{u}} q_{2}}{\Rightarrow q_{1}} \rightarrow R_{2}
\end{aligned}
$$

Sequent 8: we can apply $\rightarrow L$ with main formula B or A.
We choose A.

A proof-search example (7)

$$
\begin{aligned}
& W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p
\end{aligned}
$$

Sequent 9 is blocked and

$$
p, B, A \vdash_{\tilde{\mathcal{E}}} B
$$

We have to apply $\rightarrow R_{1}$ with main formula $B \rightarrow p$

A proof-search example (8)

$$
\begin{aligned}
& W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p
\end{aligned}
$$

We have built a Gbu-derivation of $\stackrel{u}{\Rightarrow} W$.

Erasing the labels ...

A proof-search example (9)

$$
\begin{aligned}
& W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p
\end{aligned}
$$

... we get a G3i-derivation of $\Rightarrow W$.

A proof-search example (10)

Let us go back to the backtrack point in sequent 8 (both A and B can be chosen as main formula of $\rightarrow L$)

$$
\begin{aligned}
& W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p \\
& \frac{\frac{p, B, A \stackrel{\mathrm{u}}{\Rightarrow} q_{8}}{B, A \stackrel{\mathrm{~b}}{\Rightarrow} p \rightarrow q_{6}} \rightarrow R_{2} \quad \overline{p, A_{\Rightarrow}^{\mathrm{u}} p_{7}}}{\frac{B, A \stackrel{\mathrm{u}}{\Rightarrow} p_{5}}{A_{\Rightarrow}^{\mathrm{b}} B \rightarrow p_{3}} \rightarrow R_{2}} \rightarrow L \\
& \xrightarrow[\stackrel{A}{\Rightarrow} \stackrel{\mathrm{u}}{\Rightarrow} q_{2}]{\underset{1}{\mathrm{u}} \mathrm{~W}_{1}} \rightarrow R_{2}
\end{aligned}
$$

Let us choose B instead of A

A proof-search example (11)

$$
\begin{aligned}
& W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p \\
& \frac{p, B, A \stackrel{\mathrm{~b}}{\Rightarrow} p \rightarrow q_{9} \quad p, A \stackrel{\mathrm{u}}{\Rightarrow} q_{10}}{p, B, A_{\Rightarrow}^{\mathrm{u}} q_{8}} \rightarrow L \\
& \xrightarrow{\frac{p, B, A \Rightarrow q_{8}}{B, A \stackrel{b}{\Rightarrow} p \rightarrow q_{6}} \rightarrow R_{2} \quad \stackrel{p, A \stackrel{\text { u }}{\Rightarrow} p_{7}}{ } \mathrm{ld}} \\
& \xrightarrow{\frac{B, A \stackrel{\mathrm{u}}{\Rightarrow} p_{5}}{A \rightarrow \mathrm{p}_{3}} \rightarrow R_{2}} \rightarrow L \\
& \frac{A \stackrel{u}{\Rightarrow} q_{2}}{\stackrel{\mathrm{u}}{\Rightarrow} W_{1}} \rightarrow R_{2} \\
& q \stackrel{\mathrm{u}}{\Rightarrow} q_{4}
\end{aligned}
$$

Sequent 9 is blocked and

$$
p, B, A \vdash_{\tilde{\mathcal{E}}} p
$$

We have to apply $\rightarrow R_{1}$ with main formula $p \rightarrow q$.

A proof-search example (12)

$$
\begin{aligned}
& W=A \rightarrow q \quad A=(B \rightarrow p) \rightarrow q \quad B=(p \rightarrow q) \rightarrow p \\
& \frac{\frac{p, B, A \stackrel{\mathrm{~b}}{\Rightarrow} q_{11}}{p, B, A \stackrel{\mathrm{~b}}{\Rightarrow} p \rightarrow q_{9}} \rightarrow R_{1} \quad p, A \stackrel{\mathrm{u}}{\Rightarrow} q_{10}}{\frac{p, B, A \stackrel{\mathrm{u}}{\Rightarrow} q_{8}}{B, A \stackrel{\mathrm{~b}}{\Rightarrow} p \rightarrow q_{6}} \rightarrow R_{2}} \rightarrow L \\
& \begin{array}{l}
\frac{B, A \xrightarrow{\mathrm{u}} p_{5}}{A \xrightarrow{\mathrm{~b}} B \rightarrow p_{3}} \rightarrow R_{2}
\end{array} L \\
& q \stackrel{\mathrm{u}}{\Rightarrow} q_{4} \\
& \frac{A \stackrel{u}{\Rightarrow} q_{2}}{\Rightarrow W_{1}} \rightarrow R_{2}
\end{aligned}
$$

Sequent 11 is blocked.
We cannot apply left-rules.
The construction of the derivation fails.

Conclusions

- We have presented Gbu, a terminating sequent calculus for IPL. Gbu is a notational variant of $\mathbf{G 3 i}$, where sequents are labelled to mark the right-focused phase.
- Note that focusing techniques reduce the search space limiting the use of contraction, but they do not guarantee termination of proof-search (see, e.g., the right-focused calculus LJQ [Dyckoff\&Lengrand, 2006]).
To get this, one has to introduce extra machinery. An efficient solution is loop-checking implemented by history mechanisms
A. Heuerding et al., Efficient loop-check for backward proof search in some non-classical propositional logics, Tableaux 96.
J. M. Howe., Two loop detection mechanisms: A comparison, Tableaux 97.

Conclusions

Here we propose a different approach, based on an evaluation relation defined on sequents.

- Histories

Require space to store the right formulas already used so to direct and possibly stop the proof-search.

- In our approach

We have to compute evaluation relations when right-implication is treated.

With an appropriate implementation of data structures:

- The evaluation relation $\vdash_{\tilde{\mathcal{E}}}$ can be computed in time linear in the size of the arguments.
- The overall time needed to compute $\vdash_{\tilde{\mathcal{E}}}$ in the construction of a branch with root σ is $O\left(|\sigma|^{3}\right)$.
M. Ferrari, C. Fiorentini, G.Fiorino. Simplification Rules for Intuitionistic Propositional Tableaux. TOCL, 2012.

A comparison with history based calculi

A strict comparison between Gbu and history based approach is hard. We provide an example where Gbu outperforms history-based calculi. Let us search for a derivation of

$$
\Gamma^{*} \Rightarrow \perp \quad \Gamma^{*}=\left\{p_{1} \rightarrow \perp, p_{2} \rightarrow \perp, \ldots, p_{n} \rightarrow \perp\right\}
$$

in

- $\mathbf{M} \mathbf{J}^{(\dagger)}$ with histories (Swiss style) [Howe, Tableaux 97].
- Gbu
(\dagger) $\mathbf{M J}$ (alias $L J T$) is the Herbelin sequent calculus isomorphic to Natural Deduction [CSL,1994]

A comparison with history based calculi

Some rules of MJ
\mathcal{H} : history set

- Left focus

$$
\frac{\Gamma \xrightarrow{A} D ; \mathcal{H}}{\Gamma \Longrightarrow D ; \mathcal{H}} \text { focus } \quad \begin{array}{ll}
A \in \Gamma \\
D \text { is a prop.variable or } \perp \text { or a disjunction }
\end{array}
$$

- \perp (axiom rule)

$$
\overline{\Gamma \xrightarrow{\perp} C ; \mathcal{H}} \stackrel{\perp}{ }
$$

- Left implication

$$
\frac{\Gamma \Longrightarrow A ; C, \mathcal{H} \quad \Gamma \stackrel{B}{\longrightarrow} C ; \mathcal{H}}{\Gamma \xrightarrow{A \rightarrow B} C ; \mathcal{H}} \rightarrow L \quad C \notin \mathcal{H}
$$

A comparison with history based calculi

$$
\begin{aligned}
\Gamma^{*} & =\left\{p_{1} \rightarrow \perp, p_{2} \rightarrow \perp, \ldots, p_{n} \rightarrow \perp\right\} \\
\mathcal{H}_{n} & =\left\{\perp, p_{1}, \ldots, p_{n}\right\}
\end{aligned}
$$

In proof-search, we build the tree

The topmost sequent cannot be expanded: we cannot apply $\rightarrow L$ since p_{j} is already in \mathcal{H}_{n}.
The left-most branch chains $n+1$ applications of $\rightarrow L$.

A comparison with history based calculi

In Gbu:
for every $p_{j} \rightarrow \perp$ chosen as main formula of $\rightarrow L$, the generated proof-tree has depth 2 .

$$
\begin{aligned}
\Gamma^{*}= & \left\{p_{1} \rightarrow \perp, p_{2} \rightarrow \perp, \ldots, p_{n} \rightarrow \perp\right\} \\
& \frac{\Gamma^{*} \stackrel{\mathrm{~b}}{\Rightarrow} p_{j} \quad \overline{\perp, \Gamma^{*} \stackrel{\mathrm{u}}{\Rightarrow} \perp} \rightarrow L}{\Gamma^{*} \stackrel{\mathrm{~m}}{\Rightarrow} \perp} \rightarrow L
\end{aligned}
$$

We cannot expand the leftmost premise (it is blocked).

Future work

- The evaluation relation $\vdash_{\mathcal{E}}$ only exploits the information in the left-hand side of a sequent.

We are investigating the use of more expressive evaluation relations to better grasp the information conveyed by a sequent and further reduce the search space (e.g., evaluation relations taking into account also the right formula of a sequent).

- We aim to extend the use of these techniques to other logics having a Kripke semantics.

Implementation

We have implemented Gbu using

- JTabWb

A Java framework for developing provers based on terminating sequent or tableau calculi.
The framework provides support for:

- generation of proof-traces (histories of proof-search);
- AT_{E} Xrendering of proofs;
- countermodel generation.

Available at:
http://www.dicom.uninsubria.it/~ferram

