
A terminating evaluation-driven variant
of G3i

Mauro Ferrari1, Camillo Fiorentini2, Guido Fiorino3

1DiSTA, Univ. degli Studi dell’Insubria, Varese, Italy

2DI, Univ. degli Studi di Milano, Via Comelico, Milano, Italy

3DISCO, Univ. degli Studi di Milano-Bicocca, Milano, Italy

Tableaux 2013

LORIA Laboratory, Nancy, 19 September 2013

Motivations

G3i

Single-succedent sequent calculus for intuitionistic propositional logic IPL
where weakening and contraction are “absorbed” into the rules.

⊥, Γ⇒H
⊥L

H, Γ⇒H
Id

A,B, Γ⇒H

A ∧ B, Γ⇒H
∧L

Γ⇒A Γ⇒B

Γ⇒A ∧ B
∧R

A, Γ⇒H B, Γ⇒H

A ∨ B, Γ⇒H
∨L

Γ⇒Aj

Γ⇒A0 ∨ A1

∨Rj

A→ B, Γ⇒A B, Γ⇒H

A→ B, Γ⇒H
→L

A, Γ⇒B

Γ⇒A→ B
→R

Troelstra & Schwichtenberg, Basic Proof Theory, 1996

Motivations

It is well-known that G3i is not suited for backward proof-search.

The problem arises from the rule

A→ B, Γ⇒A B, Γ⇒H

A→ B, Γ⇒H
→ L

In bottom-up proof-search, this rules might generate non-terminating
branches.

...

A→ B, Γ⇒A B, Γ⇒A
→ L

A→ B, Γ⇒A B, Γ⇒H
→ L

A→ B, Γ⇒H

Motivations

To narrow the search space and get a terminating proof-search
procedure, one has to implement some auxiliary mechanism.

Loop-checking

Whenever the “same” sequent occurs twice along a branch of the
proof under construction, the search is cut.

Histories (an efficient implementation of loop-checking).

In the construction of a branch, some of the right formulas are
stored in the history.
Some rule applications require a local check to the history set.

A. Heuerding et al., Efficient loop-check for backward proof search in some non-classical
propositional logics, Tableaux 96.

J. M. Howe., Two loop detection mechanisms: A comparison, Tableaux 97.

D.M. Gabbay and N. Olivetti, Goal-Directed Proof Theory, 2000.

Our approach

We show that terminating proof-search for G3i can be performed only
exploiting the information contained in the sequent to be proved.

History based approach
Auxiliary sets of formulas are introduced.

Our approach
Termination is controlled by an evaluation relation defined on
sequents.

Labelled sequents

The proof-search strategy alternates two phases
(unblocked and blocked).

The strategy is embedded in the calculus by annotating sequents with a
label l ∈ {u,b}.

Unblocked sequent (u-sequent)

Γu⇒H Γ is a set of formulas

Any rule can be backward applied (like ordinary sequents)

Blocked sequent (b-sequent)

Γb⇒H

Only right rules can be applied and left context is blocked
(see right-focused sequents)

Proof-search starts from an u-sequent (u-phase).

Towards Gbu

G3i +
Labels
b,u

+ Evaluation
relation

=⇒ Gbu

Labels
Mark the current phase

Evaluation relation

Used in the definition of the rules for right implication.
Crucial to get termination.

Overview of the calculus Gbu

Axiom rules

⊥, Γ l⇒H
⊥L

H, Γ l⇒H
Id

l ∈ {b,u}

Axiom rules of G3i + labels

Rules for ∧, ∨ and left →
Rules of G3i + labels

Right →
Two labelled variants of the rule →R of G3i.
Labels are determined by the evaluation relation

Rules preserving the u-phase

Backward proof-search starts from an u-sequent.

Left and right conjunction

A,B, Γ u⇒H

A ∧ B, Γ u⇒H
∧L

Γ u⇒A Γ u⇒B

Γ u⇒A ∧ B
∧R

Left disjunction
A, Γ u⇒H B, Γ u⇒H

A ∨ B, Γ u⇒H
∨L

Note

In left-rules, the main formula does not belong to Γ.

Switch from u-phase to b-phase

Right disjunction

Γ b⇒Aj

Γ u⇒A0 ∨ A1

∨Rj
j ∈ {0, 1}

Left implication

A→ B, Γ b⇒A B, Γ u⇒H

A→ B, Γ u⇒H
→L

Rules preserving the b-phase

In a b-phase only right rules can be applied (right focus).

Right conjunction

Γ b⇒A Γ b⇒B

Γ b⇒A ∧ B
∧R

Right disjunction

Γ b⇒Aj

Γ b⇒A0 ∨ A1

∨Rj
j ∈ {0, 1}

Evaluation relations

An evaluation relation `E is a relation between a set of formulas Γ and a
formula A.

Intuitively
Γ `E A

means

the truth of A is entailed by Γ

The calculus Gbu does not rely on a specific evaluation relation `E .
We can use any `E satisfying the next properties

Properties of `E

1 Γ `E A iff Γ ∩ Subf(A) `E A.

To evaluate A in Γ, only the formulas of Γ which are subformulas of A are

relevant.

2 A, Γ `E A.

3 Γ `E A and Γ `E B implies Γ `E A ∧ B.

4 Γ `E A or Γ `E B implies Γ `E A ∨ B.

5 Γ `E B implies Γ `E A→ B.

6 Semantical condition
Let K be a Kripke model and α a world of K.

If K, α
 Γ (all the formulas of Γ are forced in α)
and Γ `E A
then K, α
 A.

The evaluation relation `Ẽ

In our implementation of Gbu, we use the evaluation relation `Ẽ
To check if Γ `Ẽ A:

(i) Replace every B ∈ Subf(A) ∩ Γ by >
(ii) Apply the following boolean simplifications inside formulas:

K ∧ > ; K K ∧ ⊥ ; ⊥ K ∨ > ; > K ∨ ⊥ ; K

K → > ; > > → K ; K ⊥ → K ; >

Γ `Ẽ A iff at the end of steps (i)–(ii) we get >.

Example

Let
Γ = {A, B }

Examples of formulas F such that

Γ `Ẽ F

F Replace Simplify

(A ∧ B) ∨ C (> ∧>) ∨ C ; >

C → (A ∨ D) C → >∨ D ; >

The evaluation relation `Ẽ

Formal definition of `Ẽ

R(A, Γ) =



> A ∈ Γ

A if A 6∈ Γ and A atomic
(namely, A ∈ V ∪ {⊥,>})

B (R(A0, Γ) · R(A1, Γ)) if A 6∈ Γ and A = A0 · A1

with · ∈ {∧,∨,→}

B(A): formula obtained by applying boolean simplifications to A.

Γ `Ẽ A Iff R(A, Γ) = >

Proposition

`Ẽ is an evaluation relation

Rules for right-implication

Backward application of right-implication to

Γ l⇒A→ B l ∈ {b,u}

Γ `E A ?

If Γ `E A:

Γ l⇒B

Γ l⇒A→ B
→R1

The phase l ∈ {b,u} does not change.
A is not added to the left context (difference from G3i)

If Γ 6`E A:
A, Γ u⇒B

Γ l⇒A→ B
→R2

This is the only rule that unblocks a b-phase.

The calculus Gbu

⊥, Γ l⇒H
⊥L

H, Γ l⇒H
Id

A,B, Γu⇒H

A ∧ B, Γu⇒H
∧L

Γ l⇒A Γ l⇒B

Γ l⇒A ∧ B
∧R

A, Γu⇒H B, Γu⇒H

A ∨ B, Γu⇒H
∨L

Γb⇒Aj

Γ l⇒A0 ∨ A1

∨Rj

j ∈ {0, 1}

A→ B, Γb⇒A B, Γu⇒H

A→ B, Γu⇒H
→L

Γ l⇒B

Γ l⇒A→ B
→R1

if Γ `E A

A, Γu⇒B

Γ l⇒A→ B
→R2

if Γ 6`E A

The calculus Gbu

Erasing the labels and weakening rule →R1, we get G3i.

⊥, Γ⇒H
⊥L

H, Γ⇒H
Id

A,B, Γ⇒H

A ∧ B, Γ⇒H
∧L

Γ⇒A Γ⇒B

Γ⇒A ∧ B
∧R

A, Γ⇒H B, Γ⇒H

A ∨ B, Γ⇒H
∨L

Γ⇒Aj

Γ⇒A0 ∨ A1

∨Rj

j ∈ {0, 1}

A→ B, Γ⇒A B, Γ⇒H

A→ B, Γ⇒H
→L

A, Γ⇒B

Γ⇒A→ B
→R1

if Γ `E A

A, Γ⇒B

Γ⇒A→ B
→R2

if Γ 6`E A

Properties of Gbu-trees

Structure of a branch of a Gbu-tree with root Γu⇒H

Γ u⇒H

u-phase

Γ1
u⇒H1

Phase switch (rule → L or ∨R)

Γ2
b⇒H2

b-phase

Γ2
b⇒A→ B Γ2 6`E A

Phase switch (rule →R2)

A, Γ2
u⇒B

u-phase

Properties of Gbu-trees

Let B be a branch with root sequent σ.
Let |σ| be the size of σ (= number of symbols occurring in σ).

The construction of B ends when:

(i) an axiom rule of Gbu is applied Or
(ii) no rule of Gbu can be applied.

Gbu has the subformula property.

Hence, for every formula A occurring in B, A ∈ Subf(σ).

Properties of Gbu-trees

Let B be a branch with root sequent σ.

Along B, we have at most |σ| applications of →R2.

Idea

When in the bottom up construction of B the rule

A, Γu⇒B

Γb⇒A→ B
→R2

is applied, we have

Γ 6`E A A actually adds new information to Γ

By properties of `E , it follows that:

for every Γ′ l⇒H ′ in B below Γb⇒A→ B, A 6∈ Γ′.

Hence, we cannot apply twice →R2 to the same formula A→ B.

Since A→ B ∈ Subf(σ), there are at most |σ| applications of →R2.

Properties of Gbu-trees

(u + b)-phase (1)

Γ1
b⇒A1 → B1 Γ1 6`E A1

→R2
A1, Γ1

u⇒B1 A1, Γ1 `E A1

(u + b)-phase (2)

Γ2
b⇒A2 → B2 Γ2 6`E A2 Γ2 `E A1

→R2
A2, Γ2

u⇒B2

(u + b)-phase (3)

Γ3
b⇒A3 → B3 Γ3 6`E A3 Γ3 `E A1

→R2
A3, Γ3

u⇒B3

By properties of `E , it follows that:

A1, Γ1 `E A1 Γ2 `E A1 Γ3 `E A1

Hence, the main formulas Aj → Bj of →R2 are pairwise disjoint.

Properties of Gbu-trees

Let B be a branch with root sequent σ.

In B we have at most:

|σ| switches from b to u (→R2 applications)
|σ|+ 1 switches from u to b

The size of sequents can only increase by an application of rule → L
(switch from u to b)

A→ B, Γu⇒H

→L

A→ B, Γb⇒A

The length of B is at most |σ|2 (optimal bound).

Buss and R. Iemhoff. The depth of intuitionistic cut free proofs. 2003

Soundness and Completeness of Gbu

Γ⇒H is provable in G3i ⇐⇒ Γu⇒H is provable in Gbu

A ∈ IPL ⇐⇒ u⇒A is provable in Gbu

Soundness (⇐=)

Trivial

Π
Γu⇒H

in Gbu 7→ Π∗
Γ⇒H

in G3i

Completeness (=⇒)

Tricky

Π
Γ⇒H

in G3i
?7→ Π∗

Γu⇒H
in Gbu

Is there a translation from G3i into Gbu ?

Completeness of Gbu

We prove completeness using Kripke semantics along the lines of

L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intuitionistic propositional
logic. 1995

M. Ferrari, C. Fiorentini, and G. Fiorino. Contraction-free linear depth sequent calculi for

intuitionistic propositional logic with the subformula property and minimal depth counter-models,

JAR, 2013

We introduce a refutation calculus Rbu for asserting intuitionistic
unprovability (a dual calculus of Gbu).

From an Rbu-derivation of Γu⇒H we can extract a countermodel K
of Γ⇒H, namely:

- K is a Kripke model such that, at its root,
all formulas in Γ are forced and H is not forced.

If the search for a Gbu-derivation of Γu⇒H fails,
then we can build an Rbu-derivation of Γu⇒H.

The proof-search procedure

We provide a terminating proof-search procedure based on backward
application of rules of Gbu.

Input: Γu⇒H

Output:

(i) A Gbu-derivation of Γu⇒A Or

(ii) A Rbu-derivation of Γu⇒A

(i) can be immediately translated to a G3i-derivation of Γ⇒A

(ii) yields a countermodel for Γ⇒A.

A proof-search example (1)

Let us search for a derivation for the formula

W = ((((p → q)→ p)→ p)→ q)→ q (Weak Pierce Law)

Backward proof-search starts with the unblocked sequent

u⇒W

We can only apply → R2 with main formula W .

A proof-search example (2)

W = A→ q A = (B → p)→ q B = (p → q)→ p

Au⇒ q 2 → R2u⇒W 1

Sequent 2

We can only apply → L with main formula A.

A proof-search example (3)

W = A→ q A = (B → p)→ q B = (p → q)→ p

Ab⇒B → p 3
Id

q u⇒ q 4 → L
Au⇒ q 2 → R2u⇒W 1

Sequent 3 is blocked.

We can only apply → R2 with main formula B → p

A proof-search example (4)

W = A→ q A = (B → p)→ q B = (p → q)→ p

B,Au⇒ p 5 → R2
Ab⇒B → p 3

Id
q u⇒ q 4 → L

Au⇒ q 2 → R2u⇒W 1

Sequent 5
We can apply →L with main formula B or A (backtrack point).

We choose A.

A proof-search example (5)

W = A→ q A = (B → p)→ q B = (p → q)→ p

B,Ab⇒ p → q 6
Id

p,Au⇒ p 7 → L
B,Au⇒ p 5 → R2

Ab⇒B → p 3
Id

q u⇒ q 4 → L
Au⇒ q 2 → R2u⇒W 1

Sequent 6 is blocked

We can only apply →R2 with main formula p → q

A proof-search example (6)

W = A→ q A = (B → p)→ q B = (p → q)→ p

p,B,Au⇒ q 8 → R2
B,Ab⇒ p → q 6

Id
p,Au⇒ p 7 → L

B,Au⇒ p 5 → R2
Ab⇒B → p 3

Id
q u⇒ q 4 → L

Au⇒ q 2 → R2u⇒W 1

Sequent 8: we can apply → L with main formula B or A.

We choose A.

A proof-search example (7)

W = A→ q A = (B → p)→ q B = (p → q)→ p

p,B,Ab⇒B → p 9

Id
q, p,B u⇒ q 10 → L

p,B,Au⇒ q 8 → R2

B,Ab⇒ p → q 6

Id
p,Au⇒ p 7 → L

B,Au⇒ p 5 → R2

Ab⇒B → p 3 q u⇒ q 4

Au⇒ q 2 → R2u⇒W 1

Sequent 9 is blocked and

p,B,A `Ẽ B

We have to apply →R1 with main formula B → p

A proof-search example (8)

W = A→ q A = (B → p)→ q B = (p → q)→ p

Id
p,B,Ab⇒ p 11 → R1

p,B,Ab⇒B → p 9

Id
q, p,B u⇒ q 10 → L

p,B,Au⇒ q 8 → R2
B,Ab⇒ p → q 6

Id
p,Au⇒ p 7 → L

B,Au⇒ p 5 → R2
Ab⇒B → p 3 qu⇒ q 4

Au⇒ q 2 → R2u⇒W 1

We have built a Gbu-derivation of u⇒W .

Erasing the labels ...

A proof-search example (9)

W = A→ q A = (B → p)→ q B = (p → q)→ p

Id
p,B,A⇒ p 11 → R

p,B,A⇒B → p 9
Id

q, p,B⇒ q 10 → L
p,B,A⇒ q 8 → R

B,A⇒ p → q 6
Id

p,A⇒ p 7 → L
B,A⇒ p 5 → R

A⇒B → p 3 q⇒ q 4

A⇒ q 2 → R
⇒W 1

... we get a G3i-derivation of ⇒W .

A proof-search example (10)

Let us go back to the backtrack point in sequent 8
(both A and B can be chosen as main formula of →L)

W = A→ q A = (B → p)→ q B = (p → q)→ p

p,B,Au⇒ q 8 → R2
B,Ab⇒ p → q 6

Id
p,Au⇒ p 7 → L

B,Au⇒ p 5 → R2
Ab⇒B → p 3 q u⇒ q 4 → L

Au⇒ q 2 → R2u⇒W 1

Let us choose B instead of A

A proof-search example (11)

W = A→ q A = (B → p)→ q B = (p → q)→ p

p,B,Ab⇒ p → q 9 p,Au⇒ q 10 → L
p,B,Au⇒ q 8 → R2

B,Ab⇒ p → q 6

Id
p,Au⇒ p 7 → L

B,Au⇒ p 5 → R2

Ab⇒B → p 3 q u⇒ q 4

Au⇒ q 2 → R2u⇒W 1

Sequent 9 is blocked and

p,B,A `Ẽ p

We have to apply →R1 with main formula p → q.

A proof-search example (12)

W = A→ q A = (B → p)→ q B = (p → q)→ p

p,B,Ab⇒ q 11 → R1
p,B,Ab⇒ p → q 9 p,Au⇒ q 10 → L

p,B,Au⇒ q 8 → R2
B,Ab⇒ p → q 6

Id
p,Au⇒ p 7 → L

B,Au⇒ p 5 → R2
Ab⇒B → p 3 qu⇒ q 4

Au⇒ q 2 → R2u⇒W 1

Sequent 11 is blocked.

We cannot apply left-rules.
The construction of the derivation fails.

Conclusions

We have presented Gbu, a terminating sequent calculus for IPL.
Gbu is a notational variant of G3i, where sequents are labelled to
mark the right-focused phase.

Note that focusing techniques reduce the search space limiting the
use of contraction, but they do not guarantee termination of
proof-search (see, e.g., the right-focused calculus LJQ
[Dyckoff&Lengrand,2006]).

To get this, one has to introduce extra machinery. An efficient
solution is loop-checking implemented by history mechanisms

A. Heuerding et al., Efficient loop-check for backward proof search in some non-classical
propositional logics, Tableaux 96.

J. M. Howe., Two loop detection mechanisms: A comparison, Tableaux 97.

Conclusions

Here we propose a different approach, based on an evaluation relation
defined on sequents.

Histories

Require space to store the right formulas already used so to direct
and possibly stop the proof-search.

In our approach

We have to compute evaluation relations when right-implication is
treated.

With an appropriate implementation of data structures:

The evaluation relation `Ẽ can be computed in time linear in the size
of the arguments.
The overall time needed to compute `Ẽ in the construction of a
branch with root σ is O(|σ|3).

M. Ferrari, C. Fiorentini, G.Fiorino. Simplification Rules for Intuitionistic Propositional

Tableaux. TOCL, 2012.

A comparison with history based calculi

A strict comparison between Gbu and history based approach is hard.

We provide an example where Gbu outperforms history-based calculi.

Let us search for a derivation of

Γ∗⇒⊥ Γ∗ = { p1 → ⊥, p2 → ⊥, . . . , pn → ⊥}

in

MJ(†) with histories (Swiss style) [Howe, Tableaux 97].

Gbu

(†) MJ (alias LJT) is the Herbelin sequent calculus isomorphic to Natural Deduction

[CSL,1994]

A comparison with history based calculi

Some rules of MJ

H: history set

Left focus

Γ
A−−→ D; H

focus
Γ ==⇒ D; H

A ∈ Γ

D is a prop.variable or ⊥ or a disjunction

⊥ (axiom rule)
⊥

Γ
⊥−−→ C ; H

Left implication

Γ ==⇒ A; C ,H Γ
B−−→ C ; H

→L

Γ
A→B−−−→ C ; H

C 6∈ H

A comparison with history based calculi

Γ∗ = { p1 → ⊥, p2 → ⊥, . . . , pn → ⊥}
Hn = {⊥, p1, . . . , pn }

In proof-search, we build the tree

Γ∗
pk→⊥−−−−→ pj ; Hn

focus
Γ∗ ==⇒ pj ; Hn . . .

Γ∗ ==⇒ p2; {p1,⊥}
⊥

Γ∗
⊥−−→ p1; {⊥}

→L

Γ∗
p2→⊥−−−−→ p1; {⊥}

focus
Γ∗ ==⇒ p1; {⊥}

⊥
Γ∗

⊥−−→ ⊥; ∅
→L

Γ∗
p1→⊥−−−−→ ⊥; ∅

focus
Γ∗ ==⇒ ⊥; ∅

The topmost sequent cannot be expanded:
we cannot apply →L since pj is already in Hn.

The left-most branch chains n + 1 applications of →L.

A comparison with history based calculi

In Gbu:

for every pj → ⊥ chosen as main formula of →L,
the generated proof-tree has depth 2.

Γ∗ = { p1 → ⊥, p2 → ⊥, . . . , pn → ⊥}

Γ∗ b⇒ pj

⊥L
⊥, Γ∗ u⇒⊥

→L
Γ∗ u⇒⊥

We cannot expand the leftmost premise (it is blocked).

Future work

The evaluation relation `E only exploits the information in the
left-hand side of a sequent.

We are investigating the use of more expressive evaluation relations
to better grasp the information conveyed by a sequent and further
reduce the search space (e.g., evaluation relations taking into
account also the right formula of a sequent).

We aim to extend the use of these techniques to other logics having
a Kripke semantics.

Implementation

We have implemented Gbu using

JTabWb

A Java framework for developing provers based on terminating
sequent or tableau calculi.

The framework provides support for:

generation of proof-traces (histories of proof-search);

LATEXrendering of proofs;

countermodel generation.

Available at:

http://www.dicom.uninsubria.it/~ferram

http://www.dicom.uninsubria.it/~ferram

