Appendix

Lemma 1. $\sigma' \mapsto \sigma$ implies $Lhs(\sigma) \subseteq Cl(Lhs(\sigma'))$.

Proof. If $\sigma' \mapsto_0 \sigma$, the assertion follows by the definition of the rules of the calculus and the properties of closures. For instance, let σ be the conclusion of rule \lor of Fig. 1 and σ' the right premise. Since $\Sigma_1 \subseteq \Sigma_2 \cup \Theta_2$, we get $\text{Lhs}(\sigma) \subseteq \text{Lhs}(\sigma_2)$, which implies, by $(\mathcal{C}l3)$, $\text{Lhs}(\sigma) \subseteq \mathcal{C}l(\text{Lhs}(\sigma_2))$. Having proved the assertion for \mapsto_0 , the generalization to \mapsto follows by $(\mathcal{C}l6)$.

Lemma 3. Let \mathcal{D} be an $\mathbf{FRJ}(G)$ -derivation and σ a sequent occurring in \mathcal{D} .

(i) If $\sigma = \Gamma \Rightarrow C$, then $\phi(\sigma) \Vdash \Gamma$ and $\phi(\sigma) \nvDash C$. (ii) If $\sigma = \Sigma; \Theta \to C$, let $\sigma_p \in P(\mathcal{D})$ such that $\sigma \mapsto \sigma_p$ and $\sigma_p \Vdash \Sigma \cap Sf^-(C)$;

Proof. We present the cases not discussed in Sec. 4.

Let $\mathcal{R} = \supset_{\in}$ and σ irregular:

then $\sigma_p \nvDash C$.

$$\frac{\sigma_1 = \Sigma_1; \Theta, \Lambda \to B}{\sigma = \Sigma_1, \Lambda; \Theta \to \Lambda \supset B} \supset_{\epsilon} \qquad \begin{array}{l} A \in \mathcal{C}l(\Sigma), \text{ where } \Sigma = \Sigma_1 \cup \Lambda \\ \Sigma_A = \Sigma \cap \mathrm{Sf}(A) \end{array}$$

By hypothesis $\sigma_p \Vdash \Sigma \cap \text{Sf}^-(A \supset B)$, hence $\sigma_p \Vdash \Sigma_1 \cap \text{Sf}^-(B)$ and $\sigma_p \Vdash \Sigma_A$ (indeed, $\text{Sf}(A) \subseteq \text{Sf}^-(A \supset B)$). Since $\sigma_1 \mapsto \sigma_p$, by (IH1) applied to σ_1 we get $\sigma_p \nvDash B$. Since $A \in \mathcal{Cl}(\Sigma)$, by ($\mathcal{Cl}2$) we get $A \in \mathcal{Cl}(\Sigma_A)$ and, by ($\mathcal{Cl}1$), $\sigma_p \Vdash A$. We conclude $\sigma_p \nvDash A \supset B$ and (ii) holds.

Let $\mathcal{R} = \supset_{\mathcal{A}}$. Then:

$$\frac{\sigma_1 = \Gamma \Rightarrow B}{\sigma = \cdot; \Theta \to A \supset B} \supset_{\notin} \qquad A \in \mathcal{C}l(\Gamma)$$

By (IH1) applied to σ_1 , we have $\phi(\sigma_1) \Vdash \Gamma$ and $\phi(\sigma_1) \nvDash B$. By (Cl1) $\phi(\sigma_1) \Vdash A$. Since $\sigma_1 \mapsto \sigma_p$, we have $\sigma_p \leq \phi(\sigma_1)$, hence $\sigma_p \nvDash A \supset B$, and this proves (ii).

The case $\mathcal{R} = \bowtie^{\vee}$ is similar to the case $\mathcal{R} = \bowtie^{\operatorname{At}}$ detailed in Sec. 4. Finally, the case $\mathcal{R} = \land$ easily follows by (IH1).

To prove Lemma 4, we need the following property of closures:

Lemma 5. Let \mathcal{K} be a countermodel for G and α a world in \mathcal{K} . Then, $\Lambda_{\alpha} = Cl(\Lambda_{\alpha}) = Cl(\Lambda_{\alpha}^*)$.

Proof. By (Cl3), $\Lambda_{\alpha} \subseteq Cl(\Lambda_{\alpha})$. By induction on |C|, one can easily prove that $C \in Cl(\Lambda_{\alpha})$ implies $C \in \Lambda_{\alpha}$, hence $\Lambda_{\alpha} = Cl(\Lambda_{\alpha})$. Since $\Lambda_{\alpha}^* \subseteq \Lambda_{\alpha}$, by (Cl4) we get $Cl(\Lambda_{\alpha}^*) \subseteq Cl(\Lambda_{\alpha})$. It remains to prove that $\Lambda_{\alpha} \subseteq Cl(\Lambda_{\alpha}^*)$. Let $C \in SL(G)$ such that $\alpha \Vdash C$; by induction on |C|, we show that $C \in Cl(\Lambda_{\alpha}^*)$. If $C \in \mathcal{V}$, then $\alpha \Vdash^* C$, hence $C \in \Lambda_{\alpha}^*$, which implies $C \in Cl(\Lambda_{\alpha}^*)$. Let $C = A \supset B$. If $\alpha \nvDash A$, then $\alpha \Vdash^* C$ and, as above, $C \in Cl(\Lambda_{\alpha}^*)$. If $\alpha \Vdash A$, then $\alpha \Vdash B$; by induction hypothesis, $B \in Cl(\Lambda_{\alpha}^*)$, hence $A \supset B \in Cl(\Lambda_{\alpha}^*)$. The cases $C = A \land B$ and $C = A \lor B$ easily follow by the induction hypothesis.

The height of a world α of a model \mathcal{K} is the maximal length of a path from α to a final world of \mathcal{K} .

Lemma 4. Let $\mathcal{K} = \langle P, \leq, \rho, V \rangle$ be a countermodel for G and $\alpha \in P$. For every $C \in \Omega_{\alpha}$, we can choose Γ , Σ and Θ such that:

(i) $\vdash_{\mathbf{FRJ}(G)} \sigma$, where $\sigma = \Gamma \Rightarrow C$. (ii) there is $\beta \in P$ such that $\alpha \leq \beta$ and $\Lambda_{\beta}^* \subseteq \Gamma$. (iii) $\vdash_{\mathbf{FRJ}(G)} \sigma$, where $\sigma = \Sigma; \Theta \to C$. (iv) $\Sigma \subseteq \Lambda_{\alpha}^* \subseteq \Sigma \cup \Theta$.

Let S_{α} be the set of sequents selected in (i) and (iii) and S_{α}^{*} the union of S_{β} such that $\alpha \leq \beta$. Then, to prove $\sigma \in S_{\alpha}$ we only need to use sequents in S_{α}^{*} .

Proof. Let $\alpha \in P$ and $C \in \Omega_{\alpha}$. We use a main induction (IH1) on $h(\alpha)$; a secondary induction (IH2) on $tp^{-}(\sigma)$, where $tp^{-}(\sigma) = 1$ if σ is regular, $tp^{-}(\sigma) = 0$ otherwise; a third induction (IH3) on |C|. We proceed by a case analysis on C; we set:

$$\overline{\Gamma}^{\mathrm{At}} = \mathrm{SL}(G) \cap \mathcal{V} \qquad \overline{\Gamma}^{\supset} = \mathrm{SL}(G) \cap \mathcal{L}^{\supset} \qquad \overline{\Gamma} = \overline{\Gamma}^{\mathrm{At}} \cup \overline{\Gamma}^{\supset} \qquad \Lambda_{\alpha}^{* \supset} = \Lambda_{\alpha}^{*} \cap \mathcal{L}^{\supset}$$

In each case, one can easily check that the derivations satisfy the last assertion of the lemma. We also point out that derivations satisfy properties (PS1)–(PS4) stated in Sec. 3.

- Case $C \in \mathcal{V}^{\perp}$, proof of (i) and (ii).

Since $\alpha \nvDash C$, we have $C \notin \Lambda_{\alpha}^*$. If $\Lambda_{\alpha}^{* \supset}$ is empty, then $\Lambda_{\alpha}^* \subseteq \overline{\Gamma}^{\operatorname{At}} \setminus \{C\}$. Thus, taking as σ the regular axiom $\overline{\Gamma}^{\operatorname{At}} \setminus \{C\} \Rightarrow C$, points (i)-(ii) (where $\beta = \alpha$) immediately follow. Let $\Lambda_{\alpha}^{* \supset}$ be non empty and let $\Upsilon = \{A_1, \ldots, A_n\}$ be the set of formulas Y such that $Y \supset Z \in \Lambda_{\alpha}^{* \supset}$. Note that $\alpha \nvDash A_j$, for every $A_j \in \Upsilon$. Thus, we can apply (IH2) to claim that, for every $1 \leq j \leq n$, there are $\Sigma_j = \Sigma_j^{\operatorname{At}} \cup \Sigma_j^{\supset}$ and $\Theta_j = \Theta_j^{\operatorname{At}} \cup \Theta_j^{\supset}$ such that:

(P3) $\vdash_{\mathbf{FRJ}(G)} \sigma_j$, where $\sigma_j = \Sigma_j$; $\Theta_j \to A_j$. (P4) $\Sigma_j \subseteq \Lambda^*_{\alpha} \subseteq \Sigma_j \cup \Theta_j$.

We stress that the use of (IH2) is sound since $tp^{-}(\sigma_j) < tp^{-}(\sigma)$. We prove that $\sigma_1, \ldots, \sigma_n$ satisfy the side conditions of rule \bowtie^{At} . To this aim, we show that, for every $1 \leq j \leq n$, the following holds:

(a) $\Sigma_i \subseteq \Sigma_j \cup \Theta_j$, for every $i \neq j$. (b) $Y \supset Z \in \Sigma_j^{\supset}$ implies $Y \in \Upsilon$. (c) $C \notin \Sigma_i^{\text{At}}$.

Let $j \in \{1, ..., n\}$ and $i \neq j$. By (P4), we have both $\Sigma_i \subseteq \Lambda_{\alpha}^*$ and $\Lambda_{\alpha}^* \subseteq \Sigma_j \cup \Theta_j$, and this proves (a). Point (b) immediately follows by (P4) and the definition of Υ . Point (c) follows by the fact that $C \notin \Lambda^*_{\alpha}$ and by (P4). By (a)–(c), we can apply the rule \bowtie^{At} with premises $\sigma_1, \ldots, \sigma_n$ and build the **FRJ**(G)-derivation:

$$\begin{array}{ccc} \vdots & (P3) & j = 1 \dots n \\ \\ \underline{ \cdots \ \Sigma_{j}^{\mathrm{At}}, \Sigma_{j}^{\supset}; \ \Theta_{j}^{\mathrm{At}}, \Theta_{j}^{\supset} \to A_{j} \dots } \\ \hline \sigma = \Gamma \Rightarrow C & \mathsf{M}^{\mathrm{At}} \end{array} \xrightarrow{j = 1 \dots n} \\ \Gamma = \Sigma^{\mathrm{At}} \cup (\Theta^{\mathrm{At}} \setminus \{C\}) \cup \Sigma^{\supset} \cup \Theta^{\supset} \\ \end{array}$$

Thus (i) holds; note that, by the definition of Υ , the application of $\bowtie^{\operatorname{At}}$ satisfies (*PS3*). We show that $\Lambda_{\alpha}^* \subseteq \Gamma$, and this proves (ii). If, for some $j \in \{1, \ldots, n\}$, $\Lambda_{\alpha}^* \subseteq \Sigma_j$, then $\Lambda_{\alpha}^* \subseteq \Sigma^{\operatorname{At}} \cup \Sigma^{\supset}$. Otherwise, by (P4), $\Lambda_{\alpha}^* \subseteq \bigcap_{1 \leq j \leq n} \Theta_j$. Since $C \notin \Lambda_{\alpha}^*$, we get $\Lambda_{\alpha}^* \subseteq (\Theta^{\operatorname{At}} \setminus \{C\}) \cup \Theta^{\supset}$. In both cases we conclude $\Lambda_{\alpha}^* \subseteq \Gamma$.

- Case $C \in \mathcal{V}^{\perp}$, proof of (iii) and (iv).

Trivial, taking as σ the irregular axiom $\cdot; \overline{\Gamma}^{\operatorname{At}} \setminus \{C\}, \overline{\Gamma}^{\supset} \to C$.

- Case $C = C_1 \vee C_2$, proof of (i) and (ii).

Since $\alpha \nvDash C_1 \vee C_1$, we have $\alpha \nvDash C_1$ and $\alpha \nvDash C_2$. By (IH2), for $k \in \{1, 2\}$ there are $\Sigma_k = \Sigma_k^{\operatorname{At}} \cup \Sigma_k^{\supset}$ and $\Theta_k = \Theta_k^{\operatorname{At}} \cup \Theta_k^{\supset}$ such that:

(Q3) $\vdash_{\mathbf{FRJ}(G)} \sigma_k$, where $\sigma_k = \Sigma_k$; $\Theta_k \to C_k$. (Q4) $\Sigma_k \subseteq \Lambda^*_{\alpha} \subseteq \Sigma_k \cup \Theta_k$.

If $\Lambda_{\alpha}^{*\supset}$ is empty, by (Q4) we have $\Sigma_k = \Sigma_k^{\text{At}}$, for $k \in \{1, 2\}$. Hence, we can build the **FRJ**(G)-derivation

$$\begin{array}{cccc} \vdots & (Q3) & \vdots & (Q4) \\ & \underline{\Sigma_1^{\mathrm{At}}; \Theta_1^{\mathrm{At}}, \Theta_1^{\supset} \to C_1} & \underline{\Sigma_2^{\mathrm{At}}; \Theta_2^{\mathrm{At}}, \Theta_2^{\supset} \to C_2} \\ & \sigma \ = \ \underline{\Sigma_1^{\mathrm{At}}, \underline{\Sigma_2^{\mathrm{At}}, \Theta_1^{\mathrm{At}} \cap \Theta_2^{\mathrm{At}} \Rightarrow C_1 \lor C_2} \end{array} \\ \end{array} \\ \begin{array}{c} \Gamma \ = \ \underline{\Sigma_1^{\mathrm{At}} \cup \underline{\Sigma_2^{\mathrm{At}} \cup \Theta_1^{\mathrm{At}} \cap \Theta_2^{\mathrm{At}} \end{array}$$

and this proves (i). By (Q4) we get $\Lambda_{\alpha}^* \subseteq \Gamma$, which proves (ii). Let $\Lambda_{\alpha}^{* \supset}$ be non empty and let $\Upsilon = \{A_1, \ldots, A_n\}$ be the set of formulas Y such that either $Y \supset Z \in \Lambda_{\alpha}^{* \supset}$ or $Y = C_1$ or $Y = C_2$. Note that $\alpha \nvDash A_j$, for every $A_j \in \Upsilon$. Arguing as above, points (P3) and (P4) hold, hence we can build the **FRJ**(G)derivation

$$\begin{array}{ccc} \vdots & (\mathrm{P3}) & j = 1 \dots n \\ \\ \underline{& \dots \ \Sigma_{j}^{\mathrm{At}}, \Sigma_{j}^{\supset}; \ \Theta_{j}^{\mathrm{At}}, \Theta_{j}^{\supset} \to A_{j} \dots \\ \hline \sigma &= \Gamma \Rightarrow C_{1} \lor C_{2}} & \bowtie^{\vee} & \Gamma = \Sigma^{\mathrm{At}} \cup \Theta^{\mathrm{At}}, \Theta^{\supset} \text{ as in Fig. 1} \end{array}$$

and this proves (i). Point (ii) (with $\beta = \alpha$) can be proved as above, exploiting (P4). We point out that the displayed applications of \bowtie^{\vee} match (PS4).

- Case $C = C_1 \vee C_2$, proof of (iii) and (iv).

By (IH3), points (Q3) and (Q4) hold; thus $\Sigma_1 \subseteq \Sigma_2 \cup \Theta_2$ and $\Sigma_2 \subseteq \Sigma_1 \cup \Theta_1$. This implies that we can apply rule \vee to σ_1 and σ_2 and get an **FRJ**(*G*)-derivation of $\sigma = \Sigma_1, \Sigma_2$; $\Theta_1 \cap \Theta_2 \to C_1 \vee C_2$, which proves (iii). Point (iv) follows by (Q4).

- Case $C = C_1 \wedge C_2$.

Since $\alpha \nvDash C_1 \wedge C_2$, there exists $k \in \{1, 2\}$ such that $\alpha \nvDash C_k$. Using (IH3), the assertions easily follow.

- Case $C = A \supset B$, proof of (i) and (ii).

Since $\alpha \nvDash A \supset B$, there is $\eta \in P$ such that $\alpha \leq \eta$ and $\eta \Vdash A$ and $\eta \nvDash B$. Since $\eta \nvDash B$, by induction hypothesis (IH1) if $\alpha < \eta$ and (IH3) if $\alpha = \eta$, there is Γ such that:

(R1) $\vdash_{\mathbf{FRJ}(G)} \sigma_1$, where $\sigma_1 = \Gamma \Rightarrow B$. (R2) There is $\beta \in P$ such that $\eta \leq \beta$ and $\Lambda_{\beta}^* \subseteq \Gamma$.

We show that $A \in \mathcal{C}l(\Gamma)$, so that an application of rule \supset_{\in} to σ_1 yields $\sigma = \Gamma \Rightarrow A \supset B$, and this proves (i). Since $\eta \leq \beta$, we have $\beta \Vdash A$, namely $A \in \Lambda_{\beta}$. By Lemma 5, $A \in \mathcal{C}l(\Lambda_{\beta}^*)$, which implies, by (R2) and ($\mathcal{C}l4$), $A \in \mathcal{C}l(\Gamma)$. Point (ii) follows by (R2).

- Case $C = A \supset B$, proof of (iii) and (iv).

Since $\alpha \not\models A \supset B$, there is $\eta \in P$ such that $\alpha \leq \eta$ and $\eta \not\models A$ and $\eta \not\models B$. Without loss of generality, we assume that, for every $\delta \in P$ such that $\alpha \leq \delta < \eta$, we have $\delta \not\models A$. Since $\alpha \leq \eta$, it holds that $\alpha \not\models B$. By (IH3) there are Σ_1 and Θ_1 such that:

(S3) $\vdash_{\mathbf{FRJ}(G)} \sigma_1$, where $\sigma_1 = \Sigma_1$; $\Theta_1 \to B$. (S4) $\Sigma_1 \subseteq \Lambda_{\alpha}^* \subseteq \Sigma_1 \cup \Theta_1$.

Let $\eta = \alpha$. Since $A \in \Lambda_{\alpha}$, by Lemma 5 $A \in \mathcal{Cl}(\Lambda_{\alpha}^*)$. Let Λ be a minimum subset of Λ_{α}^* such that $A \in \mathcal{Cl}(\Lambda)$ (namely: $\Lambda' \subsetneq \Lambda$ implies $A \notin \mathcal{Cl}(\Lambda')$). Note that, by (S4), $\Lambda \subseteq \Sigma_1 \cup \Theta_1$, hence we can partition Λ as $\Lambda_{\Sigma} \cup \Lambda_{\Theta}$, as shown below. We can build the following **FRJ**(G)-derivation, where rule \supset_{\in} shifts the set Λ_{Θ} to the left of semicolon:

$$\begin{array}{c} \vdots \quad (S3) \\ \overbrace{\Sigma_2,\Lambda_{\Sigma}}^{\Sigma_1} ; \quad \overbrace{\Theta_2,\Lambda_{\Theta}}^{\Theta_1} \rightarrow B \\ \hline \sigma = \underbrace{\Sigma_2,\Lambda_{\Sigma},\Lambda_{\Theta}}_{\Sigma} ; \quad \Theta_2 \rightarrow A \supset B \end{array} \supset_{\epsilon} \begin{array}{c} \Lambda = \Lambda_{\Sigma} \cup \Lambda_{\Theta} \text{ where} \\ \Lambda_{\Sigma} = \Lambda \cap \Sigma_1 \quad \Lambda_{\Theta} = \Lambda \cap \Theta_1 \\ \Sigma_2 = \Sigma_1 \setminus \Lambda_{\Sigma} \quad \Theta_2 = \Theta_1 \setminus \Lambda_{\Theta} \\ \Sigma = \Sigma_2 \cup \Lambda_{\Sigma} \cup \Lambda_{\Theta} = \Sigma_1 \cup \Lambda_{\Theta} \end{array}$$

Since $A \in \mathcal{C}l(\Lambda)$ and $\Lambda \subseteq \Sigma$, by $(\mathcal{C}l4)$ we get $A \in \mathcal{C}l(\Sigma)$, hence the application of \supset_{\in} is sound and (iii) holds. Since $\Sigma_1 \subseteq \Lambda^*_{\alpha}$ (see (S4)) and $\Lambda_{\Theta} \subseteq \Lambda \subseteq \Lambda^*_{\alpha}$, we

get $\Sigma_1 \cup \Lambda_{\Theta} \subseteq \Lambda_{\alpha}^*$, namely $\Sigma \subseteq \Lambda_{\alpha}^*$. Moreover, since $\Lambda_{\alpha}^* \subseteq \Sigma_1 \cup \Theta_1$ (see (S4)) and $\Sigma_1 \cup \Theta_1 = \Sigma \cup \Theta_2$, we get $\Lambda_{\alpha}^* \subseteq \Sigma \cup \Theta_2$, and this concludes the proof of (iv). We notice that the choice of Λ complies with (PS1).

Let $\alpha < \eta$ (hence $h(\eta) < h(\alpha)$). By the choice of η , we can assume $\alpha \nvDash A$. Since $\eta \nvDash B$, by (IH1) there is Γ such that:

(T1) $\vdash_{\mathbf{FRJ}(G)} \sigma_1$, where $\sigma_1 = \Gamma \Rightarrow B$. (T2) There exists $\mu \in P$ s.t. $\eta \leq \mu$ (hence $\alpha < \mu$) and $\Lambda^*_{\mu} \subseteq \Gamma$.

Since $\eta \Vdash A$ and $\eta \leq \mu$, we get $\mu \Vdash A$, hence $A \in \Lambda_{\mu}$. By Lemma 5 $A \in Cl(\Lambda_{\mu}^{*})$ hence, by (T2) and (Cl4), $A \in Cl(\Gamma)$. Since $\alpha \nvDash A$, we have $A \notin \Lambda_{\alpha}$ hence, by Lemma 5, $A \notin Cl(\Lambda_{\alpha}^{*})$. Since $\alpha < \mu$, we have $\Lambda_{\alpha}^{*} \subseteq \Lambda_{\mu}$. By Lemma 5 $\Lambda_{\mu} = Cl(\Lambda_{\mu}^{*})$. By (T2) and (Cl4), $Cl(\Lambda_{\mu}^{*}) \subseteq Cl(\Gamma)$, hence $\Lambda_{\alpha}^{*} \subseteq Cl(\Gamma)$. Thus $\Lambda_{\alpha}^{*} \subseteq Cl(\Gamma) \cap \overline{\Gamma}$ and $A \notin Cl(\Lambda_{\alpha}^{*})$. Let Θ be a maximum extension of of Λ_{α}^{*} such that $\Lambda_{\alpha}^{*} \subseteq \Theta \subseteq Cl(\Gamma) \cap \overline{\Gamma}$ and $A \notin Cl(\Theta)$ (namely: $\Theta \subsetneq \Theta' \subseteq Cl(\Gamma) \cap \overline{\Gamma}$ implies $A \in Cl(\Theta)$). We can build the **FRJ**(G)-derivation:

$$\begin{array}{ccc} \vdots & (T1) & \Theta \subseteq \mathcal{C}l(\Gamma) \cap \overline{\Gamma} \\ \\ \hline \Gamma \Rightarrow B \\ \sigma = \cdot; \Theta \to A \supset B \end{array} \supset_{\not\in} & A \in \mathcal{C}l(\Gamma) \setminus \mathcal{C}l(\Theta) \end{array}$$

-

This proves (iii). The proof of (iv) is immediate. Note that the choice of Θ matches (PS2)