Appendix

Lemma 1, $\sigma^{\prime} \mapsto \sigma$ implies $\operatorname{Lhs}(\sigma) \subseteq \mathcal{C} l\left(\operatorname{Lhs}\left(\sigma^{\prime}\right)\right)$.
Proof. If $\sigma^{\prime} \mapsto_{0} \sigma$, the assertion follows by the definition of the rules of the calculus and the properties of closures. For instance, let σ be the conclusion of rule \vee of Fig. 1 and σ^{\prime} the right premise. Since $\Sigma_{1} \subseteq \Sigma_{2} \cup \Theta_{2}$, we get $\operatorname{Lhs}(\sigma) \subseteq \operatorname{Lhs}\left(\sigma_{2}\right)$, which implies, by $(\mathcal{C} l 3)$, $\operatorname{Lhs}(\sigma) \subseteq \mathcal{C} l\left(\operatorname{Lhs}\left(\sigma_{2}\right)\right)$. Having proved the assertion for \mapsto_{0}, the generalization to \mapsto follows by (Cl6)

Lemma 3. Let \mathcal{D} be an $\mathbf{F R J}(G)$-derivation and σ a sequent occurring in \mathcal{D}.
(i) If $\sigma=\Gamma \Rightarrow C$, then $\phi(\sigma) \Vdash \Gamma$ and $\phi(\sigma) \nVdash C$.
(ii) If $\sigma=\Sigma ; \Theta \rightarrow C$, let $\sigma_{p} \in \mathrm{P}(\mathcal{D})$ such that $\sigma \mapsto \sigma_{p}$ and $\sigma_{p} \Vdash \Sigma \cap \mathrm{Sf}^{-}(C)$; then $\sigma_{p} \nVdash C$.

Proof. We present the cases not discussed in Sec. 4
Let $\mathcal{R}=\supset_{\in}$ and σ irregular:

$$
\begin{array}{ll}
\frac{\sigma_{1}=\Sigma_{1} ; \Theta, \Lambda \rightarrow B}{\sigma=\Sigma_{1}, \Lambda ; \Theta \rightarrow A \supset B} \supset_{\in} & A \in \mathcal{C l}(\Sigma), \text { where } \Sigma=\Sigma_{1} \cup \Lambda \\
& \Sigma_{A}=\Sigma \cap \operatorname{Sf}(A)
\end{array}
$$

By hypothesis $\sigma_{p} \Vdash \Sigma \cap \mathrm{Sf}^{-}(A \supset B)$, hence $\sigma_{p} \Vdash \Sigma_{1} \cap \mathrm{Sf}^{-}(B)$ and $\sigma_{p} \Vdash \Sigma_{A}$ (indeed, $\operatorname{Sf}(A) \subseteq \operatorname{Sf}^{-}(A \supset B)$). Since $\sigma_{1} \mapsto \sigma_{p}$, by (IH1) applied to σ_{1} we get $\sigma_{p} \nVdash B$. Since $A \in \mathcal{C l}(\Sigma)$, by (Cl2) we get $A \in \mathcal{C} l\left(\Sigma_{A}\right)$ and, by (Cll) $\sigma_{p} \Vdash A$. We conclude $\sigma_{p} \nVdash A \supset B$ and (ii) holds.

Let $\mathcal{R}=\supset \notin$. Then:

$$
\frac{\sigma_{1}=\Gamma \Rightarrow B}{\sigma=\cdot ; \Theta \rightarrow A \supset B} \supset \notin \quad A \in \mathcal{C l}(\Gamma)
$$

By (IH1) applied to σ_{1}, we have $\phi\left(\sigma_{1}\right) \Vdash \Gamma$ and $\phi\left(\sigma_{1}\right) \nVdash B$. By (Cl1) $\phi\left(\sigma_{1}\right) \Vdash A$. Since $\sigma_{1} \mapsto \sigma_{p}$, we have $\sigma_{p} \leq \phi\left(\sigma_{1}\right)$, hence $\sigma_{p} \nVdash A \supset B$, and this proves (ii),

The case $\mathcal{R}=\bowtie^{\vee}$ is similar to the case $\mathcal{R}=\bowtie^{\text {At }}$ detailed in Sec. 4. Finally, the case $\mathcal{R}=\wedge$ easily follows by (IH1).

To prove Lemma 4, we need the following property of closures:
Lemma 5. Let \mathcal{K} be a countermodel for G and α a world in \mathcal{K}. Then, $\Lambda_{\alpha}=$ $\mathcal{C} l\left(\Lambda_{\alpha}\right)=\mathcal{C l}\left(\Lambda_{\alpha}^{*}\right)$.

Proof. By (Cl3), $\Lambda_{\alpha} \subseteq \mathcal{C} l\left(\Lambda_{\alpha}\right)$. By induction on $|C|$, one can easily prove that $C \in \mathcal{C l}\left(\Lambda_{\alpha}\right)$ implies $C \in \Lambda_{\alpha}$, hence $\Lambda_{\alpha}=\mathcal{C l}\left(\Lambda_{\alpha}\right)$. Since $\Lambda_{\alpha}^{*} \subseteq \Lambda_{\alpha}$, by (Cll4) we get $\mathcal{C l}\left(\Lambda_{\alpha}^{*}\right) \subseteq \mathcal{C} l\left(\Lambda_{\alpha}\right)$. It remains to prove that $\Lambda_{\alpha} \subseteq \mathcal{C} l\left(\Lambda_{\alpha}^{*}\right)$. Let $C \in \operatorname{SL}(G)$ such that $\alpha \Vdash C$; by induction on $|C|$, we show that $C \in \mathcal{C l}\left(\Lambda_{\alpha}^{*}\right)$. If $C \in \mathcal{V}$, then $\alpha \Vdash^{*} C$, hence $C \in \Lambda_{\alpha}^{*}$, which implies $C \in \mathcal{C l}\left(\Lambda_{\alpha}^{*}\right)$. Let $C=A \supset B$. If $\alpha \nVdash A$, then $\alpha \Vdash^{*} C$ and, as above, $C \in \mathcal{C} l\left(\Lambda_{\alpha}^{*}\right)$. If $\alpha \Vdash A$, then $\alpha \Vdash B$; by induction hypothesis, $B \in \mathcal{C l}\left(\Lambda_{\alpha}^{*}\right)$, hence $A \supset B \in \mathcal{C l}\left(\Lambda_{\alpha}^{*}\right)$. The cases $C=A \wedge B$ and $C=A \vee B$ easily follow by the induction hypothesis.

The height of a world α of a model \mathcal{K} is the maximal length of a path from α to a final world of \mathcal{K}.
Lemma 4. Let $\mathcal{K}=\langle P, \leq, \rho, V\rangle$ be a countermodel for G and $\alpha \in P$. For every $C \in \Omega_{\alpha}$, we can choose Γ, Σ and Θ such that:
(i) $\vdash_{\mathbf{F R J}(G)} \sigma$, where $\sigma=\Gamma \Rightarrow C$.
(ii) there is $\beta \in P$ such that $\alpha \leq \beta$ and $\Lambda_{\beta}^{*} \subseteq \Gamma$.
(iii) $\vdash_{\mathbf{F R J}(G)} \sigma$, where $\sigma=\Sigma ; \Theta \rightarrow C$.
(iv) $\Sigma \subseteq \Lambda_{\alpha}^{*} \subseteq \Sigma \cup \Theta$.

Let \mathcal{S}_{α} be the set of sequents selected in (i) and (iii) and \mathcal{S}_{α}^{*} the union of \mathcal{S}_{β} such that $\alpha \leq \beta$. Then, to prove $\sigma \in \mathcal{S}_{\alpha}$ we only need to use sequents in \mathcal{S}_{α}^{*}.

Proof. Let $\alpha \in P$ and $C \in \Omega_{\alpha}$. We use a main induction (IH1) on $\mathrm{h}(\alpha)$; a secondary induction (IH2) on $\operatorname{tp}^{-}(\sigma)$, where $\operatorname{tp}^{-}(\sigma)=1$ if σ is regular, $\operatorname{tp}^{-}(\sigma)=$ 0 otherwise; a third induction (IH3) on $|C|$. We proceed by a case analysis on C; we set:
$\bar{\Gamma}^{\mathrm{At}}=\mathrm{SL}(G) \cap \mathcal{V} \quad \bar{\Gamma}^{\supset}=\mathrm{SL}(G) \cap \mathcal{L}^{\supset} \quad \bar{\Gamma}=\bar{\Gamma}^{\mathrm{At}} \cup \bar{\Gamma}^{\supset} \quad \Lambda_{\alpha}^{* \supset}=\Lambda_{\alpha}^{*} \cap \mathcal{L}^{\supset}$
In each case, one can easily check that the derivations satisfy the last assertion of the lemma. We also point out that derivations satisfy properties (PS1) (PS4) stated in Sec. 3.

- Case $C \in \mathcal{V}^{\perp}$, proof of (i) and (ii).

Since $\alpha \nVdash C$, we have $C \notin \Lambda_{\alpha}^{*}$. If $\Lambda_{\alpha}^{* \supset}$ is empty, then $\Lambda_{\alpha}^{*} \subseteq \bar{\Gamma}^{\text {At }} \backslash\{C\}$. Thus, taking as σ the regular axiom $\bar{\Gamma}^{\mathrm{At}} \backslash\{C\} \Rightarrow C$, points (i) (ii) (where $\beta=\alpha$) immediately follow. Let $\Lambda_{\alpha}^{* \supset}$ be non empty and let $\Upsilon=\left\{A_{1}, \ldots, A_{n}\right\}$ be the set of formulas Y such that $Y \supset Z \in \Lambda_{\alpha}^{* \supset}$. Note that $\alpha \nVdash A_{j}$, for every $A_{j} \in \Upsilon$. Thus, we can apply (IH2) to claim that, for every $1 \leq j \leq n$, there are $\Sigma_{j}=\Sigma_{j}^{\mathrm{At}} \cup \Sigma_{j}^{\supset}$ and $\Theta_{j}=\Theta_{j}^{\mathrm{At}} \cup \Theta_{j}^{\supset}$ such that:
(P3) $\vdash_{\mathbf{F R J}(G)} \sigma_{j}$, where $\sigma_{j}=\Sigma_{j} ; \Theta_{j} \rightarrow A_{j}$.
$(\mathrm{P} 4) \Sigma_{j} \subseteq \Lambda_{\alpha}^{*} \subseteq \Sigma_{j} \cup \Theta_{j}$.
We stress that the use of (IH2) is sound since $\operatorname{tp}^{-}\left(\sigma_{j}\right)<\operatorname{tp}^{-}(\sigma)$. We prove that $\sigma_{1}, \ldots, \sigma_{n}$ satisfy the side conditions of rule \bowtie^{At}. To this aim, we show that, for every $1 \leq j \leq n$, the following holds:
(a) $\Sigma_{i} \subseteq \Sigma_{j} \cup \Theta_{j}$, for every $i \neq j$.
(b) $Y \supset Z \in \Sigma_{j}^{\supset}$ implies $Y \in \Upsilon$.
(c) $C \notin \Sigma_{j}^{\mathrm{At}}$.

Let $j \in\{1, \ldots, n\}$ and $i \neq j$. By (P4) we have both $\Sigma_{i} \subseteq \Lambda_{\alpha}^{*}$ and $\Lambda_{\alpha}^{*} \subseteq \Sigma_{j} \cup \Theta_{j}$, and this proves (a). Point (b) immediately follows by (P4) and the definition of
Υ. Point (c) follows by the fact that $C \notin \Lambda_{\alpha}^{*}$ and by (P4) By (a) (c), we can apply the rule $\bowtie^{\text {At }}$ with premises $\sigma_{1}, \ldots, \sigma_{n}$ and build the $\mathbf{F R J}(G)$-derivation:

$\vdots(P 3)$	$j=1 \ldots n$
$\frac{j}{\ldots \Sigma_{j}^{\mathrm{At}}, \Sigma_{j}^{\supset} ; \Theta_{j}^{\mathrm{At}}, \Theta_{j}^{\supset} \rightarrow A_{j} \ldots} \bowtie^{\mathrm{At}}$	$\Sigma^{\mathrm{At}}, \Sigma^{\supset}, \Theta^{\mathrm{At}}, \Theta^{\supset}$ as in Fig. 1
$\sigma=\Gamma \Rightarrow C$	$\Gamma=\Sigma^{\mathrm{At}} \cup\left(\Theta^{\mathrm{At}} \backslash\{C\}\right) \cup \Sigma^{\supset} \cup \Theta^{\supset}$

Thus (i) holds; note that, by the definition of Υ, the application of $\bowtie^{\text {At }}$ satisfies (PS3) We show that $\Lambda_{\alpha}^{*} \subseteq \Gamma$, and this proves (ii), If, for some $j \in\{1, \ldots, n\}$, $\Lambda_{\alpha}^{*} \subseteq \Sigma_{j}$, then $\Lambda_{\alpha}^{*} \subseteq \Sigma^{\mathrm{At}} \cup \Sigma^{\supset}$. Otherwise, by (P4), $\Lambda_{\alpha}^{*} \subseteq \bigcap_{1 \leq j \leq n} \Theta_{j}$. Since $C \notin \Lambda_{\alpha}^{*}$, we get $\Lambda_{\alpha}^{*} \subseteq\left(\Theta^{\text {At }} \backslash\{C\}\right) \cup \Theta^{\supset}$. In both cases we conclude $\Lambda_{\alpha}^{*} \subseteq \Gamma$.

- Case $C \in \mathcal{V}^{\perp}$, proof of (iii) and (iv).

- Case $C=C_{1} \vee C_{2}$, proof of (i) and (ii).

Since $\alpha \nVdash C_{1} \vee C_{1}$, we have $\alpha \nVdash C_{1}$ and $\alpha \nVdash C_{2}$. By (IH2), for $k \in\{1,2\}$ there are $\Sigma_{k}=\Sigma_{k}^{\mathrm{At}} \cup \Sigma_{k}^{\supset}$ and $\Theta_{k}=\Theta_{k}^{\mathrm{At}} \cup \Theta_{k}^{\supset}$ such that:
(Q3) $\vdash_{\mathbf{F R J}(G)} \sigma_{k}$, where $\sigma_{k}=\Sigma_{k} ; \Theta_{k} \rightarrow C_{k}$.
(Q4) $\Sigma_{k} \subseteq \Lambda_{\alpha}^{*} \subseteq \Sigma_{k} \cup \Theta_{k}$.
If $\Lambda_{\alpha}^{* \supset}$ is empty, by (Q4) we have $\Sigma_{k}=\Sigma_{k}^{\text {At }}$, for $k \in\{1,2\}$. Hence, we can build the $\mathbf{F R J}(G)$-derivation

$$
\begin{gathered}
\vdots(Q 3) \\
\frac{\Sigma_{1}^{\mathrm{At}} ; \Theta_{1}^{\mathrm{At}}, \Theta_{1}^{\supset} \rightarrow C_{1} \quad \Sigma_{2}^{\mathrm{At}} ; \Theta_{2}^{\mathrm{At}}, \Theta_{2}^{\supset} \rightarrow C_{2}}{\sigma=\Sigma_{1}^{\mathrm{At}}, \Sigma_{2}^{\mathrm{At}}, \Theta_{1}^{\mathrm{At}} \cap \Theta_{2}^{\mathrm{At}} \Rightarrow C_{1} \vee C_{2}} \quad \Gamma=\Sigma_{1}^{\mathrm{At}} \cup \Sigma_{2}^{\mathrm{At}} \cup\left(\Theta_{1}^{\mathrm{At}} \cap \Theta_{2}^{\mathrm{At}}\right)
\end{gathered}
$$

and this proves (i) By (Q4) we get $\Lambda_{\alpha}^{*} \subseteq \Gamma$, which proves (ii). Let $\Lambda_{\alpha}^{* \supset}$ be non empty and let $\Upsilon=\left\{A_{1}, \ldots, A_{n}\right\}$ be the set of formulas Y such that either $Y \supset Z \in \Lambda_{\alpha}^{* \supset}$ or $Y=C_{1}$ or $Y=C_{2}$. Note that $\alpha \nVdash A_{j}$, for every $A_{j} \in \Upsilon$. Arguing as above, points (P3) and (P4) hold, hence we can build the FRJ(G)derivation

$$
\begin{array}{cl}
\vdots(\mathrm{P} 3) & j=1 \ldots n \\
\frac{\ldots \Sigma_{j}^{\mathrm{At}}, \Sigma_{j}^{\supset} ; \Theta_{j}^{\mathrm{At}}, \Theta_{j}^{\supset} \rightarrow A_{j} \cdots}{\sigma} \bowtie^{\vee} & \Sigma^{\mathrm{At}}, \Sigma^{\supset}, \Theta^{\mathrm{At}}, \Theta^{\supset} \text { as in Fig. } 1 \\
\sigma=\Gamma \Rightarrow C_{1} \vee C_{0} & \Gamma=\Sigma^{\mathrm{At}} \cup \Theta^{\mathrm{At}} \cup \Sigma^{\supset} \cup \Theta^{\supset}
\end{array}
$$

and this proves (i). Point (ii) (with $\beta=\alpha$) can be proved as above, exploiting (P4). We point out that the displayed applications of \bowtie^{\vee} match (PS4).

- Case $C=C_{1} \vee C_{2}$, proof of (iii) and (iv).

By (IH3), points (Q3) and (Q4) hold; thus $\Sigma_{1} \subseteq \Sigma_{2} \cup \Theta_{2}$ and $\Sigma_{2} \subseteq \Sigma_{1} \cup \Theta_{1}$. This implies that we can apply rule \vee to σ_{1} and σ_{2} and get an $\mathbf{F R J}(G)$-derivation of $\sigma=\Sigma_{1}, \Sigma_{2} ; \Theta_{1} \cap \Theta_{2} \rightarrow C_{1} \vee C_{2}$, which proves (iii). Point (iv) follows by (Q4).

- Case $C=C_{1} \wedge C_{2}$.

Since $\alpha \nVdash C_{1} \wedge C_{2}$, there exists $k \in\{1,2\}$ such that $\alpha \nVdash C_{k}$. Using (IH3), the assertions easily follow.

- Case $C=A \supset B$, proof of (i) and (ii)

Since $\alpha \nVdash A \supset B$, there is $\eta \in P$ such that $\alpha \leq \eta$ and $\eta \Vdash A$ and $\eta \nVdash B$. Since $\eta \nVdash B$, by induction hypothesis (IH1) if $\alpha<\eta$ and (IH3) if $\alpha=\eta$, there is Γ such that:
$(\mathrm{R} 1) \vdash_{\mathbf{F R J}(G)} \sigma_{1}$, where $\sigma_{1}=\Gamma \Rightarrow B$.
(R2) There is $\beta \in P$ such that $\eta \leq \beta$ and $\Lambda_{\beta}^{*} \subseteq \Gamma$.
We show that $A \in \mathcal{C l}(\Gamma)$, so that an application of rule \supset_{\in} to σ_{1} yields $\sigma=\Gamma \Rightarrow$ $A \supset B$, and this proves (i). Since $\eta \leq \beta$, we have $\beta \Vdash A$, namely $A \in \Lambda_{\beta}$. By Lemma 5. $A \in \mathcal{C l}\left(\Lambda_{\beta}^{*}\right)$, which implies, by (R2) and (Cl4), $A \in \mathcal{C l}(\Gamma)$. Point (ii) follows by (R2).

- Case $C=A \supset B$, proof of (iii) and (iv)

Since $\alpha \nVdash A \supset B$, there is $\eta \in P$ such that $\alpha \leq \eta$ and $\eta \Vdash A$ and $\eta \nVdash B$. Without loss of generality, we assume that, for every $\delta \in P$ such that $\alpha \leq \delta<\eta$, we have $\delta \nVdash A$. Since $\alpha \leq \eta$, it holds that $\alpha \nVdash B$. By (IH3) there are Σ_{1} and Θ_{1} such that:
(S3) $\vdash_{\mathbf{F R J}(G)} \sigma_{1}$, where $\sigma_{1}=\Sigma_{1} ; \Theta_{1} \rightarrow B$.
(S4) $\Sigma_{1} \subseteq \Lambda_{\alpha}^{*} \subseteq \Sigma_{1} \cup \Theta_{1}$.
Let $\eta=\alpha$. Since $A \in \Lambda_{\alpha}$, by Lemma $5 A \in \mathcal{C} l\left(\Lambda_{\alpha}^{*}\right)$. Let Λ be a minimum subset of Λ_{α}^{*} such that $A \in \mathcal{C l}(\Lambda)$ (namely: $\Lambda^{\prime} \subsetneq \Lambda$ implies $A \notin \mathcal{C l}\left(\Lambda^{\prime}\right)$). Note that, by (S4) $\Lambda \subseteq \Sigma_{1} \cup \Theta_{1}$, hence we can partition Λ as $\Lambda_{\Sigma} \cup \Lambda_{\Theta}$, as shown below. We can build the following $\operatorname{FRJ}(G)$-derivation, where rule $\supset \in$ shifts the set Λ_{Θ} to the left of semicolon:

$$
\begin{array}{cl}
\vdots \begin{array}{|c|}
\hline(S 3) \\
\Theta_{1}
\end{array} \overbrace{\Sigma_{2}, \Lambda_{\Sigma}}^{\Sigma_{1}} ; \overbrace{\Theta_{2}, \Lambda_{\Theta}}^{\Theta_{1}} \rightarrow B & \begin{array}{l}
\Lambda=\Lambda_{\Sigma} \cup \Lambda_{\Theta} \text { where } \\
\Lambda_{\Sigma}=\Lambda \cap \Sigma_{1} \quad \Lambda_{\Theta}=\Lambda \cap \Theta_{1} \\
\Sigma_{2}, \Lambda_{\Sigma}, \Lambda_{\Theta}
\end{array} \Theta_{2} \rightarrow A \supset B \\
\Sigma_{2}=\Sigma_{1} \backslash \Lambda_{\Sigma} \quad \Theta_{2}=\Theta_{1} \backslash \Lambda_{\Theta} \\
\Sigma=\Sigma_{2} \cup \Lambda_{\Sigma} \cup \Lambda_{\Theta}=\Sigma_{1} \cup \Lambda_{\Theta}
\end{array}
$$

Since $A \in \mathcal{C l}(\Lambda)$ and $\Lambda \subseteq \Sigma$, by $(\mathcal{C l} l 4)$ we get $A \in \mathcal{C} l(\Sigma)$, hence the application of \supset_{\in} is sound and (iii) holds. Since $\Sigma_{1} \subseteq \Lambda_{\alpha}^{*}$ (see (S4)) and $\Lambda_{\Theta} \subseteq \Lambda \subseteq \Lambda_{\alpha}^{*}$, we
get $\Sigma_{1} \cup \Lambda_{\Theta} \subseteq \Lambda_{\alpha}^{*}$, namely $\Sigma \subseteq \Lambda_{\alpha}^{*}$. Moreover, since $\Lambda_{\alpha}^{*} \subseteq \Sigma_{1} \cup \Theta_{1}$ (see (S4)) and $\Sigma_{1} \cup \Theta_{1}=\Sigma \cup \Theta_{2}$, we get $\Lambda_{\alpha}^{*} \subseteq \Sigma \cup \Theta_{2}$, and this concludes the proof of (iv) We notice that the choice of Λ complies with (PS1).

Let $\alpha<\eta$ (hence $\mathrm{h}(\eta)<\mathrm{h}(\alpha)$). By the choice of η, we can assume $\alpha \nVdash A$. Since $\eta \nVdash B$, by (IH1) there is Γ such that:
(T1) $\vdash_{\mathbf{F R J}(G)} \sigma_{1}$, where $\sigma_{1}=\Gamma \Rightarrow B$.
(T2) There exists $\mu \in P$ s.t. $\eta \leq \mu$ (hence $\alpha<\mu$) and $\Lambda_{\mu}^{*} \subseteq \Gamma$.
Since $\eta \Vdash A$ and $\eta \leq \mu$, we get $\mu \Vdash A$, hence $A \in \Lambda_{\mu}$. By Lemma $5 A \in \mathcal{C l}\left(\Lambda_{\mu}^{*}\right)$ hence, by (T2) and (Cl4), $A \in \mathcal{C l}(\Gamma)$. Since $\alpha \nVdash A$, we have $A \notin \Lambda_{\alpha}$ hence, by Lemma 5, $A \notin \mathcal{C} l\left(\Lambda_{\alpha}^{*}\right)$. Since $\alpha<\mu$, we have $\Lambda_{\alpha}^{*} \subseteq \Lambda_{\mu}$. By Lemma 5 $\Lambda_{\mu}=\mathcal{C l}\left(\Lambda_{\mu}^{*}\right)$. By (T2) and (CCl4) $\mathcal{C l}\left(\Lambda_{\mu}^{*}\right) \subseteq \mathcal{C} l(\Gamma)$, hence $\Lambda_{\alpha}^{*} \subseteq \mathcal{C l}(\Gamma)$. Thus $\Lambda_{\alpha}^{*} \subseteq \mathcal{C l}(\Gamma) \cap \bar{\Gamma}$ and $A \notin \mathcal{C l}\left(\Lambda_{\alpha}^{*}\right)$. Let Θ be a maximum extension of of Λ_{α}^{*} such that $\Lambda_{\alpha}^{*} \subseteq \Theta \subseteq \mathcal{C l}(\Gamma) \cap \bar{\Gamma}$ and $A \notin \mathcal{C l}(\Theta)$ (namely: $\Theta \subsetneq \Theta^{\prime} \subseteq \mathcal{C l}(\Gamma) \cap \bar{\Gamma}$ implies $A \in \mathcal{C l}(\Theta))$. We can build the $\mathbf{F R J}(G)$-derivation:

$$
\begin{array}{cl}
\vdots(T 1) & \Theta \subseteq \mathcal{C l}(\Gamma) \cap \bar{\Gamma} \\
\sigma=\cdot ; \Theta B \\
\sigma=A \supset B & A \in \mathcal{C l}(\Gamma) \backslash \mathcal{C l}(\Theta)
\end{array}
$$

This proves (iii). The proof of (iv) is immediate. Note that the choice of Θ matches (PS2)

