Appendix

Lemma [1} ¢’ — o implies Lhs(c) C CI(Lhs(d”")).

Proof. If o' —( o, the assertion follows by the definition of the rules of the calcu-
lus and the properties of closures. For instance, let o be the conclusion of rule V
of Fig.[[and o’ the right premise. Since X C XUO5, we get Lhs(c) C Lhs(o2),
which implies, by Lhs(o) C Ci(Lhs(oz)). Having proved the assertion for
o, the generalization to — follows by a

Lemma Let D be an FRJI(G)-derivation and o a sequent occurring in D.

(i) If o =T = C, then ¢(o) IF I and ¢(c) ¥ C.
(i1) If o = X; 0 — C, let 0, € P(D) such that o — o, and o, IF ZNSE™(C);
then o, ¥ C.

Proof. We present the cases not discussed in Sec. [
Let R = D¢ and o irregular:
op = X1;0,1—- B AeCl(X), where ¥ = X3 UA
o =32,;0A>B ~° X, = ¥nSsi4)

By hypothesis o, IF XN Sf™ (A D B), hence o, IF 21 N St™(B) and o, IF 24
(indeed, Sf(A) C St~ (A D B)). Since 01 +— oy, by (IH1) applied to o1 we get
op ¥ B. Since A € CI(X), by @I we get A € CI(X4) and, by [(CIT)} o, IF A.
We conclude o, ¥ A D B and holds.

Let R = Dg. Then:

oo = I'=18B
c=-;606—>ADB

By (IH1) applied to o1, we have ¢(cq) I I" and ¢(o1) ¥ B. By [([CI1)] ¢(01) IF A.

Since o1 — 0y, we have 0, < ¢(01), hence o, ¥ A D B, and this proves
The case R =x" is similar to the case R =x?* detailed in Sec. [4l Finally,

the case R = A easily follows by (IH1). O

¢ Aecl)

To prove Lemma [d we need the following property of closures:

Lemma 5. Let K be a countermodel for G and o« a world in K. Then, A, =
Cl(Ay) =Cl(AL).

Proof. By Ao C Cl(Ay). By induction on |C], one can easily prove that
C € Cl(A,) implies C' € A,, hence A, = Cl(A,). Since A% C A,, by |[(Ci4)| we
get Cl(A%) C Cl(A,). It remains to prove that A, C CI(AY). Let C € SL(G)
such that a IF C; by induction on |C|, we show that C' € Ci(A%). If C € V, then
a lF* C, hence C € A%, which implies C' € CI(A}). Let C = A D B. If a ¥ A,
then a IF* C and, as above, C' € CI(A%). If a IF A, then « IF B; by induction
hypothesis, B € CI(A%), hence A D B € CI(A%). The cases C = A A B and

C = AV B easily follow by the induction hypothesis. ad



The height of a world « of a model K is the maximal length of a path from
« to a final world of K.
Lemma Let K = (P,<,p,V) be a countermodel for G and a € P. For every
C € 2, we can choose I', X and © such that:

(Z) I_FRJ(G) o, where c =1 = C.

(i) there is B € P such that o < 8 and A C I'.
(iii) Feray(e) 0, where 0 = X; 0 — C.

(iv) ¥ C AL C YUO.

Let S, be the set of sequents selected in and and S} the union of Sg
such that a < 8. Then, to prove o € S, we only need to use sequents in Sp.

Proof. Let a € P and C € {2,. We use a main induction (IH1) on h(a); a
secondary induction (IH2) on tp~ (o), where tp~ (o) = 1 if o is regular, tp~ (o) =
0 otherwise; a third induction (IH3) on |C|. We proceed by a case analysis on
C; we set:

™ =suG)ny T =su@nL> T=TYuT> Ap=Aa,nL>

In each case, one can easily check that the derivations satisfy the last assertion

of the lemma. We also point out that derivations satisfy properties|(PS1)H(PS4)
stated in Sec. 3

— Case C' € V*, proof of and

Since a ¥ C, we have C' ¢ A%. If A5° is empty, then A* C e \ {C}. Thus,

taking as o the regular axiom ™ \ {C} = C, points (where 8 = «)
immediately follow. Let A3> be non empty and let T = {A1,..., A} be the set
of formulas Y such that Y D Z € A5°. Note that a ¥ A;, for every A; € 7. Thus,
we can apply (IH2) to claim that, for every 1 < j < n, there are X; = Zﬁt U ZjD

and ©; = O U O3 such that:

(P3) Frry(q) o), where 0; = X 0; — Aj.
(P4) X € A, € X;U0;.

We stress that the use of (IH2) is sound since tp~(o;) < tp~ (o). We prove that
01,...,0, satisfy the side conditions of rule x**. To this aim, we show that, for
every 1 < j < n, the following holds:

(a) X; C X; U0y, for every i # j.
(b) YD Z e X2 implies Y € 7.
(c) C ¢ Xit.

Let j € {1,...,n} and i # j. By we have both X; C A} and A}, C X;U6O;,
and this proves[(a)] Point [(b)| immediately follows by and the definition of

ii



7. Point follows by the fact that C' ¢ A% and by |(P4)] By [(a) we can

apply the rule x4t with premises oy, ..., 0, and build the FRJ(G)-derivation:

L UM TP M 02 5 A L DAt 52 OM 92 as in Fig. [1]
E— s WAL P DAL (AN {C)) U E2 U2

Thus [(i)| holds; note that, by the definition of 7", the application of Mt satisfies

(PS3)l We show that A% C I', and this proves [(ii)| If, for some j € {1,...,n},
(P4)

A C Xy, then Af, C YAt U X2, Otherwise, by A% € MNi<j<n ©;- Since
C ¢ A%, we get A% C (OA%\ {C}) UO>. In both cases we conclude A% C I

— Case C € V*, proof of and
Trivial, taking as o the irregular axiom - ; ™ \ {C},fD - C.

— Case C' = (7 V Csy, proof of and

Since a ¥ C; V C1, we have a ¥ Cy and a ¥ Cy. By (IH2), for k € {1,2} there
are X = YU XP and O = O U O7 such that:

(Q3) Frry(G) Ok, Where o = Xy ; O — C.
(Q4) Ty C A5 C 2, U6,

If A%° is empty, by [(Q4)[ we have X = X, for k € {1,2}. Hence, we can build
the FRJ(G)-derivation

©@3) Q)
e er -0 I 080,09 = Oy
JZElAt,EQAt,@?tﬂ@?t:>C1VCQ

and this proves By we get A* C I', which proves Let A%> be
non empty and let 7 = {Ay,..., A,} be the set of formulas Y such that either
YD Ze AP orY =C;orY = C,. Note that a ¥ A;, for every A; € 1.
Arguing as above, points and hold, hence we can build the FRJ(G)-

derivation

I = SMyXMtu(eMnes)

NV

DAt ¥O . QA 9Dy A YAt 32 At 9> asinFig.
- 25255 057,05 jo
g =1T=0CVG ' r=xMueMusiue?

and this proves Point (with 8 = «) can be proved as above, exploit-
ing [[P4)l We point out that the displayed applications of " match [(PS4)]

— Case C' = (7 V Csy, proof of and
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By (IH3), points and hold; thus Xy C Y5UBO5 and Xy C Xy UO;. This
implies that we can apply rule V to o1 and o9 and get an FRJ(G)-derivation of

o=2X1,Y9; 01N Oy — Cy V Cs, which proves Point follows by |(Q4)]
— Case C' = (C7 A Cs.

Since oo ¥ Cy A Cy, there exists k € {1,2} such that o ¥ Cj. Using (IH3), the
assertions easily follow.

— Case C = A D B, proof ofand

Since o ¥ A D B, there is n € P such that o <7 and n I- A and n ¥ B. Since
n ¥ B, by induction hypothesis (IH1) if o < i and (IH3) if o = 7, there is I'
such that:

(R1) Frriy(@) 01, where 0y = I" = B.
(R2) There is 3 € P such that n < 8 and A} C T

We show that A € CI(I'), so that an application of rule D¢ to oy yields o = I' =
A D B, and this proves Since n < B, we have 8 I A, namely A € Ag. By
Lemma A € Cl(Aj), which implies, by and A € Cl(I'). Point
follows by

— Case C = A D B, proof of [(iii)| and [(iv)}

Since a ¥ A D B, there is n € P such that « < nand n - A and n ¥ B. Without
loss of generality, we assume that, for every § € P such that a < § < 7, we have
0 W A. Since a < 5, it holds that o ¥ B. By (IH3) there are X and ©; such
that:

(83) }_FRJ(G) o1, where o1 = 21; 91 — B.
(S4) ¥y C A% C $,U6;.

Let n = . Since A € A,, by Lemma[5] A € CI(A%). Let A be a minimum subset
of Af such that A € CI(A) (namely: A" C A implies A & Cl(A’)). Note that,
by A C ¥y U B4, hence we can partition A as Ay U Ag, as shown below.
We can build the following FRJ(G)-derivation, where rule D¢ shifts the set Ag
to the left of semicolon:

2 (S3) A = Ax U Ag where
b>h e, Ay = AN, Ao = AN6G,
—
Yoy, Axg 5 O, = B 5 Xy = X1\ Ax Oy = 01\ 4o
0= YpAs, Ao ; G2 ADB S ¥ = 2,UAsUde = XU g
—————

x

Since A € Cl(A) and A C X, by [(Cl4)| we get A € ClI(X), hence the application
of D¢ is sound and holds. Since X C A% (see|(S4)) and Ao C A C A%, we
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get X1 U Ag C A%, namely X' C A% . Moreover, since A C X U Oy (see|(S4))
and X1 UO; = ¥ UBO,, we get A C Y'UO,, and this concludes the proof of |(iv)
We notice that the choice of A complies with

Let o < i (hence h(n) < h(w)). By the choice of 7, we can assume o ¥ A.
Since n ¥ B, by (IH1) there is I" such that:

(T1) Frriy(q) o1, where o1 = I' = B.
(T2) There exists u € P s.t. n < p (hence o < p) and Ay C T

Since n I+ A and n < p, we get pl- A, hence A € 4,,. By Lemma A€ Cl(Ay)
hence, by and A € CI(I'). Since a ¥ A, we have A ¢ A, hence,
by LemmA ¢ Cl(AY). Since o« < p, we have A}, C A,. By Lemma
Ay = Cl(A7). By and Cl(A3) € CU(I'), hence Aj C CI(I'). Thus
AX, CCI(I)NT and A & CI(A%). Let © be a maximum extension of of A* such
that AZ CO CCII)NT and A ¢ Cl(O) (namely: © C ©' C CI(I') N T implies
A € Cl(O)). We can build the FRJ(G)-derivation:

Ty eccarnTl
I'= B A e cun\cle

D S
c=-;06—ADB g (I)\CH®)

This proves |(iii)l The proof of is immediate. Note that the choice of @
(PS2)

matches o




