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Abstract—The use of supervised learning for Human Activity
Recognition (HAR) on mobile devices leads to strong classifica-
tion performances. Such an approach, however, requires large
amounts of labeled data, both for the initial training of the
models and for their customization on specific clients (whose
data often differ greatly from the training data). This is actually
impractical to obtain due to the costs, intrusiveness, and time-
consuming nature of data annotation. Moreover, even with the
help of a significant amount of labeled data, model deployment
on heterogeneous clients faces difficulties in generalizing well on
unseen data. Other domains, like Computer Vision or Natural
Language Processing, have proposed the notion of pre-trained
models, leveraging large corpora, to reduce the need for an-
notated data and better manage heterogeneity. This promising
approach has not been implemented in the HAR domain so far
because of the lack of public datasets of sufficient size. In this
paper, we propose a novel strategy to combine publicly available
datasets with the goal of learning a generalized HAR model that
can be fine-tuned using a limited amount of labeled data on
an unseen target domain. Our experimental evaluation, which
includes experimenting with different state-of-the-art neural
network architectures, shows that combining public datasets can
significantly reduce the number of labeled samples required to
achieve satisfactory performance on an unseen target domain.

Index Terms—human activity recognition; mobile/wearable
computing; transfer learning

I. INTRODUCTION

Despite years of research and progress [1], the field of
sensor-based Human Activity Recognition (HAR) on mobile
or wearable devices remains a hot research topic. This is due to
several reasons. First, the field has major social importance in
the sense that it is necessary for the development of value-
added services in the fields of health, well-being, or task
monitoring in industry. Secondly, although constant progress
can be reported, the problem is far from being solved and today
solutions are difficult to be deployed in real-world scenar-
ios [2]. Most recent approaches are based on machine learning
techniques. More precisely, supervised learning leads to strong
classification performances for HAR. This, however, requires
large amounts of labeled data, both for the initial training
of the models and for their customization on specific clients

(whose data often differ greatly from the training data). This
is actually a problem because of the costs, intrusiveness, and
time-consuming nature of data collection and annotation. Even
with the help of a number of labeled data, models deployed
on heterogeneous clients face difficulties to generalize well on
unseen data.

In other domains, such as Computer Vision or Natural Lan-
guage Processing, learning a model on one large dataset [3],
[4] makes it possible to transfer knowledge to new domains
using only a limited amount of specific data [5]. However,
in the HAR domain, transferring knowledge from a single
dataset is not effective because of the lack of publicly available
large and heterogeneous datasets, due to the above-mentioned
problems. We call this the labeled data scarcity problem.
Ideally, a pre-trained model should be able to cope with
the variability of devices [6], the variability of applications,
and also the behavioral differences of users [7]. In fact,
there are a number of public datasets but they are generally
small and acquired in scripted scenarios (e.g. Mobiact [8],
MotionSense [9], PAMAP2 [10]). The few ones that are
relatively large and acquired in the wild often include noisy
data and incorrect annotations (e.g. ExtraSensory [11]).

Transfer learning from one dataset to another has been
already attempted but existing works showed that such ap-
proaches lead to low recognition rates [12]. To further demon-
strate the problem, Figure 1 presents the result of an ex-
periment showing the challenge of training a model on one
dataset and expecting it to perform well on a different dataset.
This cross-dataset evaluation was performed using some of the
most commonly used publicly available datasets for HAR and
using a state-of-the-art model [13]. The figure clearly shows
that the model performs well when trained and tested on the
same dataset, but its performance drastically deteriorates in
cross-dataset scenarios. These results highlight the challenges
associated with developing models that can generalize well
across diverse datasets and underscore the need for developing
more robust approaches that can effectively leverage knowl-
edge from pre-training on large, diverse, and representative



Fig. 1: Cross-dataset evaluation by using a state-of-the-art
classifier [13]. A cell at coordinates i, j shows the F1 score
obtained by training the model with 70% of dataset i on 30%
of dataset j.

datasets.
In this paper, we hypothesize that, by combining several

public HAR datasets that are often used as benchmarks by
the HAR community, it is possible to pre-train models that
can be fine-tuned on target clients with a limited amount of
labeled data. Specifically, we propose a novel approach to
combining datasets and we report our experience considering
6 public datasets to generate a pre-trained model. Also, we
propose an evaluation strategy called Leave-One-Dataset-Out
that effectively assesses the generalization capabilities of our
approach.

Our experiments show that our pre-trained model can be
effectively transferred to an unseen target HAR domain using
a limited amount of labeled data for fine-tuning. To the best
of our knowledge, this is the first work proposing to combine
several heterogeneous HAR datasets to mitigate the labeled
data scarcity problem. Precisely, the contributions of this paper
are the following:

• We pre-trained models using a combination of diverse
publicly available HAR datasets. We show that such mod-
els can be effectively fine-tuned efficiently with limited
data of unseen target domains.

• We then propose a novel realistic and challenging
evaluation methodology termed Leave-One-Dataset-Out
(LODO), and we use it to extensively assess the effective-
ness of our approach on different state-of-the-art neural
network architectures.

• The pre-trained model, the corresponding training data,
and the code are publicly available to make this research
reproducible1.

II. RELATED WORK

Human activity recognition (HAR) using machine learning
has traditionally relied on supervised learning approaches,
which require a significant amount of labeled data for training
to achieve high accuracy [14]. However, obtaining labeled

1https://github.com/getalp/SmartComp2023-HAR-Supervised-Pretraining

activity data is often time-consuming, intrusive, costly, and
hence unfeasible on a large scale [15]. To overcome the
scarcity of labeled samples in the target domain, domain
adaptation (DA) techniques have emerged to leverage labeled
samples that are available from a different source domain [16].
Among the many DA techniques, transfer learning has shown
valuable results in various domains, including natural language
processing [17], [18]. However, adapting transfer learning
to HAR is challenging due to device variability, body dis-
placement, and behavioral differences among users, making
it difficult to generate a generic model that can quickly
adapt to diverse datasets [19], [20]. Several researchers have
investigated how to apply transfer learning methods to solve
cross-domain HAR problems, including cross-device [21],
[22], cross-sensor-installation-position [20], [23], and cross-
persons [17], [24]. However, publicly available datasets for
HAR have limited labeled samples and classes, which restricts
the effectiveness of cross-domain adaptation works in this
area [25]. For instance, effective deep CNN frameworks have
been proposed to enable the generation of a model that
can efficiently adapt across diverse datasets [26], but they
require that the classes between the source and the target
domain overlap, hence limiting their effectiveness in real-
world scenarios. Moreover, most of the studies in this field
have been conducted by transferring knowledge from one
single dataset to another, resulting in performance variations
depending on the compatibility among the data across the
considered dataset pairs [25]. Furthermore, due to the data
scarcity problem in HAR, using only the data from one dataset
to generate the model that needs to be transferred to another
domain may not be sufficient. A possible solution to mitigate
this problem is to pre-train the model on a different source
domain before fine-tuning on the data-scarce target domain
[12], [25]–[28]. The obtained results are promising even in
the case very few data are used for fine-tuning the model
in the target domain. However, this approach suffers from
generalization across domains that differ from the target one.
We argue that utilizing only a single dataset for the pre-training
HAR models is not sufficient to find common features in the
target domain, especially with the highly heterogeneous nature
of smartphone data. Another approach to expand the dataset
available for training may consist of using data augmentation
techniques like GANs [29], [30]. GANs have been also used to
facilitate cross-subject transfer learning [31]. However, GANs
still require a significant amount of labeled samples to be
trained.

In recent years, self-supervised learning (SSL) approaches
have gained attention as a general framework for learning
from unlabeled data through a pretext task [5], [32]. SSL has
also been applied to sensor-based HAR, leading to promising
results [33], [34]. However, even a good unsupervised or SSL
model that permits adaptation using a short amount of data
still requires a significant amount of data, as exemplified in
other domains such as vision and speech [35]. In the HAR
domain, even non-annotated data is difficult to obtain.



III. COMBINING DATASETS FOR MODEL PRE-TRAINING

In this section, we outline our strategy for combining
datasets to create a pre-trained model that can generalize well
across all datasets. We begin by providing an overview of the
datasets we considered for this task. Next, we describe our
proposed approach for combining these datasets to generate
the pre-trained model.

A. Datasets

In the following, we describe the datasets we considered in
this work. We note here that we explicitly seek datasets with
both Accelerometer and Gyroscope data, as utilizing the two
sensors together gave the best performance [36]. Information
on the datasets is summarized in Table I.

1) Heterogeneity Human Activity Recognition (HHAR) [6]
: The HHAR dataset consists of 4.5 hours of recorded
activities from 9 participants. Each participant wore 8 Android
smartphones in a tight pouch carried around on the waist, and
4 Android smartwatches while performing 6 different activities
(Biking, Sitting, Standing, Walking, Upstairs, and Downstairs).
All 12 devices recorded the activities using accelerometer and
gyroscope measurements at their maximum sampling rates,
which ranged from 50 Hz to 200 Hz. The HHAR dataset
represents a heterogeneous learning environment due to the
variety of devices used in the data collection process.

2) MobiAct [8] : This dataset includes labeled data from
61 different subjects with high variance in age and physical
characteristics. The dataset contains data from a triaxial ac-
celerometer, gyroscope, and magnetometer embedded into a
Samsung Galaxy S3 smartphone carried by users while per-
forming 9 physical activities. During the acquisition process,
the users were left free to position the smartphone with a
random orientation into one of their trousers’ pockets. The
physical activities included in this dataset are the following:
Standing, Walking, Jogging, Jumping, Upstairs, Downstairs,
Sitting, Car step in, Car step out. The adopted data acquisition
frequency is the highest enabled by the sensors of the selected
smartphone (i.e., at most 200Hz).

3) MotionSense [9]: This dataset includes data from 24
subjects very heterogeneous in terms of gender, age, weight,
and height. The six activities performed were Downstairs,
Upstairs, Sitting, Standing, Walking, and Jogging/Running.
The tests were conducted using an Apple iPhone 6s that was
kept in the subject’s front pocket and recorded data from
accelerometer, attitude, and gyroscope sensors at a 50 Hz
sampling rate.

4) RealWorld [37]: This dataset consists of 18 hours of
recorded accelerometer and gyroscope data collected in 2016
from 15 subjects using a Samsung Galaxy S4 smartphone
and an LG G Watch R placed at 7 different body positions:
head, chest, upper arm, waist, forearm, thigh, and shin. The
sampling rate was 50 Hz. The subjects performed various
activities outdoors without any restrictions, and the data was
labeled into 8 activities: Downstairs, Upstairs, Lying, Sitting,
Standing, Walking, Jumping, and Running. This dataset aims

to simulate the class imbalance that resembles the ones of re-
alistic datasets. For instance, the ”standing” activity represents
14% of the data while the ”jumping” activity only accounts
for 2%.

5) UCI Human Activity Recognition [38] : This dataset
was collected using a Samsung Galaxy S II placed on the
participant’s waist, with a sampling rate of 50 Hz. The dataset
comprises 3.6 hours of recorded activities from 30 participants
with an age range of 19 to 48 years old. The six activities
recorded are Walking, Upstairs, Downstairs, Sitting, Standing,
and Lying, and the experiments were conducted in a controlled
indoor lab environment.

6) PAMAP2 [10]: This dataset was recorded in a con-
trolled setting where 9 participants carried out 12 activities of
daily living, including domestic tasks and physical exercises.
The activity data were recorded using three Colibri wireless
IMUs (inertial measurement units) consisting of triaxial ac-
celerometers, gyroscopes, and magnetometers attached to the
participants’ ankle, chest, and wrist. The activities monitored
were: rope jumping, lying, sitting, standing, walking, running,
cycling, nordic walking, ascending stairs, descending stairs,
vacuum cleaning, and ironing. The sampling rate adopted for
data acquisition was set to 100Hz.

B. Datasets combination strategy

In the following, we describe how we pre-processed and put
together the above-mentioned datasets. First, each dataset was
downsampled to 50 Hz to align with the optimal frequency for
HAR on smartphones as suggested by a recent survey [39].
Indeed, this survey suggests that a sampling rate between
20 Hz and 50 Hz is ideal for this task, and accelerometers
and gyroscopes are the most suitable sensors. Using higher
frequencies beyond 50 Hz would result in increased compu-
tation and memory costs with only marginal improvement in
performance.

After downsampling, each dataset was standardized indi-
vidually using sensor-wise z-normalization to center the data.
We avoid standardizing all datasets together as a whole to
avoid datasets with lower samples being under-presented when
combined with many of the larger datasets (e.g. the large
HHAR vs the small UCI dataset). In order to focus on the
data scarcity problem and to limit influences on the results
caused by domain shifts from different positions [36], from
each dataset we use data only from the ‘waist’ position, which
is usually the most common one and it is included in all of
the datasets studied in this work.

Finally, based on past studies [40], the data was then seg-
mented into instances using a window length of 128 samples
(2.56 seconds) with a 50% overlap over all 6 channels from
the accelerometer and gyroscope readings. In order to combine
the datasets together, we performed a union of the physical
activities involved. This combination led to a dataset with
147 subjects, 10 unique activities (‘Downstairs’, ‘Upstairs’,
‘Running’, ‘Sitting’, ‘Standing’, ‘Walking’,‘ Lying’,‘ Cycling’,
‘Nordic Walking’, ‘Jumping’), and 213,289 data samples
(≈ 151 hours of usable data), and 12 different devices for data



TABLE I: Summary of datasets characteristics

Dataset # of
samples

# of
users Adopted Devices Sampling rate Device position Activities

HHAR 85,567 9

Smartphones: Samsung Galaxy S3 mini,
Samsung Galaxy S3, LG Nexus 4,

Samsung Galaxy S+

Smartwatches: LG watches,
Samsung Galaxy Gears

from 50 Hz
to 200 Hz

Smartphones: Waist

Smartwatches: Wrist

Biking, Sitting, Standing,
Walking, Upstairs, Downstairs

MobiAct 18,634 61 Samsung Galaxy S3 from 50 Hz
to 200 Hz Waist

Standing, Walking, Jogging,
Jumping, Upstairs, Downstairs,

Sitting, Car step in, Car step out

MotionSense 17,231 24 Apple iPhone 6s 50 Hz Waist Downstairs, Upstairs, Sitting,
Standing, Walking, Running

RealWorld 356,427 15
Samsung Galaxy S4

LG G Watch R
50 Hz

Smartphones: Head, Chest, Upper arm,
Waist, Thigh, Shin

Smartwatches: Forearm

Downstairs, Upstairs, Lying,
Sitting, Standing, Jumping,

Walking, Running

UCI 10,299 30 Samsung Galaxy S II 50 Hz Waist Walking, Upstairs, Downstairs,
Sitting, Standing, Lying

PAMAP2 15,177 8 Colibri wireless IMU sensors 100 Hz Waist, Chest, Wrist

Rope Jumping, Lying, Sitting,
Standing, Walking, Running,

Cycling, Nordic walking,
Upstairs, Downstairs,

Vacuum cleaning, Ironing

acquisition. Despite considering only one on-body position, we
believe that the wide variety of subjects and devices presents
a challenging learning problem due to the heterogeneity of the
combined data.

C. Pre-training

The set of labeled datasets can then be used to train a deep
neural network model in a fully supervised learning fashion.
Specifically, we consider the neural network as composed of
two parts: the feature extractor and the classification head.
During the pre-training phase, we train the whole network (i.e.
feature extractor and classification head). We will refer to the
feature extractor trained on several joint datasets as the pre-
training model. By doing so, we aim to leverage the diversity
and heterogeneity of the joint datasets to extract high-level and
general-purpose features. These features should be applicable
to a wide range of unseen domains considering various users,
devices, and sensors. In other words, the pre-trained model
is designed to capture the common underlying patterns and
characteristics of the human activities that are invariant across
datasets, so that it provides a robust feature extractor.

D. Considered Models

In this paper, we consider four alternative state-of-the-art
neural networks which we use with their default parameters
and implementation from their official source code reposi-
tories. For each model, we consider the last layer (softmax
classification layer) as classification head, while the remaining
layers as feature extractor.

1) ISPL Inception [13] This network has been designed
by adapting the Inception-ResNet architecture proposed
[41] to the HAR domain. This architecture represents a
strong CNN architecture baseline for our study.

2) DeepConvLSTM [42] is a combination of convolutional
and LSTM recurrent layers. The network architecture
has been frequently used as a baseline for state-of-the-
art studies in the wearable HAR domain community.

3) HART [36] A sensor-wise HAR Transformer (HART)
architecture adapted from the successful transformer

TABLE II: Fine-tuning ratios and the corresponding samples
of training data for the considered datasets

Ratios of training data used for fine-tuning

Dataset 1% 5% 10% 70% (All Train Data)

HHAR 733 3,680 7,366 51,581

MobiAct 385 1,987 3,991 28,028

MotionSense 153 1,067 2,148 15,092

RealWorld 520 2,634 5,274 36,953

UCI 180 506 1,026 7,241

PAMAP2 148 751 1,504 10,545

model from the vision domain [43]. The model incor-
porates lightweight components, able to be deployed on
small devices capable of real-time performance.

4) MobileHART [36] An extension of HART that incor-
porates convolutional layers to learn spatial/temporal in-
ductive biases that conventional transformers do not. The
architecture reports state-of-the-art results on multiple
benchmark datasets.

IV. FINE-TUNING AND EVALUATION

In this section, we outline our methodology for evaluating
the pre-trained model that was learned from the data obtained
by combining the considered datasets.

A. Fine-tuning Methodologies

A small amount of labeled data acquired on the target
domain is used to fine-tune the pre-trained model. For the
sake of this work, in this phase, we consider three strategies
for using this small amount of data with the different models
composed of the pre-trained feature extractor augmented with
a randomly initialized classification head: a) using an unfrozen
and randomly initialized feature extractor (denoted as Rd) as
a baseline, b) using a frozen pre-trained feature extractor (PF )
to assess generalization capabilities on new tasks and c) using
a pre-trained feature extractor with all layers unfrozen (PU )
to assess the impact of fine-tuning data on feature extraction.



Fig. 2: Overview of LODO

B. Leave-One-Dataset-Out

In order to evaluate the effectiveness of our pre-trained
models on unseen data, we introduce a new evaluation strategy
called ”Leave-One-Dataset-Out” (LODO). The data flow of
this approach is depicted in Figure 2. This strategy takes
into account our multi-dataset setting and provides a better
assessment of the model’s ability to transfer knowledge to an
unseen target domain. At each fold, one dataset is considered
as left-out dataset, while the remaining ones are used to
create a pre-trained model. Specifically, the pre-training phase
includes the pre-processing steps depicted in Section III-B For
the partitioning, these datasets are class-stratified partitioned
in a subject-wise manner, with 90% of the data used for
training and 10% for validation. The training data from all
remaining datasets are then merged (we will refer to this as
the source/pre-training dataset), to learn the pre-trained model.
Similarly, the validation data from all remaining datasets are
used as the validation set during the pre-training process. The
left-out dataset (which we will refer to as the target dataset) is
partitioned subject-wise with 20% set aside for testing and
10% for validation. The remaining data is used to create
various training partitions simulating different labeled data
scarcity scenarios for fine-tuning. Six ratios of fine-tuning data
are considered: 0%, 1%, 5%, 10%, and 70%. The 0% ratio
depicts a scenario where there is no data for fine-tuning, and
it is useful to assess the capability of the pre-trained model to
transfer knowledge to the target dataset. The 1% ratio assesses
the model’s performance when there is minimal training data.
The 5% and 10% ratios demonstrate learning scenarios with
limited data availability, while the full 70% ratio represents a
conventional training pipeline. Table II shows the approximate
amount of samples regarding each fine-tuning ratio for each of
the considered datasets. We observed that, in extreme cases,
the PAMAP2 and UCI datasets will have respectively less than
3 and 6 minutes of training data considering the 1% ratio.

C. Experimental Setup

Our experiments were conducted on a high-performance
computing cluster with Intel Cascade Lake 6248 processors,

192GB of memory, and Nvidia Tesla V100 SXM2 16GB
GPUs. All models were developed using TensorFlow [44].

For each experiment, we learn the pre-trained model by
using 200 epochs with a batch size of 128 on the com-
bined datasets mentioned in the previous section. We saved
checkpoints of the pre-trained model during training, and then
selected the one that achieved the highest accuracy on the
validation set as the final pre-trained model. In the fine-tuning
phase, we adopted 200 epochs with a batch size of 64 on
the left-out datasets with their representative training scenarios
mentioned in the previous section. The evaluation of the test
set was performed on the fine-tuned model that achieved the
highest accuracy on the validation set. We adopted Adam as
the optimizer with a learning rate of 0.0005 for all experi-
ments. The hyper-parameters of each specific network follow
the standard configuration proposed by the authors of the
corresponding papers. We used the macro F1 score metric to
measure the performance of the classification task.

V. RESULTS

In this section, we present the results of our evaluation using
the evaluation methodology proposed in IV-B.

A. Main results

We first considered the worst-case labeled data scarcity
scenario, where only 1% of fine-tuning data is available in the
target domain. Figure 3 shows the F1 score obtained on each
model with the different fine-tuning strategies, by averaging
the recognition rate at each fold.

We observe that pre-training is particularly effective for
transformers-based architectures. For example, the F1 score
of the randomly initialised HART model Rd is only 61%,
whereas PU achieves 74% of F1 score. With MobileHART,
the benefits of pre-training are even more noticeable, with
a 37% F1 score improvement when using PU compared to
Rd. These results suggest that the complexity of transformers-
based networks requires a large amount of training data to ex-
tract meaningful features, leading to inadequate classification
rates with randomly initialised models and limited labeled data
in the target domain. Thus, our pre-training method enables
transformers to learn high-level and general-purpose features



Fig. 3: The average F1-score obtained with the considered
model architectures by using 1% of fine-tuning data

that work well on unseen data, which explains why they reach
a high F1 score.

Considering ISPL Inception, the pre-trained model PU

outperforms Rd on average by 5% of F1 score. In this case,
the advantage of pre-training is particularly evident on some
datasets (e.g., ≈ +10% when UCI and PAMAP2 are target
datasets) and negligible in others (e.g., ≈ +0.4% on MobiAct).
This is likely due to the fact that the network underlying
ISPL Inception is less complex than transformers and, in
some cases, few training samples from the target domain
are sufficient for model convergence. On the other hand, we
observed that our pre-training strategy has a negative effect on
DeepConvLSTM, where the F1 score obtained by fine-tuning
Rd outperforms the one generated with PU and PF . This is
likely due to the fact that DeepConvLSTM exhibited overfit-
ting behaviors during pre-training, with a negative impact on
generalization capabilities on unseen data.

B. More detailed results

In the following, we provide more details about these
results, discussing the pros and cons of the proposed pre-
training and fine tuning approach with each of the considered
model architectures.

1) ISPL Inception: Table III shows the outcomes obtained
by using the ISPL Inception with diverse ratios of fine-tuning
data. When fine-tuning is not performed (i.e., fine-tuning ratio
of 0%), PU achieves an average F1-score of approximately
0.16 across all target datasets. This result suggests that, despite
pre-training the model with a large number of diverse datasets,
this model generally struggles to generalize well on data
coming from unseen datasets.

Nonetheless, as we previously mentioned, the effectiveness
of pre-training varies depending on the specific of the tar-
get domain dataset. For example, the F1 score for HHAR
and MobiAct with 0% fine-tuning is below 10%, while for
RealWorld and UCI, it exceeds 20%. This observation is
confirmed by analysing the T-SNE visual representation of the
embeddings in Figure 4. Here, the embeddings from HHAR
are cluttered and poorly separated, while those for UCI exhibit
clear separations between static and dynamic activities. As
previously discussed, the ISPL Inception model has the ability
to quickly learn meaningful features from a small amount of

TABLE III: ISPL Inception evaluated using LODO

ft ratio

0% 1% 5% 10% All Train

Target
dataset PU Rd PF PU Rd PF PU Rd PF PU Rd PF PU

HHAR 09.00 80.59 83.33 86.12 91.26 92.04 92.39 93.24 93.25 94.20 95.70 95.28 95.34

MobiAct 06.67 57.46 59.09 57.83 85.50 83.67 83.98 87.68 88.09 88.28 89.63 90.32 88.53

MotionSense 12.67 83.46 83.25 84.14 95.34 95.9 95.58 96.78 96.73 97.36 98.06 98.13 98.07

RealWorld 21.26 81.98 85.25 85.90 87.05 88.17 88.35 88.15 89.72 88.99 91.02 91.31 91.11

UCI 27.41 76.06 86.86 87.13 91.14 94.20 94.08 92.58 95.81 95.42 97.45 98.14 97.76

PAMAP2 19.61 54.99 58.76 64.07 72.67 72.55 71.73 76.21 74.64 74.21 74.09 74.16 74.17

AVG 16.10 72.42 76.09 77.53 87.16 87.76 87.69 89.11 89.71 89.74 90.99 91.22 90.83

target data, which leads to the recognition rate significantly
improving when only 1% of fine-tuning data is used. Similarly
to what we observed with 0%, also in this case the advantage
of pre-training is significant depending on the specific target
dataset.

As the fine-tuning ratio increases, the benefits of pre-
training decrease accordingly, confirming that pre-training is
particularly important for labeled data scarcity scenarios.

(a) HHAR (b) UCI

Fig. 4: T-SNE visualization of the pre-trained ISPL Inception
model’s embeddings on HHAR and UCI datasets. The HHAR
embeddings are mixed and cluttered, while the ones from UCI
show a coarse separation among classes.

2) Transformer-based models: Table IV shows the results
achieved with HART, while Table V illustrates the outcomes
generated by MobileHART. Overall, the results are consistent
with those obtained with the ISPL Inception network, but some
important differences should be noted.

Firstly, the F1 scores achieved with HART and Mobile-
HART by fine-tuning the randomly initialized model Rd with a
small percentage of data (i.e., 1% and 5%) are generally lower
than those obtained with the ISPL Inception network. This
can be attributed to the higher complexity of the transformer
architecture, which requires more training samples to extract
representative features from the target dataset.

On the other hand, the performances in terms of F1 score
obtained by fine-tuning PU and PF in these scenarios are
significantly better than the F1 score achieved with Rd.

Furthermore, the advantages of pre-training are noticeable
even when using 5% and 10% of the fine-tuning data.

3) DeepConvLSTM: Table VII shows that, in general,
DeepConvLSTM does not benefit from pre-training contrary



TABLE IV: HART evaluated using LODO

ft ratio

0% 1% 5% 10% All Train

Target
dataset PU Rd PF PU Rd PF PU Rd PF PU Rd PF PU

HHAR 08.11 65.28 64.72 66.55 83.48 83.69 84.66 89.82 88.16 89.42 93.30 92.75 93.86

MobiAct 07.81 43.70 50.56 67.99 77.69 80.40 80.05 83.16 82.86 83.78 87.67 87.57 87.33

MotionSense 14.04 70.91 74.23 87.93 91.66 92.80 93.17 93.56 94.88 95.49 97.45 97.92 97.84

RealWorld 32.68 77.08 75.38 85.75 85.83 87.74 87.89 87.45 88.99 89.33 91.30 91.81 91.64

UCI 26.69 61.00 70.22 84.46 88.83 79.82 93.27 90.20 95.32 95.06 96.40 96.70 96.74

PAMAP2 15.39 49.17 57.82 56.31 63.04 64.82 64.62 64.42 66.82 66.16 69.10 68.13 67.91

AVG 17.45 61.19 65.49 74.83 81.76 81.55 83.94 84.77 86.17 86.54 89.20 89.15 89.22

TABLE V: MobileHART evaluated using LODO

ft ratio

0% 1% 5% 10% All Train

Target
dataset PU Rd PF PU Rd PF PU Rd PF PU Rd PF PU

HHAR 06.27 78.02 60.18 71.03 92.76 91.26 92.05 94.9 93.99 94.06 97.31 97.07 96.63

MobiAct 06.84 47.05 44.42 53.50 82.47 75.38 80.93 86.53 84.29 85.29 89.19 89.22 90.18

MotionSense 16.26 10.92 68.34 85.92 92.39 92.18 93.06 95.85 96.44 96.89 98.26 97.82 98.16

RealWorld 33.52 66.97 83.61 84.99 85.23 87.42 87.60 88.64 89.21 89.18 91.30 91.26 91.13

UCI 20.65 13.44 67.25 84.65 88.64 92.46 94.18 90.76 92.95 95.17 97.44 97.40 98.24

PAMAP2 12.58 04.25 55.7 58.53 60.03 65.73 68.48 65.01 67.70 70.34 71.10 71.89 73.98

AVG 16.02 36.78 63.25 73.10 83.59 84.07 86.05 86.95 87.43 88.49 90.77 90.78 91.39

to the other model architectures considered in this study.
Specifically, the randomly initialized model Rd outperformed
the pre-trained models PU and PF when a limited percentage
of fine-tuning data was used (i.e., 1% and 5%). This behavior
may be due to the fact that the DeepConvLSTM has signifi-
cantly fewer parameters compared to the other networks (see
Table VI for details), and therefore struggles to extract high-
level features that generalize well over heterogeneous datasets.
Nonetheless, there is only one case where our pre-training

TABLE VI: Models with their parameters and FLOPS

Model Parameters FLOPS
ISPL Inception [13] 1,327,714 338,528,096
DeepConvLSTM [42] 457,546 86,184,508
HART [36] 1,445,918 15,212,636
MobileHART [36] 2,542,942 19,809,292

strategy is effective for DeepConvLSTM, and that is when UCI
is used as a target dataset. For these reasons, DeepConvLSTM
resulted in not a particularly suitable model for the considered
transfer-learning task.

VI. DISCUSSION

The beneficial impact of the pre-training varies across
different architectures and target datasets. This show that
it is important to evaluate pre-training on different datasets

TABLE VII: DeepConvLSTM evaluated using LODO

ft ratio

0% 1% 5% 10% All Train

Target
dataset PU Rd PF PU Rd PF PU Rd PF PU Rd PF PU

HHAR 05.58 80.37 60.00 66.26 83.28 79.03 82.12 86.15 87.71 89.42 88.48 94.04 94.87

MobiAct 06.55 51.94 28.21 42.14 85.46 72.38 77.71 85.46 79.79 81.11 88.72 87.47 87.62

MotionSense 14.71 87.67 42.67 67.54 95.60 76.6 91.64 96.71 94.60 95.26 98.17 98.01 98.20

RealWorld 28.07 84.64 66.93 77.39 88.13 86.22 87.62 89.50 89.48 89.39 91.28 91.28 91.52

UCI 37.13 68.88 64.65 79.43 89.81 76.81 91.05 92.29 93.3 95.52 97.53 96.50 97.20

PAMAP2 20.16 55.47 47.81 52.35 68.69 63.54 64.56 66.36 66.93 67.21 71.84 68.95 68.91

AVG 18.70 71.50 51.71 64.19 85.16 75.76 82.45 86.08 85.30 86.32 89.34 89.38 89.72

and different types of models. Transformer-based architectures
such as HART and MobileHART benefit more from the pre-
training as opposed to smaller networks such as the Deep-
ConvLSTM, which obtained ranging benefits from little to
worsening performances when compared to starting randomly
instead. As transformer-based networks generally require more
training and data to start converging to superior performances,
we argue that model initializing on other datasets is essential
for this type of architecture. Contrarily, smaller networks are
more prone to overfitting when starting with an initialized
model that has been trained on a large amount of data.

In terms of datasets, reported performances vary. Fine-
tuning the pre-trained model using datasets such as Mo-
tionSense, RealWorld, UCI, and PAMAP2 generally showed
improved recognition rates. However, when the target dataset
is too different from the other combined datasets model,
the advantage of pre-training may be limited. For instance,
considering the HHAR and MobiAct datasets, our results show
that it is particularly challenging to build a pre-trained model
capable of generalizing on them. These results are consistent
considering all the neural networks by observing the results
of transfer without any fine-tuning. This is likely due to the
numerous devices used and the abundant number of users of
the HHAR and MobiAct datasets respectively.

Finally, the results obtained by fine-tuning the three best
model using a frozen feature extractor (PF ) are similar to the
ones obtained with an entirely fine-tuned pre-trained model
(PU ). This suggests that the pre-trained feature extractor has
learned representations that are sufficiently robust to reach
good performances simply by optimizing a classification head.
Such results are particularly relevant considering training ef-
ficiency since the frozen-feature extractor scenario drastically
lowers training costs in the fine-tuning stage.

VII. CONCLUSION

This paper introduces a novel strategy to mitigate the labeled
data scarcity problem for sensor-based HAR, that relies on
combining public datasets. By proposing a new evaluation
methodology, our results show that pre-training on multiple
datasets greatly improves performance in labeled data scarcity
scenarios. In future work, we aim at improving the pre-training
mechanism by learning more robust features. Specifically, we
intend to investigate self-supervised learning methods. Indeed,
several studies in other domains (e.g. Computer Vision, NLP)
have already shown that the trained model is able to learn
task-agnostic features [45].
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