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Abstract—Human Activity Recognition (HAR) with mobile and
wearable devices has been deeply studied in the last decades.
Research groups working on this topic evaluated their proposed
methods mostly on public datasets. However, most of the existing
datasets only include inertial sensor data, while it is well-known
that additional context data (e.g., semantic location) has the
potential to significantly improve the recognition rate. Only a few
datasets for context-aware HAR are publicly available, and their
annotations were mostly self-reported in-the-wild by the subjects
involved in data acquisition. This method harms the quality
of annotations, thus discouraging the application of supervised
models. In this paper, we propose DOMINO, a new public
dataset for context-aware HAR. DOMINO includes 25 users
(wearing a smartphone and a smartwatch) performing 14 activ-
ities. During data acquisition, the mobile devices recorded both
inertial and high-level context data while our team monitored
the quality of the self-reported annotations. Our experiments
on DOMINO show the positive impact of considering high-level
context information for Human Activity Recognition.

Index Terms—human activity recognition, context-awareness,
dataset

I. INTRODUCTION

Sensor-based Human Activity Recognition (HAR) based
on mobile and wearable devices has been widely studied in
recent years due to its applications to healthcare and well-
being. The majority of the existing works mainly consider
inertial sensor data (e.g., accelerometer, gyroscope) to infer
low-level physical activities with data-driven approaches [1].
The methods proposed in the literature are usually validated
on public datasets. Most of these datasets were collected
involving subjects wearing ad-hoc devices equipped with
inertial sensors. Among these, a few datasets (e.g., UCI-HAR
[2], LTMM [3], and KU-HAR [4]) considered unusual body
positions for the devices (e.g., waist, center lower back) that
may be considered unrealistic, at least for current applications.
Other datasets like OPPORTUNITY [5], PAMAP2 [6], and
others [7]–[12] performed data acquisition by placing such
devices also on the hip and/or the wrist, positions where
people typically carry personal smartphones and smartwatches.
On the other hand, some datasets directly include the raw
data collected by the inertial sensors installed on off-the-shelf
mobile/wearable devices like smartphones and smartwatches.
In these cases, smartphones are usually carried in one of the
trouser’s front pockets (e.g., in WISDM [13], MobiAct [14],

and UniMiB SHAR [15]). Some datasets simulated the smart-
watch by requiring subjects to wear a smartphone on the wrist,
like in NTUT-HAR [16] and other datasets [17]–[19]. Finally,
only the Heterogeneity Activity Recognition dataset directly
includes smartphones’ and smartwatches’ sensor data [20].

However, the datasets presented above lack additional con-
textual information that mobile devices can collect (e.g., se-
mantic position, noise level, weather). High-level context data
have the potential to expand the set of recognizable activities,
as well as to better discriminate them [21]. Unfortunately,
only a few existing datasets include such information. For
instance, the ExtraSensory dataset [22] includes inertial sensor
measurements collected in-the-wild from the smartphone and
the smartwatch of up to 60 users. From the smartphone,
the authors also collected GPS, audio, and phone state in-
formation (e.g., battery status, WiFi connectivity). Moreover,
ExtraSensory includes annotations about high-level context
information, like the user’s semantic place. The main dis-
advantage of ExtraSensory is the low quality and reliability
of its annotations. Indeed, the subjects involved during data
acquisition were also in charge of self-reporting the activities
they performed (e.g., sitting, walking, running), as well as
their current surrounding context (e.g., in a meeting, indoors,
at home, with friends, phone in hand). In some cases, as
explicitly stated by the authors [22], the subjects forgot the
exact time of an activity they performed. More commonly,
the users neglected to annotate relevant activities or contexts.

Finally, datasets like RealWorld [23] (scripted, involving 15
subjects) and Daily Log [24] (in-the-wild, involving 7 subjects)
collected measurements from inertial sensors (i.e., accelerom-
eter, gyroscope, magnetometer) and context data (e.g., GPS,
microphone, and luminosity sensors) considering smartphones
and smartwatches worn on different body positions (including
one of the trousers’ front pocket and wrist). The subjects
were also in charge of self-reporting through a smartwatch app
their current semantic location (e.g., home, office), low-level
activity (e.g., running, sitting, standing), and high-level activity
with the corresponding sub-activity (e.g., sport coupled with
gym or basketball, transportation with bicycle or tram). The
main drawbacks of these datasets are that participating subjects
self-reported the activity annotations, with a negative impact
on the correctness of the dataset’s labels, thus discouraging



the application of supervised machine learning solutions.
To the best of our knowledge, there are no public datasets

for context-aware HAR ensuring a high quality of their anno-
tations. In this work, we propose DOMINO, a novel Dataset
for cOntext-aware huMan actIvity recogNitiOn. Our dataset
contains context-aware HAR data collected from 25 different
users wearing a smartphone and a smartwatch, including 14
different activities. We collected ≈ 9 hours of both inertial
and context data. Since our dataset was acquired in a scripted
scenario, the activity and context labels are accurate, thus
allowing researchers to evaluate the impact of context data
in activity recognition. However, the scripted setting did not
allow us to collect a wide variety of different context data.
Hence, we also augmented the dataset with synthetically
generated context data that could be automatically acquired
in real scenarios.

The contributions of this work are the following:

• We present a novel dataset for context-aware HAR1.
• The dataset includes high-level context information that

can be used to improve HAR purely based on inertial
sensor data.

• We provide benchmarks that show the positive impact
of context data, indicating the need to acquire accurate
context data in real-world scenarios.

II. THE DOMINO DATASET

A. Dataset design

We designed the data collection campaign of DOMINO
considering that the combination of inertial sensors data with
the information about the user’s surrounding context (e.g.,
proximity to public transportation routes) has the potential
to expand the set of activities that an activity classifier can
recognize. At the same time, context data may also be useful
to better discriminate activities with similar motion patterns
but typically performed in different contexts. For instance,
even if going downstairs and walking share similar physical
movements, when the user is outdoors, it is more likely
that she is walking. For this reason, DOMINO includes a
combination of inertial sensor and context data provided by
the user’s mobile devices (i.e., smartphone and smartwatch).

Overall, we planned to acquire data about 14 activities:
Brushing Teeth, Cycling, Elevator Down, Elevator Up, Ly-
ing, Moving by Car, Running, Sitting, Sitting on Transport,
Stairs Down, Stairs Up, Standing, Standing on Transport, and
Walking. We designed 4 different scripted scenarios for data
collection, represented in Table I. Each scenario (identified
by a letter) is a template that presents the ordered sequence of
activities a subject should perform during data acquisition. The
flow of time is represented vertically from top to bottom, while
horizontal dashed lines represent transitions between subse-
quent activities. The table also shows whether the activities
should be performed indoors or outdoors and their suggested
execution duration.

1The dataset can be downloaded here: https://tinyurl.com/domino-dataset

The raw measurements derived by the mobile devices’ iner-
tial sensors (i.e., accelerometer, gyroscope, and magnetometer)
are crucial to monitor the user’s physical movements. At the
same time, mobile devices can collect data useful to derive
high-level context information about the user’s surroundings.
For instance, the smartphone’s barometer and GPS measure
the user’s height variations and speed, respectively. On the
other hand, the microphone can reveal the environment’s noise
level. Moreover, additional context information can be derived
by combining the smartphone’s built-in sensors with public
web services. Google’s Places API provides the user’s closest
semantic places (e.g., university); OpenWeatherMap supplies
current local weather conditions (e.g., rainy), while Transitland
provides information about the public transportation routes and
stops closest to the user. Finally, some context information can
be obtained by post-processing the data collected from mobile
devices. For instance, to detect whether a user is following
a public transportation route, it is possible to combine the
information provided by the GPS and Transitland.

B. Devices

Each subject involved in the dataset collection carried a
smartphone (LG Nexus 5X) in the trousers’ front pocket and
wore a smartwatch (LG G-watch R) on the dominant hand’s
wrist. To allow data interchange during data acquisition, a
Bluetooth (BT) connection is established between the smart-
phone and the smartwatch. All the data collected and annotated
as will be explained in Section II-C were formatted by the
mobile devices using JSON before being sent to a REST
server implemented in Java. This server was finally in charge
of storing the data in a MongoDB database.

C. Data collection and annotation

We acquired the dataset from the 20th of December 2017 to
the 16th of January 2018 in Milan. Specifically, we considered
several indoor and outdoor locations that were nearby our
department building in Milan. During the dataset collection
process, 25 subjects performed one or more of the 4 scripted
scenarios we previously presented. 19 subjects performed only
one scenario. On the other hand, 4 subjects performed two
scenarios, while 1 subject performed three scenarios, and 1
subject performed all the scenarios we scripted. To increase
data variability, the subjects were allowed to slightly modify
the scenarios we assigned to them. For instance, the subjects
could go upstairs/downstairs by taking the stairs instead of the
elevator, and vice versa. Almost all the recruited subjects were
students or researchers at our university. Overall, 68% were
males, while the remaining 32% were females. All the re-
cruited subjects were right-handed. Additional statistics about
the subjects involved during data acquisition are described
in Table II. Instead, Table III shows, for each scenario, the
number of times it has been performed during data acquisition,
as well as its average duration in minutes. Overall, Scenario
A is the longest one since it includes moving multiple times
by public transport. On the other hand, the shortest scenario
is Scenario D because it does not contain long activities



TABLE I: The four scripted scenarios of DOMINO

A B C D

Sitting (indoor)
4 min

Moving by Car (outdoor)
4 min

Walking (indoor)
0.5 min

Walking (indoor)
0.5 min

Standing (indoor)
2 min

Walking (outdoor)
1 min

Elevator Down (indoor)
0.5 min

Standing (indoor)
0.5 min

Walking (indoor)
1 min

Stairs Up (indoor)
0.5 min

Walking (indoor-outdoor)
1 min

Elevator Down (indoor)
0.5 min

Stairs Down (indoor)
0.5 min

Sitting (indoor)
6 min

Running (outdoor)
3 min

Stairs Up (indoor)
0.5 min

Walking (indoor-outdoor)
2 min

Standing (indoor)
1 min

Cycling (outdoor)
3 min

Walking (indoor)
0.5 min

Standing (outdoor)
4/5 min

Walking (indoor)
0.5 min

Walking (outdoor)
2 min

Sitting (indoor)
4 min

Standing/Sitting on Transport (outdoor)
3 min

Brushing Teeth (indoor)
2 min

Sitting (outdoor)
2 min

Walking (indoor)
4 min

Walking (outdoor)
2 min

Walking (indoor)
0.5 min

Standing (outdoor)
1 min

Stairs Down (indoor)
0.5 min

Stairs Down (outdoor)
0.5 min

Lying (indoor)
4 min

Walking (outdoor-indoor)
2 min

Standing (indoor)
1 min

Standing (outdoor)
4/5 min

Elevator Up (indoor)
0.5 min

Elevator Down (indoor)
0.5 min

Standing/Sitting on Transport (outdoor)
2 min

Walking (indoor)
0.5 min

Sitting (indoor)
3 min

TABLE II: Users’ statistics

Range Mean (Standard deviation)

Age (years) 20-59 26.6 (± 9.8)
Height (cm) 157-192 174.2 (± 8.5)
Weight (kg) 48-92 66.2 (± 13.0)

TABLE III: Scenarios’ statistics

Scenario ID Number of instances Average recorded minutes
(standard deviation)

A 9 36.9 (± 3.8)
B 8 25.0 (± 5.7)
C 7 23.9 (± 2.8)
D 10 13.2 (± 9.5)

that involve moving with a vehicle (e.g., standing/sitting on
transport).

We installed a mobile application in charge of collecting
and annotating data on the smartphone and the smartwatch
of the user. To collect inertial sensor data, we considered the
maximum sampling rate of such mobile devices, i.e., 200 Hz
for the smartphone and 140 Hz for the smartwatch. At each
second, the smartwatch sent its measurements to the smart-
phone through the BT channel. Hence, every 3 seconds, the
smartphone sent to the server all the measurements it collected,
coupled with the ones received by the smartwatch. Moreover,
the smartphone app was also in charge of collecting context
data. Since context information does not change frequently, it
was collected and sent to the server every 15 seconds.

During data acquisition, the subjects also annotated in real-
time the activities they were performing. Each person inter-
acted with the smartwatch app to specify the type of activity

she was going to execute before actually performing it. Figure
1 shows a screenshot of the user interface we implemented in
the smartwatch app that enabled the users to annotate their
activities. During data collection, a person of our team fol-

Fig. 1: A screenshot of the app used to annotate activities data

lowed the subject to verify the correctness of her annotations
and to annotate through another smartphone information about
her current surrounding context. Unfortunately, the barometer
and GPS readings through the mobile app were sometimes
unreliable due to software issues. Despite an intensive data
cleaning process after the dataset collection campaign, we
decided to include in DOMINO only annotations of context
data manually inserted by the research team members during
data acquisition instead of the noisy ones actually collected
through the mobile app.

Moreover, since we collected activity data through scripted
scenarios, it is challenging to acquire data in all the possible
context conditions where an activity can take place. Consider,
for instance, the different weather conditions in which a person
can go running outdoors. Figure 2 shows the distribution of
two context conditions (i.e., indoors/outdoors and weather)



in which running was performed during the data collection
campaign. First, the involved subjects only went running

Fig. 2: Subset of actual context conditions (i.e., weather,
indoors/outdoors) of running

outdoors. Moreover, this activity was performed only under
two weather conditions, i.e., misty or cloudy. This happened
since we collected DOMINO during winter in Milan. Since
the actual context data we collected were not sufficiently
diverse, we decided to include in DOMINO two alternative
annotated context data: the actual context that surrounded the
subjects during data acquisition and augmented context data
we simulated to cover a larger amount of context situations in
which each activity can take place. We generated such context
data by considering common-sense knowledge about the HAR
domain (e.g., running typically takes place outdoors, but the
user could also run at home or inside a gym). For instance,
Figure 3 shows the distribution of the indoors/outdoors and
weather context conditions in which running takes place in
the augmented version of the dataset. In this case, running

Fig. 3: Subset of augmented context conditions of running

still takes place outdoors in most cases (≈ 90%), but it can
also occur indoors. In the former case, it typically occurs when
it is sunny. In the latter, it mostly takes place in the gym (90%
of the time), but also at home.

Table IV shows the different types of context information
included in DOMINO with the corresponding possible values,
considering both actual and augmented context data. In partic-
ular, the subject’s presence in an indoor or an outdoor environ-
ment was derived from the information about the user’s closest
semantic place. Moreover, we discretized the speed values
provided by the GPS sensor of the subject’s smartphone into
four possible values, i.e., null, low, medium, and high. Intu-
itively, a low speed was typically measured while the subjects
were walking. On the other hand, a medium speed was the

TABLE IV: Type of context data included in DOMINO

Context

information

Augmented context

values

Actual context

values

Indoor / Outdoor Indoor, Outdoor Indoor, Outdoor

Semantic place

Home, Office, University,

Mall, Station, Museum,

Gym, Shop, Bar,

Restaurant, Barbershop,

Bank, Church, Null

Home, University, Null

Speed
Null, Low,

Medium, High

Null, Low,

Medium, High

Weather
Sun, Rain, Mist,

Clouds, Drizzle, Storm

Rain, Mist,

Clouds, Drizzle

Following Public

Transportation

Route

True, False True, False

Height Variation Negative, Null, Positive Negative, Null, Positive

Audio Level Low, Medium, High Low, Medium, High

TABLE V: Activities’ statistics

Activity
Overall
recorded
minutes

Average recorded
minutes per instance
(standard deviation)

Instances

Brushing Teeth 14.4 1.4 (± 0.7) 10
Cycling 21.8 2.7 (± 1.0) 8
Elevator Down 12.9 0.4 (± 0.1) 29
Elevator Up 8.4 0.4 (± 0.1) 22
Lying 33.1 1.7 (± 1.5) 19
Moving by Car 12.8 2.6 (± 1.6) 5
Running 22.9 1.4 (± 0.6) 16
Sitting 129.9 2.0 (± 0.8) 64
Sitting on Transport 14.4 2.4 (± 1.4) 6
Stairs Down 17.9 0.5 (± 0.1) 37
Stairs Up 12.8 0.5 (± 0.1) 25
Standing 127.6 1.8 (± 1.7) 69
Standing on Transport 22.3 1.9 (± 1.0) 12
Walking 100.5 1.1 (± 1.1) 92

Total 551.7 414

maximum speed that occurred while the subjects were running.
Higher speeds were measured only while moving by bike,
car, or public transportation. Moreover, the combination of the
information provided by the GPS sensor and by Transitland
was used to detect whether the subject was following a public
transportation route. Finally, we discretized the measurements
provided by the smartphone’s barometer into three different
height variations: negative, null, and positive.

Finally, Table V describes statistics about the activities in-
cluded in DOMINO. Overall, we acquired 551.7 minutes (≈ 9
hours) of labeled data for 414 different activity instances2.

III. BENCHMARKS

In this section, we provide some benchmarks on DOMINO
that researchers could consider for future work on context-
aware HAR.

A. Data pre-processing

In our experimental setup, we consider state-of-the-art
hyper-parameters to pre-process sensor data [21]. We segment

2An activity instance is a specific occurrence of the activity in the
dataset (e.g., John performed walking from 10:20AM to 10:40AM). By using
segmentation, it is possible to derive several samples from the same instance.



each mobile device’s inertial stream into non-overlapping
windows of 4 seconds. To reduce the intrinsic noise of raw
sensor data, for each segmentation window, we apply (on
each axis of each inertial sensor) a median filter of size 3
to the measurements provided. Finally, since the Android OS
does not guarantee a constant sampling rate, we downsample
inertial sensor data to 50 Hz, a widely adopted sampling rate
in many public HAR datasets [2], [19], [23]. Hence, for each
mobile device, each window is represented as a matrix of
shape (200, 9)3. Context data collected by the smartphone are
also segmented in time windows of 4 seconds. In particular,
the context values described in Table IV are one-hot encoded
and concatenated to obtain vectors of 34 elements.

B. Adopted activity models

For the sake of this work, we rely on a Convolutional Neural
Network (CNN) to capture spatio-temporal dependencies from
sensor data as usually proposed for sensor-based HAR [25]–
[27]. Even though more complex models have been recently
proposed in the literature [1], we considered a standard solu-
tion to evaluate the impact of context data. The architecture of
our network is inspired by the one recently proposed in [28].
Specifically, our CNN is fed with three different input flows:
1) time windows of inertial sensor data from the smartphone,
2) time windows of inertial sensor data from the smartwatch,
and 3) the one-hot encoded context data. Each inertial data
flow starts with two convolutional layers with 8 3 × 3 and
64 2× 2 filters, respectively. Each of these layers is followed
by a 2 × 2 max pooling layer. Then, we added a flatten and
fully connected layer with 128 neurons. On the other hand, the
context data flow is processed by a single fully connected layer
composed of 8 neurons. The features automatically extracted
from the three input flows are then concatenated and provided
to a dropout layer with a dropout rate of 0.1 and then to a fully
connected layer with 256 neurons. Finally, the classification is
obtained through the last fully connected layer, which relies
on the softmax activation function.

C. Evaluation methodology

In order to evaluate the impact of context data in HAR, we
designed four different evaluation strategies:

• inertial only: a variant of the CNN that is only fed with
the inertial sensors’ data provided by the smartphone and
the smartwatch

• actual: the CNN trained and tested on inertial data and
actual context data included in DOMINO.

• augmented: the CNN trained and tested on inertial data
and augmented context data of DOMINO.

• actual-augmented: the CNN trained with inertial data and
actual context data included in DOMINO and tested on
inertial data and augmented context data; the goal of this
methodology is to evaluate if the CNN trained on the
actual context data can generalize over the more realistic

3200 represents 50 samples for each second, on a time window of 4
seconds. 9 is the number of axes considering the sensors on a mobile device
(i.e., accelerometer, gyroscope, and magnetometer)

context situations encoded in the augmented context data
of DOMINO.

For each evaluation strategy, we adopt a leave-one-subject-
out cross-validation technique. At each fold, the test set
includes one user’s data, while the training and the validation
set consist of the 90% and the 10% of all the remaining
data, respectively. The recognition rate is evaluated in terms
of F1 score on the test set of each fold. We consider 200
epochs with batches of 32 samples during training and an early
stopping strategy that terminates the learning process when the
validation loss does not improve for 5 consecutive epochs.

D. Results

Figure 4 compares the previously described evaluation
strategies.

Fig. 4: Comparison between the considered methodologies

In general, considering context information leads to a signif-
icant improvement with respect to considering inertial sensors
only. The actual strategy is the one reaching the highest F1
score (89%); however, it is based on training and testing
the CNN on the actual context data of DOMINO, which
does not cover a wide range of context situations due to its
scripted nature. Hence, this result does not guarantee that
the classifier would reach satisfying performance also con-
sidering more realistic context scenarios. Indeed, among the
evaluation methodologies including context data, the lowest F1
score (79%) is obtained by actual-augmented. This strategy
trains the CNN with the actual context data but tests it on
the augmented data that better captures the different context
conditions in which the activities can take place. This result
shows the low generalization capabilities of the CNN when
it is trained on the actual context data. Hence, we believe
that the most reliable benchmark is represented by the results
obtained with the augmented strategy (F1 score is 85%), which
considers more realistic context data both for training and
testing.

In particular, the augmented evaluation methodology ex-
hibits a significant increment of +29% compared to inertial
only in terms of macro F1 score. Figure 5 shows the same
result at the activity granularity. The major improvements
are related to those activities that are hard to discriminate
only based on inertial data since they share similar motion
patterns, but they are executed in different contexts. For
instance, without information about height variations, it is
challenging to distinguish standing from elevator up/down
since the user stands still in both situations. At the same time,
without knowing the user’s speed and whether she is following



Fig. 5: Activity level results

a public transportation route, it is non-trivial to distinguish
standing/sitting from standing/sitting on transport. As a draw-
back, context data may slightly reduce the recognition rates
of poorly represented activities that share context conditions
with strongly represented activities. For instance, by including
context information in the network, the running activity is
slightly more confused with walking.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented DOMINO, a novel dataset for
context-aware HAR. We believe that researchers could adopt
this dataset to design new methods combining inertial and
context sensor data. For instance, hybrid knowledge-based
and data-driven approaches are a promising direction in this
area [21], [28]. The major limitation of this dataset is its
scripted nature. In future work, we will consider performing
a large-scale in-the-wild campaign to collect such data while
maintaining high-quality annotations.
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