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Abstract—Labeled data scarcity is one of the major open
problems of sensor-based Human Activity Recognition (HAR).
To mitigate this issue, several research groups proposed solutions
based on Active Learning (AL), where the user is explicitly
asked to provide feedback about the performed activity when
the classifier’s confidence is low. Despite existing methods trigger
a limited number of queries that decreases over time, they do not
take into account user’s context. Indeed, a subject may not wish to
be interrupted when receiving the query’s notification. Delaying
the query may be critical, since it is known that the feedback’s
quality decreases with the length of the delay. In this work,
we aim at answering the following question: is real-time AL-
based HAR practical in real-world scenarios? By using a novel
evaluation methodology based on the Wizard of Oz approach,
we performed a user-based study with 30 subjects performing
physical activities and using earphones and a smartwatch as vocal
and touch interfaces. Our results evaluate the impact of the AL
strategy, the user’s context, and the interaction modality on the
effectiveness of the AL approach.

Index Terms—human activity recognition, active learning,
context-awareness, interruptibility

I. INTRODUCTION

The continuous evolution of sensing devices and AI meth-
ods makes it possible to efficiently deploy sensor-based Hu-
man Activity Recognition (HAR) models to recognize in real-
time human activities [1]. The most accurate HAR models are
trained in a fully supervised fashion [2]. However, despite their
effectiveness, supervised methods require a significant amount
of labeled data. Data annotation is often prohibitive due to its
costs and its obtrusiveness [3].

To mitigate this problem, semi-supervised learning methods
for HAR have been proposed [4]. These approaches require a
small labeled dataset to initialize the model, which is then
improved by taking advantage of the large unlabeled data
stream. Among the proposed semi-supervised approaches for
HAR, Active Learning (AL) is particularly effective [5]–[8].
Specifically, when the classifier is uncertain about the activity
currently performed by the user, the system explicitly asks her
to provide a feedback. The annotated data samples obtained
thanks to AL are used to improve the activity model.

Even though AL-based HAR methods achieve high recog-
nition rates with a low number of queries, existing methods
have been evaluated on public datasets assuming that users
are constantly available to provide a feedback. However, in

real-world scenarios, the user’s context significantly impacts
users’ predisposition to answering AL queries. Notifications
prompted at inappropriate times may lead to stress and frustra-
tion, further increasing the feedback error rate and disaffection
with the system [9]. As an example, consider the sitting
activity. If the user is sitting alone in a train station, it is
very likely that an AL notification (e.g., “are you sitting or
standing?”) would not significantly bother them. However,
if the same notification is received while the user is sitting
on the train and talking with other people, they may not be
predisposed to provide a feedback.

Moreover, since short-term memory is more reliable than
long-term memory, the quality of the feedback decreases with
the time elapsed since the activity was actually performed [10].
Hence, AL notifications for HAR should be prompted as soon
as possible to obtain reliable feedback.

In this paper, we aim at answering the following research
question: is real-time AL-based HAR practical in real-world
scenarios? To answer this question, we propose a novel evalu-
ation methodology to estimate the acceptability of AL queries
in different context scenarios. Our methodology is based on
the Wizard of Oz (WOz) approach: while the user believes to
perform activities wearing an actual AL-based HAR system, a
hidden human operator (i.e., the Wizard) actually triggers AL
queries at specific instants to evaluate interruptibility in dif-
ferent context conditions. We implemented a prototype of the
system and performed a preliminary user-based study with 30
volunteers. In our experiments, we considered a well-known
HAR setting in the literature, based on physical activities and
mobile/wearable devices. Our results suggest that prompting
AL queries at appropriate times may be acceptable, and that
context information is crucial to obtain reliable feedback.

The contributions of this paper are the following:

• We propose a novel user-based evaluation methodology
to study the acceptability of AL-based HAR.

• We implemented a prototype of the system for HAR
based on mobile/wearable devices.

• We performed a preliminary study with 30 volunteers,
showing that AL may be actually practical in real-world
scenarios by taking context into account.



II. RELATED WORK

A. Interruptibility when receiving notifications

Several research works studied the general interruptibility of
users when receiving notifications on mobile/wearable devices.
The existing studies show that environmental and context
conditions are fundamental aspects that heavily influence the
user’s interruptibility level [11]. Indeed, context data can be
used to train a classifier in charge of deciding whether to
prompt a notification or postpone it to a more acceptable
context scenario [12], [13]. Other works also suggest that
breakpoints between activities are another important factor that
should be considered to prompt notifications [14], [15].

However, existing studies did not consider the acceptability
evaluation for AL notifications in HAR, which have specific
characteristics (e.g., they can not be postponed too long due to
the challenge of remembering the activity being performed).
Moreover, this work also considers higher-level context as-
pects, like the cognitive commitment of the users in other tasks
and their involvement in social interactions.

B. Wizard of Oz

The Wizard of Oz (WOz) [16] is a widely adopted evalu-
ation method where subjects are told that they are interacting
with a working user interface, even though they are not.
Indeed, the interaction from the interface to the user is actually
mediated by a hidden human operator, called Wizard. Thanks
to WOz, it is possible to systematically evaluate the actual
users’ experience when interacting with a prototype, before
investing time and effort in developing the complete system.

WOz-based strategies have been frequently used in the
pervasive computing domain. For instance, several works pro-
posed to use WOz to evaluate the acceptability of smart-home
voice interfaces for elderly subjects [17]. As another example,
WOz has been adopted to design smart interfaces for blind
people [18], [19]. In the context of HAR, WOz was proposed
to study the impact of the automatic recognition of physical
activities on productivity, by proposing interfaces prompting
notifications when users have some spare time during their
working hours [20].

To the best of our knowledge, there is no work in the
literature that proposed WOz to study acceptability aspects
of active learning in HAR.

III. OUR EVALUATION FRAMEWORK

In this work, we are interested in evaluating the accept-
ability of Active Learning (AL) in HAR systems considering
different context conditions. Even though several AL-based
methods have been proposed in the literature, using them to
automatically evaluate user experience is challenging, since it
is not possible to know in advance when queries are actually
triggered and in which contexts. Moreover, we are also inter-
ested in context conditions that can not be easily captured by
currently available sensing solutions (e.g., involvement in so-
cial interactions). For these reasons, we propose a framework
based on Wizard of Oz (WOz). In the following, we describe

our approach and we present the software implementation of
a prototype of the envisioned system.

A. The proposed WOz-based approach

In our evaluation methodology, the subject is told that
they have to perform a set of activities while wearing mo-
bile/wearable devices (a smartwatch and a smartphone in our
experiments) that automatically recognize her activities and
that periodically prompt AL notifications. The subject does
not know that there is no an actual HAR recognition model
running on the devices, and AL notifications are triggered
by a hidden human operator (i.e., the Wizard). The wizard
secretly observes the subject while executing activities and
sends AL notifications to the subject’s devices in specific
context conditions. Figure 3a shows an example of an AL
query prompted to the subject’s smartwatch. Our system asks
the subject to choose between two activities. If the subject is
not actually performing any of the two activities (this simulates
a wrong prediction of the HAR system), they can select the
option “other”.

Our method quantifies interruptibility considering different
metrics:

• Annoyance: besides explicitly asking the subject to select
the performed activity, we also ask her to quantify how
much answering that query bothered her (see Figure 3b).

• Reaction time: it is computed as the time elapsed since
the AL notification is prompted on the device and the
actual answer of the subject. Intuitively, the longer the
reaction time and the less the subject was interruptible.

• Ignored notifications: AL notifications automatically
disappear from subjects’ devices after a Time-To-Live
(TTL) decided by the Wizard (e.g., 30 seconds).

Our study aims at correlating interruptibility with several
subject’s context variables: the activity being performed when
the AL notification is received, the semantic location, the
weather condition, the time of day (e.g., morning, afternoon),
the presence of other persons, possible social interactions, and
whether the subject is cognitively involved in a task (e.g.,
working at PC). Moreover, we experiment with two different
AL strategies:

• Instant-AL: the Wizard sends AL notifications during
the activity execution. This strategy simulates an AL
approach that prompts a notification as soon as it is
required by the HAR model.

• TransitionAware-AL: the Wizard sends AL notifications
in the transition between two activities. This approach
was suggested in the literature to mitigate annoyance [14].

Finally, we also consider two alternative user interfaces: touch
and vocal. Indeed, user experience is strictly connected with
the specific interface [21].

B. Software components

In this section, we introduce the main software components
that we implemented for our WoZ-based system. As Figure 1
shows, our architecture consists of three modules: 1) the



WizardAPP: the application used by the Wizard to generate AL
queries, transmit them to the subjects and obtain the results, 2)
the AL-HAR app installed on the mobile/wearable devices of
the subjects, which provides to the user a UI to visualize and
answer queries, and 3) the WOz-MW middleware that enables
the communication between the WizardAPP and the AL-HAR
applications. In the following, we illustrate the implementation
details of those components and how they interact with each
other.

Fig. 1: Implemented WoZ-based architecture

1) WizardAPP: We implemented the WizardAPP as a web
application. The wizard secretly monitors the subject and
uses the WizardAPP to periodically generate and transmit AL
queries to the HAR-AL app 1. Besides setting the parameters
for the AL query (i.e., the two activities appearing in the
query and the ground truth), the Wizard also has to annotate
the subject’s current high-level context. Figure 2 shows a
screenshot of the WizardAPP.

Fig. 2: A screenshot of WizardAPP: AL query generation

Note that, before starting an experimental session, the
Wizard also has to select the active learning strategy and the
TTL.

2) AL-HAR: Our prototype assumes that the subject carries
a smartphone in the front pants pocket and a smartwatch on the
wrist. We propose two types of interfaces to provide feedback
to AL queries: a touch interface on the smartwatch and a
vocal interface thanks to earphones connected through the

1In Section IV-A we describe how secret monitoring is performed in our
experimental setup.

smartphone. The AL-HAR application is subdivided into two
modules: an Android application installed on the smartphone
and a WearOS application installed on the smartwatch. The
smartphone module is in charge of handling the network
communication with the AL-MW middleware. Moreover, it
implements the AL vocal interface. This interface uses a voice
synthesizer to ask AL queries, while the feedback is processed
by a text2speech module and then semantically interpreted
to provide the feedback. The smartwatch is constantly com-
municating with the smartphone, and it only implements the
touch interface (see screenshots in Figure 3). The smartwatch
notifications are associated with a short vibration to alert the
subject.

(a) Activity
query interface

(b) Annoyance
query interface

Fig. 3: Touch user interfaces

3) AL-MW: The AL-MW middleware simply connects the
WizardAPP and the AL-HAR applications by using the MQTT
protocol. Moreover, the middleware is also in charge of storing
in a database the collected experimental data.

IV. EXPERIMENTAL EVALUATION

We performed preliminary user-based studies with the
framework proposed in Section III to study how contexts
impact users’ willingness to provide AL feedback. In the
following, we introduce our experimental setup and the major
insights obtained from our experiments.

A. Experimental setup

We recruited 30 volunteers aged between 18 and 28 years
old (33% of women and 67% of men). The AL-HAR applica-
tion presented in the previous section runs on mobile/wearable
devices worn by the volunteers. In particular, we provided
to each volunteer a Nexus 5x smartphone, a LG G-watch R
smartwatch, and the Xiaomi Mi Piston earphones.

The Wizard (i.e., a member of our research group) remotely
and secretly monitored the volunteers from the research lab,
running the WizardAPP on a laptop. In order to enable remote
monitoring, each volunteer was also provided with an action
camera on the chest (we experimented both a Insta360 go 2
and a GoPro Hero 8). Figure 4 summarizes the devices worn
by each volunteer during the experiments.

The video stream from the action camera was remotely
observed by the Wizard in real-time to generate AL queries at
appropriate times. Figure 5 shows a screenshot of the video
stream observed by the Wizard.



Fig. 4: The devices worn by volunteers during the experiments

Fig. 5: A screenshot of the video stream observed by the
Wizard

B. Experimental Methodology

We designed four different scenarios for our experiments.
Each scenario includes ≈ 20 minutes of outdoor and indoor
activities nearby our University campus. In order to ensure
that volunteers carried out activities in a realistic fashion, we
did not instruct them on each specific activity to carry out,
but we presented them the scenario as a set of objectives
to accomplish (e.g., “reach the park near the university by
taking a bus, relax for a while, and then take a bicycle
to go back to the starting point”). Our scenarios sometimes
included the presence of some operators (i.e., members of
our lab) that interacted with the volunteers. We introduced
this aspect to obtain contexts with realistic social interactions.
Moreover, in order to include cognitive involvement as a
context of interest, some scenarios also invited the subject
to engage in some logic-based games (e.g., Sudoku). Overall,
our scenarios include the following activities: Running, Sitting,
Standing, Going upstairs, Going downstairs, Cycling, Lying,
Sitting/Standing on transport, and Stretching. These activities
are representative of well-known public datasets of sensor-
based HAR with mobile/wearable devices [2]. During the
experiments, the volunteers were free to answer AL queries by
using either the touch or the vocal interface. Each volunteer
performed only a single scenario.

Before starting an experiment, we instructed each volunteer
on AL-based systems for HAR and their potential advantages
in their daily life. Then, we presented them our AL user
interfaces and we tricked them into thinking they were wearing
a fully functional HAR system. In order to collect meaningful
data, we also informed the volunteers that the action camera
has the only objective of monitoring the experiment and that it
is not actually part of the HAR system. Hence, we suggested

them not to consider it as a discomfort when answering queries
regarding annoyance. Moreover, we also informed them that
real-world AL systems would actually trigger a low number of
queries, while the system in the experiment was set to prompt
a large number of queries for data analytic purposes.

C. Results

1) Impact of the AL strategy: Figures 6 show the impact
of the AL strategy on the volunteers’ annoyance. We observe
that, consistently with the literature, TransitionAware-AL is
associated with a reduced annoyance compared to Instant-AL.

(a) Instant-AL (b) TransitionAware-AL

Fig. 6: Impact of the AL strategy on notifications’ annoyance

Hence, our volunteers were more inclined in providing AL
feedback during the transitions between activities, rather than
randomly in the middle of activity execution. The same data
analysis is reported at the activity granularity in Figure 7.

(a) TransitionAware-AL (b) Instant-AL

Fig. 7: Impact of the AL strategy on the annoyance for each
activity

As expected, we observed that most of the activities re-
quiring intense physical involvement (e.g., running, taking the
stairs, and stretching) are related to a reduced interruptibility
considering the Instant-AL strategy. Nonetheless, considering
cycling, we noted a higher inclination to provide feedback with
Instant-AL. This is due to the fact that, for safety reasons, we
required the volunteers to use the vocal interface when cycling,
with a positive effect on the perceived annoyance.

Surprisingly, we also observe that Instant-AL is associated
with high annoyance even considering static activities (e.g.,
sitting and standing). This is possibly due to the fact that the
volunteers could be standing and talking with another person,
or sitting while performing cognitive tasks.

Our results also show that the Transition-AL strategy may be
sometimes perceived negatively. For instance, when receiving
AL queries at the end of the cycling activity, volunteers
were less inclined in providing feedback since during the



transition they were involved in carefully parking the bicycle.
A similar phenomenon was observed with ”sitting/standing on
public transport”. Indeed, the transition may involve the user
getting off a crowded bus, which is a not suitable moment
for providing feedback to the system. In general, the ability
to detect context during transitions would be extremely useful
for AL systems to determine the level of interruptibility.

The Transition-AL strategy also has other disadvantages.
Figure 8 shows the difference in reaction time between the
different AL strategies.

Fig. 8: Reaction time: Instant-AL vs Transition-AL

We observed that Transition-AL is associated with a higher
reaction time. This is probably due to the fact that the
volunteers had to reason more about the correct activity to
choose (i.e., the one performed immediately before the query).
For the same reason, Figure 9 shows that Transition-AL is
associated with a higher number of mistakes when providing
the feedback.

Fig. 9: Distribution of correct and wrong AL feedback

On the other hand, the reduced reaction time of Instant-AL
may be due to the fact that our volunteers wanted to continue
the current activity as soon as possible.

2) Impact of high-level context: In the following, we show
the impact of high-level context on the perceived annoyance.
As a representative example, Figure 10 compares the inter-
ruptibility level of the volunteers performing walking with
or without the interaction with other persons. We observe
that AL queries received during this activity are positively
perceived by the volunteers, independently of the considered
social context. This is probably due to the fact that this activity
requires limited physical efforts, and social interactions did not
discourage the volunteers from interacting with the system.
However, this may also change depending on the specific
type of interaction. Figure 11 shows the same result for
the taking the stairs activity. In this case, the social context
seems to significantly affect interruptibility. Possibly because
this activity is associated with higher physical intensity, the
presence of other persons significantly reduced the volunteers’

Fig. 10: Walking: the impact of the social context on notifica-
tions’ annoyance

Fig. 11: Taking stairs: the impact of the social context on
notifications’ annoyance

inclination to answer AL queries. Note that the slight reduction
of annoyance associated with social interactions is due to the
fact that, in our experiments, the volunteers performed this
activity by interacting with acquaintances or friends. Hence,
we suppose that this type of interaction slightly reduced the
negative annoyance perceived by the volunteers. Finally, Fig-
ure 12 shows how the cognitive involvement of the volunteers
(e.g., solving the Sudoku) affected their availability to answer.

Fig. 12: Cognitive involvement and different AL strategies

As expected, we observed that the volunteers were less
inclined to provide feedback during the cognitive task (Instant-
AL) rather than at the end of it (TransitionAware-AL).

3) Touch vs Vocal Interface: Figure 13 shows, for each
activity, the distribution between the interfaces used by the
volunteers. For each activity, we observe a slight preference
towards the touch interface. This is likely due to the fact
that, in the considered outdoor scenarios, the vocal interface
may lead to social embarrassment. This is particularly evident
in sitting/standing on public transport, where the volunteers
only used the touch interface. Nonetheless, the choice of the
interface is also heavily influenced by the high-level user’s
context. For instance, Figure 14 shows that, when cognitively
involved in other tasks, volunteers preferred to use the vocal
interface since it was perceived as less distracting.



Fig. 13: Touch vs Vocal Interface

Fig. 14: Cognitive involvement and different user interfaces

V. CONCLUSION AND FUTURE WORK

In this work, we proposed an evaluation framework based on
the WOz approach to evaluate the acceptability of AL-based
methods for HAR in real-world scenarios. Our results show
that a limited number of queries conveyed by an AL system
with appropriate interfaces at appropriate times may indeed be
acceptable. However, context information should be carefully
considered in order to maximize the likelihood of receiving
accurate feedback.

Despite the promising results, this work has several limi-
tations that we would like to address in future work. First,
our experimental evaluation is limited in terms of considered
activities and contexts. While WOz makes it possible to
precisely control when to prompt queries, it significantly limits
the evaluation in more realistic scenarios. Since in our study
the users were observed for short periods in a fun study setup,
and the annoyance level may be underestimated with respect to
the one that might be observed during daily living. Moreover,
the automatic recognition of high-level contexts (e.g., social
interaction) is still an open challenge and part of our plans for
future work.

Besides acceptability in terms of context conditions, it is
also important to consider that the adoption of AL should be
incentivised with rewards for the users. Besides making users
aware of the benefits of AL in terms of model personaliza-
tion, economic rewards and/or gamification strategies may be
considered [22].
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