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Abstract—Sensor-based Human Activity Recognition (HAR)
has been a hot topic in pervasive computing for several years
mainly due to its applications in healthcare and well-being.
Centralized supervised approaches reach very high recognition
rates, but they incur privacy and scalability issues. Federated
Learning (FL) has been recently proposed to mitigate these
issues. Each subject only shares the weights of a personal model
trained locally, instead of sharing data. A cloud server is in
charge of aggregating the weights to generate a global model.
However, since activity data is non-independently and identically
distributed (non-IID), a single model may not be sufficiently
accurate for a large number of diverse users. In this work, we
propose FedCLAR, a novel federated clustering method for HAR.
Based on the similarity of the local model updates, the cloud
server in FedCLAR derives groups of users that exhibit similar
ways of performing activities. For each group, FedCLAR uses
a specialized global model to mitigate the non-IID problem. We
evaluated FedCLAR on two well-known public datasets, showing
that it outperforms state-of-the-art FL solutions.

Index Terms—human activity recognition, federated learning,
clustering

I. INTRODUCTION

Sensor-based Human Activity Recognition (HAR) is a well-
established research area extensively studied by the pervasive
computing community, mostly due to its impact on healthcare
and well-being applications [1]. The most accurate HAR
approaches are based on supervised machine learning, whose
objective is to learn from labeled data the complex relation-
ships between raw sensor data (e.g., accelerometer readings
from a smartphone) and the activities performed by the user
(e.g., running, taking the stairs). However, the deployment of
real-world HAR systems is limited by several open research
problems that still need to be addressed [2].

A major challenge is that building an activity recognition
model using data from a large number of users poses several
limitations regarding privacy and scalability. Indeed, locally
collected labeled data is usually transmitted to a cloud server
in charge of building an activity model by relying on a large
amount of data. However, from the privacy point of view,
activity data can be considered sensitive, since they may reveal
personal habits or health conditions. On the other hand, this
approach on a large scale may also pose issues related to
communication latency and computational costs [3].

Federated Learning (FL) is a recently proposed learning
paradigm, that shifts the training burden from the cloud to
edge devices that are closer to the user and trusted [4]. Each
edge device (e.g., a smartphone or home gateway) is in charge
of training a local model with available labeled data. Then,
only the weights of the resulting model are transmitted to the
cloud server. By sharing model parameters instead of data, FL
mitigates the above-mentioned privacy and scalability issues
on large-scale scenarios.

The FL paradigm recently attracted attention from the per-
vasive computing community, including HAR [5]–[7]. Recent
results show that FL solutions for HAR reach results that
are similar to the ones of centralized approaches [8]. Despite
the recognized potential of FL in real-world HAR scenarios,
there are still some limitations. The major issue is that the FL
cloud generates a global model that should generalize over a
large number of users. However, different users may perform
activities in very different ways depending on their physical
characteristics, age, and habits. Indeed, data from different
users are non-independently and identically distributed (non-
IID). A trade-off between generalization and personalization
should be considered by FL methods to build accurate HAR
models [9].

The non-IID problem is well-known in FL [10]. One of
the most promising approaches to mitigate this problem in
HAR is to use transfer learning to fine-tune the local model
on each user [8]. However, only relying on transfer learning
and a single global model, it is challenging to balance per-
sonalization and generalization, especially considering large-
scale scenarios [11]. Other approaches to mitigate the non-IID
problem are based on multi-task learning [12]. However, those
solutions are limited to models based on convex objective
functions that limit both model complexity and scalability [13].

In the general literature on FL, Federated Clustering has
been recently proposed to address the non-IID problem [13],
[14]. In Federated Clustering, the cloud server builds special-
ized models for subsets of users to increase the recognition
accuracy as well as to speed up the model convergence. In
practice, the cloud server computes the pairwise similarity
between the shared model weights to derive clusters of users.
Intuitively, each cluster includes users that perform activities
in a similar way. Federated Clustering mitigates the non-IID



problem while preserving the standard FL protocol between
the clients and the server.

In this work, we propose FedCLAR: a federated clustering
approach addressing the non-IID problem in FL-based HAR.
With respect to existing federated clustering approaches, Fed-
CLAR selects only a portion of the model weights shared by
each client, with the objective of computing a similarity score
and building groups of users using a hierarchical clustering
algorithm. The selected weights intuitively characterize the
subject-specific activity patterns. For instance, considering
deep learning models, these would be the weights correspond-
ing to layers that are closer to the output [15]. In FedCLAR,
those users that can not be included in any cluster will use
a generic global model that is trained by all the participating
users, like in a standard federated learning setting. Moreover,
FedCLAR also uses transfer learning methods to fine-tune
activity recognition on each user to further improve personal-
ization.

We evaluated FedCLAR on two well-known public datasets
of sensor-based HAR, where labeled data is acquired from
mobile devices. Our results show that FedCLAR outperforms
FL-based state-of-the-art approaches that use transfer learning
to tackle the non-IID problem. Moreover, our experimental
evaluation also shows the advantage of combining federated
clustering with transfer learning to improve personalization.

The contributions of this work are the following:
• We propose FedCLAR: a novel federated learning ap-

proach for personalized HAR based on hierarchical clus-
tering and transfer learning.

• We design a new user clustering technique based on the
server-side similarity computation, using only a portion
of the model weights shared by each participating user.

• Our results on public datasets show that FedCLAR miti-
gates the non-IID problem, outperforming state-of-the-art
FL approaches based on transfer learning.

II. RELATED WORK

A. Human Activity Recognition

Sensor-based HAR is a well-known research area, that has
been deeply studied by several research groups in the last
two decades [16]. The goal of HAR is to classify the current
activity performed by the user analyzing the continuous stream
of sensor data. Sensor-based HAR has been explored mainly
considering two settings: using sensors of mobile/wearable
devices [17], and using environmental sensors of smart-home
environments [18]. Among the many proposed approaches, the
most effective ones are based on Deep Learning (DL) [19].
However, the deployment of HAR systems in real-world
scenarios is still limited by several open challenges. Among
the many challenges, there are labeled data scarcity [20],
the discovery of new activities [21], the transferability of
activity models between different environments/users [22], and
lifelong learning [23].

In this work, we focus on personalization, privacy, and
scalability issues that are related to training an activity model

with a large number of users. Several studies indicate that
personalization is a crucial aspect in HAR [9]. However,
the main problem of a large-scale collaborative model is
that balancing personalization and generalization at the same
time is challenging [8]. Moreover, activity data reveal private
information about the subject, like health conditions and
habits. Hence, this private information should be protected
when outsourced to untrusted third parties [24].

B. Federated Learning for HAR

In order to tackle the scalability and privacy issues men-
tioned above, Federated Learning (FL) is a promising direc-
tion [4]. In FL, the training of the global activity model is
distributed among the participating clients. Indeed, each client
is in charge of training a local model with its available labeled
data and it only transmits local model parameters (weights) to
the server, instead of sharing private activity data. The server
aggregates the weights received by the participating clients and
creates a global model. Moreover, privacy-preserving mecha-
nisms like Differential Privacy (DP) and Secure MultiParty
Computation (SMC) are usually adopted to further protect the
shared model weights from attacks that can potentially reverse-
engineer data or properties from the weights [25].

According to a classification proposed by a recent sur-
vey [25], FedCLAR is a horizontal FL method: the partic-
ipating clients share the same feature space, but they have
a different data distribution (i.e., each client uses data of a
specific subject).

FL has been recently applied to sensor-based HAR to
distribute the training of the activity recognition model among
the participating devices [3], [6]. Some of these approaches
also propose to collaboratively learn the feature representation
to mitigate the data scarcity problem [26], [27].

However, a major problem in FL for HAR is that data
from different users are non-independently and identically
distributed (non-IID). Indeed, different users may have differ-
ent physical characteristics and habits. Hence, a single global
model would lack in capturing those differences on a large
number of users [10].

C. Tackling the non-IID problem in FL-based HAR

Several recent works proposed approaches to mitigate the
non-IID problem in FL-based HAR. A common solution is to
adopt transfer learning techniques on the client-side to improve
personalization [8], [28], [29]. In particular, the global model
is fine-tuned on each client by training the last layers of the
personal deep learning model (i.e., the ones closest to the
output) with personal data. The intuition behind this approach
is that the last layers capture the personal patterns of the
users, while the first layers encode cross-subject features [15].
However, those approaches are still based on a single global
model, and balancing personalization and generalization is still
a challenge.

Multi-task federated learning is another approach proposed
to mitigate the non-IID problem in FL-based HAR [12]. In
particular, the clients contribute to collaboratively learning



only the common features, while the diversity is handled at the
client side. However, these approaches are based on a convex
objective function that is not suitable for complex HAR models
based on deep learning.

A very recent and closely related work, that is called
ClusterFL, proposes a multi-task federated clustering method
for FL-based HAR [11]. This approach is based on a dis-
tributed optimization approach: the clients and the cloud server
collaborate in optimizing both the local models as well as
the clustering structure. A limitation of ClusterFL is that the
information about the association between users and clusters,
as well as the parameters of each local model, are distributed to
all the participating clients. Hence, ClusterFL does not adhere
to the standard FL protocol and it reveals sensitive information
to each client. Moreover, ClusterFL requires mobile devices
to compute an optimization task that is more computationally
expensive with respect to the usual local training required by
FL approaches.

The recent FL literature proposes Federated Clustering
approaches that adhere to the standard FL protocol, without
revealing clustering details to the participating clients [13],
[14], [30]. Inspired by those approaches, FedCLAR offers
an effective Federated Clustering solution for HAR with
the following new and distinctive features: a) the similarity
is computed only on the subject-specific parameters of the
local models, and b) it relies on transfer learning to further
personalize HAR.

III. PROBLEM FORMULATION

A. Non-IID problem in HAR

Let U = {U1, . . . , Un} be the set of users. Each user Ui

is associated with a labeled dataset Di = {(x, y)}, where
x is a data point and y the corresponding activity label.
Let D = {D1, . . . , Dn} be the set of datasets, each one
corresponding to a user in U . D is non-independently and
identically distributed (non-IID) if at least a pair of datasets
Di, Dj ∈ D satisfies one of the following conditions [14]:
• Feature distribution skew: PDi

(x) 6= PDj
(x). This

inequality between probability distributions is true when
the data samples in Di have a significantly different
marginal distribution than the ones in Dj . In HAR, this
often happens since each subject may perform activities
in a peculiar way. Among many factors, users’ physical
characteristics have a strong impact on the activity pat-
terns. For instance, a young subject would probably have
a faster walking pattern than an elder subject.

• Label distribution skew: PDi(y) 6= PDi(y). This in-
equality between probability distributions is true when
the labels in Di have a significantly different marginal
distribution than the ones in Dj . In HAR, this usually
happens since different users may have different daily
routines. For example, a sporty subject would likely spend
more time running or cycling than a sedentary subject.

• Quantity distribution skew: This condition is true when
|Di| and |Dj | are significantly different. In HAR, is not

unusual to have significantly different sizes of labeled
samples for different subjects.

B. Why non-IID is a problem in a FL setting

Given a non-IID set of datasets D, a standard centralized
ML approach builds a recognition model MC by using all the
annotated data points in D∗ = D1

⋃
D2...

⋃
Dn. In this case,

the training phase consists in finding the parameters w ∈ Rd

that minimize a global objective function f(w):

min
w∈Rd

f(w), f(w) :=
1

|D∗|

|D∗|∑
k=1

`k(w) (1)

where `k(w) is a loss function. Intuitively, the objective
is to find the parameters w that minimize the average loss
over all the annotated samples in D∗. By considering all the
annotated samples at the same time, this centralized approach
mitigates the non-IID problem.

However, there are significant differences in an FL setting.
Indeed, each user Ui locally trains a model Mi, and it transmits
to the server only the Mi parameters wi. The server is in
charge of building a global model M from the local parameters
W = 〈w1, . . . ,wn〉, and it is not possible to directly access
D∗. The objective function f(w) of the federated model to
derive the global parameters w is the following:

min
w∈Rd

f(w), f(w) =

n∑
i=1

|Di|
|D∗|

fi(wi) (2)

where fi(wi) is the local objective function that each user
Ui minimizes by using Di to obtain wi:

min
wi∈Rd

fi(wi), fi(wi) :=
1

|Di|

|Di|∑
k=1

`k(wi) (3)

Ideally, the parameters of the federated model should ap-
proximate the ones of the centralized model. However, in a
non-IID setting, the overall data distribution of D∗ (that is
captured by the centralized approach) may be considerably
different from the distribution of each Di ∈ D that is cap-
tured by the federated approach. For this reason, minimizing
f(w) may lead to a global model that would significantly
underperform the one derived by minimizing f(w).

C. The federated clustering problem

A possible solution to tackle the non-IID problem in the FL
setting issue is to partition U into s clusters C = C1, ..., Cs so
that each cluster minimizes the non-IID properties among the
datasets of the users assigned to the same cluster. Hence, it
is possible to derive a federated model M

Cj for each cluster.
The objective function f

Cj
(wCj ) of each model MCj can be

optimized by using data from the cluster:

min
wCj∈Rd

f
Cj
(wCj ), f

Cj
(wCj ) =

|Cj |∑
i=1

|Di|
|DCj |

fi(wi) (4)



where DCj is the set of datasets of the users belonging to
the cluster Cj . If the clusters actually capture the similarity
between the distributions of the datasets, the resulting model
would better approximate the one generated by a centralized
approach on the users of the same cluster.

However, in the FL setting it is not possible to access each
Di to compute the clusters, since only the model parameters
wi are available. Hence, a major problem that we tackle in
this work is how to compute user clustering in the FL setting.

IV. METHODOLOGY

In the following, we describe how FedCLAR mitigates
the non-IID problem by combining federated clustering and
transfer learning 1. First, we explain how to compute the
similarity between users only based on local model weights.
Then, we describe our federated hierarchical clustering ap-
proach. Since different users in the same group may still have
some peculiarities, we also describe how each client further
personalizes its local model thanks to transfer learning.

A. Computing similarity between users

In general, clustering approaches are based on a similarity
metric that is computed on each pair of items that may
be clustered. In sensor-based HAR, similar users are those
that share similar sensor data patterns (i.e., similar activity
patterns). However, in an FL learning process, only the weights
of the local models are available, and not sensor data. Nonethe-
less, if two local models share similar weights, they were
likely trained with similar patterns of data. Hence, given the
parameter vectors wi and wj of the models corresponding to
the users Ui and Uj , it is possible to compute their similarity.
FedCLAR relies on the cosine similarity since it proved to be
effective for federated clustering [13]. The cosine similarity
between the model weights of two users Ui and Uj can be
computed as follows:

sim(wi,wj) =
wi ·wj

‖wi‖‖wj‖
(5)

However, considering HAR models and the recent results on
transfer learning [8], we realized that computing the similarity
taking into account the whole parameter vector would not
be the optimal choice. Considering local models based on
deep learning, the closest layers to the input reflect high-level
features that are common between all the subjects [15]. On
the contrary, the layers that are closest to the output are the
ones that encode user-specific activity patterns.

Let pers(w) be a function that extracts from parame-
ter vector w the user-specific parameters. Hence, FedCLAR
computes the pairwise similarity between model weights as
follows:

sim(wi,wj) =
pers(wi) · pers(wj)

‖pers(wi)‖‖pers(wj)‖
(6)

1For the sake of this work and without loss of generality, we describe
FedCLAR considering HAR based on sensor data acquired by mobile devices.

Since FedCLAR is based on deep learning, the function
pers(w) returns the weights corresponding to the last l layers
of w.

B. Hierarchical Clustering
Using the similarity function described above, the cloud

server in FedCLAR can apply a clustering algorithm to derive
groups of users that perform activities in a similar way. In this
work, we use a hierarchical approach, since in the literature it
proved to be effective for federated clustering [14].

The pseudo-code for the hierarchical clustering method of
FedCLAR is described in Algorithm 1. The intuition behind
this process is the following. Initially, there is one cluster
for each user. Clusters are grouped based on the pairwise
similarity of the participating users and a clustering threshold
ct. When two clusters are merged into a single one, a new
specialized model for that cluster is generated by merging
the models of the clusters that originated it. The process is
repeated until no more clusters can be grouped. In the end, our
method only considers those clusters that contain more than
one user. The users in the singleton clusters are considered as
non-clustered users.

Algorithm 1 HierarchicalClustering
Input: W = {w1, . . . ,wn}
Output: A set of clusters C, a set of specialized models W

1: C ← {{U1}, . . . , {Un}}
2: cmap← empty map from model weights to clusters
3: cmap[w1]← {U1}
4: . . .
5: cmap[wn]← {Un}
6: do
7: P ← pairwise similarity matrix on W based on sim
8: wa,wb ← argmin

wa,wb|a 6=b

Pab

9: if sim(wa,wb) ≥ ct then
10: wab ← merge wa and wb using FedAvg
11: ca ← cmap[wa]
12: cb ← cmap[wb]
13: cab ← ca ∪ cb
14: C ← C \ {ca, cb}
15: C ← C ∪ {cab}
16: W←W \ {wa,wb}
17: W←W ∪ {wab}
18: cmap[wab] = cab
19: else
20: W← {w ∈W such that |cmap(w)| > 1}
21: C ← {c ∈ C such that |c| > 1}
22: return C and W
23: end if
24: while True

C. The server side of FedCLAR
The sever-side mechanism of FedCLAR is described by

Algorithm 2. Periodically (e.g., every night), the server re-
quires an update of the global models. Hence, a sequence of



Fig. 1: Overall data flow of FedCLAR after the clustering communication round

communication rounds is started. Each client locally trains its
model and transmits the resulting weights to the server. Upon
receiving the weights from the clients, the first task of the
server is generating an overall global model using FedAvg.

Then, the server continues with the federated clustering
algorithm. An important observation is that computing the
similarity between users is effective only if performed after
a certain number of communication rounds. Otherwise, we
experimentally observed the risk of considering models param-
eters that are not sufficiently trained, thus generating unreliable
clusters. For this reason, in FedCLAR, our hierarchical clus-
tering method explained in Section IV-B is performed after
a predefined number r of communication rounds. From the
communication round r, the clustered clients will update and
use the specialized models, while the non-clustered users will
update and use the overall global model. Note that, in order to
provide to non-clustered users a global model with sufficient
generalization capabilities, the clustered users also contribute
to updating the overall global model.

D. The client side of FedCLAR

A valuable property of FedCLAR is that, considering stan-
dard FL solutions like FedAVG, the FL protocol is not altered
from the client point of view. Indeed, each client collaborates
to the federated clustering without knowing if it is collaborat-
ing in training a specialized model or to the overall global
model. Algorithm 3 describes what happens at the client-
side when the server requires a periodic update of the global
model. Note that, even though federated clustering has the
advantage of mitigating the non-IID problem, it is still possible
that different users in the same cluster have some personal
way of performing some activities. For instance, some users
may be grouped in the same cluster because they perform the
majority of the activities in a similar way, while they exhibit
slight differences in the execution of a restricted number of
activities. In order to further personalize the recognition model,
FedCLAR also relies on transfer learning on each client. In
particular, our solution is inspired by a strategy that proved
to be effective in FL-based HAR [8]. Once a client concludes

Algorithm 2 FedCLAR - Server side

1: C ← nil
2: WC ← nil
3: for each periodic update (e.g., every night) do
4: for each communication round i do
5: receive W={w1, ..,wn} from clients
6: wG ← aggregate W using FedAvg (global model)
7: if i < r then
8: send wG to each client
9: else

10: if i == r then
11: C,WC ← HierarchicalClustering(W)
12: else
13: use W to update WC based on C
14: end if
15: for ci ∈ C do
16: send wC

i to each client in ci
17: end for
18: send wG to non-clustered clients
19: end if
20: end for
21: end for

the communication rounds, its local model is updated with the
weights received from the cloud server. Then, a fine-tuning
process starts, with the goal of better capturing the specific
activity patterns of each user. The client’s available labeled
data are used one more time to update the new local model.
However, this fine-tuning process only updates the last p layers
(i.e., the ones closest to the output), while the remaining ones
are left as received by the server.

E. The overall FedCLAR data flow

In order to summarize the general mechanism behind Fed-
CLAR, Figure 1 depicts the federated learning data flow after
the clustering communication round. Clients are grouped in
clusters based on the similarity of their users. The clients in
the same cluster collaborate, through their sharing of local



Algorithm 3 FedCLAR - Client side

1: lm← local model
2: for each communication round do
3: train lm using available labeled data
4: send the weights w of lm to the server
5: receive updated model wS from the server
6: replace the weights of lm with wS

7: end for
8: freeze the layers of lm except for the last p layers
9: train lm using available labeled data

10: unfreeze lm layers

weights, to generate and refine their cluster model. All clients,
including the ones of non-clustered users, collaborate to gener-
ate and refine a general global model. This model will be used
by non-clustered users as well as users not participating in the
federated training. Finally, each client uses transfer learning to
further personalize the local recognition model.

V. EXPERIMENTAL EVALUATION

A. Datasets

In order to evaluate the effectiveness of FedCLAR, we
considered two well-known HAR datasets: WISDM [31] and
MobiAct [32]. Those datasets were selected since they involve
a relatively large number of subjects with respect to other
sensor-based HAR datasets. Despite a real deployment would
involve a much larger number of participants, this aspect is
crucial to evaluate our FL-based approach, considering that
data (and participant) augmentation techniques may not lead
to realistic results. Moreover, the subjects that participated
to data collection in these datasets exhibit both data and
labels distribution skew, that are necessary to evaluate the
clustering capabilities of FedCLAR. WISDM includes labeled
activity data from 36 different subjects obtained from the
accelerometer of a smartphone placed in the pants pocket
during the activity execution. The activities considered in this
dataset are: walking, jogging, sitting, standing, and taking
stairs. The MobiAct dataset includes labeled activity data
from 60 different subjects. Those data were collected from
the inertial sensors (i.e., accelerometer, gyroscope, and mag-
netometer) of a smartphone placed in the pants pocket. In our
experiments, we considered the following physical activities
standing, walking, jogging, jumping, going upstairs, going
downstairs, and sitting.

B. Experimental setup

In order to evaluate the clustering capabilities of FedCLAR,
the activity model that we used in our experiments is a
simple feed-forward deep neural network. In particular, it is
composed of three fully connected layers having respectively
32, 16, and 16 neurons, and a softmax layer for classification.
The inputs of the network are hand-crafted feature vectors
extracted in real-time from the stream of sensor data. We
consider features that proved to be effective for HAR in
the literature [1]. We used Adam [33] as optimizer. Even

though existing FL approaches proposed more sophisticated
deep learning classifiers (even to collaboratively learn features
representation), a simpler model with hand-crafted features
allowed us to focus only on the specific clustering problem.
Moreover, we believe that an advantage of our simple model
is a reduced computational effort, that is more suitable for
mobile devices. The hyper-parameters were selected using a
grid search, with the objective of optimizing the overall F1-
score. In particular we chose l = 1, p = 2, r = 5, and 10 local
training epochs with a batch size of 30 samples. Considering
the clustering threshold ct, we chose ct = 0.005 for the
WISDM dataset, and ct = 0.010 for the MobiAct dataset.
We will describe the impact of those hyper-parameters on the
recognition rate and on clustering quality in Section V-D5.

C. Evaluation methodology
For each user in the dataset, we simulate a corresponding

client of FedCLAR. Each client uses the 70% of its data to
participate in the collaborative model update (i.e., to create the
clusters and the corresponding specialized models). When the
communication rounds are concluded, the remaining 30% of
data is used to evaluate the recognition rate of the resulting
local model in terms of F1-score.

D. Results
1) Considered baselines: We compared FedCLAR with

three baselines. The first is FedAvg, which is the first FL
method proposed in the literature [4]. FedAvg does not
consider the non-IID problem. The second baseline is Fed-
Health [8], a recent FL-based HAR approach that tackles the
non-IID problem using transfer learning. The third baseline is
called FedCLAR w/o transfer, which is our approach without
fine-tuning the local models with transfer learning.

2) Overall recognition rate: Table I compares FedCLAR
with those baselines. Our results show that FedCLAR signif-
icantly outperforms the other approaches on both datasets. In
particular, the comparison between FedHealth and FedCLAR
w/o transfer shows that federated clustering leads to a higher
F1-score with respect to only relying on transfer learning.
Nonetheless, when federated clustering and fine-tuning are
combined (i.e., FedCLAR), we observed a further slight im-
provement in the recognition rate.

TABLE I: Comparison of the F1-score of FedCLAR with
respect to alternative approaches.

Dataset FedAvg FedHealth FedCLAR w/o
transfer FedCLAR

WISDM 0.76 0.80 0.86 0.89
MobiAct 0.89 0.90 0.93 0.94

3) Recognition rate at each communication round: Figure 2
shows how the recognition rate evolves at each communi-
cation round. We observed that, from the communication
round where clustering is performed, the recognition rates
of FedCLAR and FedCLAR w/o transfer learning increase
significantly with respect to the baselines. Moreover, these
plots confirm the advantage of including transfer learning in
the federated clustering process.



(a) WISDM (b) MobiAct

Fig. 2: Trend of F1 score at each communication round. The red line specifies the clustering communication round.

4) Cluster-based results: In the following, we show the
results of FedCLAR at the cluster level. In particular, we
consider the clusters generated by FedCLAR. For each cluster,
we compare the F1 of FedCLAR with the ones reached by the
considered baselines. Note that these results are just a detailed
version of the ones proposed in Table I: each alternative FL
approach is actually computed considering all the users, while
we show the F1 score for subsets of the users based on
the output of FedCLAR. This visualization strategy makes it
possible to focus on the improvement of FedCLAR on the
users of the generated clusters. These results are depicted
in Figure 3. We observed that only a small percentage of
users was not clustered. Since the general global model is
the one used to classify for those users, the recognition rate
of FedCLAR is similar to the ones of standard baselines like
FedAvg. Also, we can observe that transfer learning has a
limited impact on those users. On the other hand, we can
observe that federated clustering has a significant impact on
each cluster, especially considering the WISDM dataset. This
trend is also confirmed on the MobiAct dataset, except for the
first two clusters. This is due to the fact those users reflect
the average subject in MobiAct. Hence, the global model
in FedAvg is heavily influenced by those users, and it is
already accurate in discriminating their activities. Moreover,
we observed that the users of those two clusters are very
similar (and probably the clusters should have been merged),
thus confirming our hypothesis.

5) Impact of hyper-parameters:
Finally, we show the impact of the FedCLAR’s hyper-

parameters both on recognition rate and clustering. These
results are reported in Table II and III. First, we observed that
the higher the number l of layers that we consider to compute
the similarity, the smaller the distance between the models
of different users. Hence, this result confirms that only using
the closest layers to the output leads to the highest recognition
rates. For instance, by using 2 or 3 layers, FedCLAR generates
a few clusters that have small or no impact on the F1-score. On
the other hand, only using 1 layer generally leads to a higher
number of clusters and an improvement of the recognition
rate. We also observe that the clustering threshold ct also has
an impact on the considered metrics. If the threshold is too

TABLE II: WISDM: Impact of hyper-parameters

l ct F1 # clusters Users not
clustered

0.001 0.83 2 86,11%
0,003 0.87 7 50.00%
0,005 0.89 7 16,67%
0,007 0.87 5 11,11%

1

0,009 0.84 4 5,56%
0,002 0.81 3 83,33%
0,0025 0.82 4 72,22%
0,003 0.81 1 55,56%
0,0035 0.80 1 27,78%

2

0,004 0.80 1 8,33%
0,003 0.82 4 61,11%
0,0035 0.81 2 47,22%
0,004 0.80 2 22.22%
0,0045 0.80 1 16,67%

3

0,005 0.80 1 5,56%

low, FedCLAR excludes a too large portion of the users from
clustering, negatively impacting the recognition rate. On the
other hand, if ct is too high, FedCLAR would generate a lower
number of clusters with users not actually similar to each other,
with a negative impact on the recognition rate.

TABLE III: MobiAct: Impact of hyper-parameters

l ct F1 # clusters Users not
clustered

0.0025 0.90 10 38.98%
0,003 0.91 11 30.51%
0,005 0.92 7 15.25%
0,010 0.94 7 3.39%

1

0,020 0.92 3 0.0%
0,001 0.89 4 52.54%
0,0015 0.89 4 32.20%
0,002 0.90 1 11.86%
0,0025 0.90 1 10,17%

2

0,003 0.90 1 3,39%
0,001 0.89 2 64,41%
0,0015 0.89 4 32,20%
0,002 0.89 1 20.34%
0,0025 0.89 1 13.56%

3

0,003 0.90 2 5,08%

6) Evaluating the impact on non-IID data:
In the following, we show how the non-IID problem (for-
mulated in Section III) is actually mitigated by FedCLAR
on the considered datasets. First, we investigate the feature



(a) WISDM (b) MobiAct

Fig. 3: Comparison of FedCLAR with the alternative approaches cluster by cluster.

distribution skew. We expect that users grouped in the same
cluster perform activities in a similar way, while users in
different clusters execute activities in different ways. In order
to evaluate if the clusters generated by FedCLAR have this
property, from the raw sensor data of all users in each dataset
we extract, for each activity, a set of patterns, each one
characterising a way of performing that activity 2. Then, we
correlate the patterns with the clusters of users generated by
FedCLAR. For the sake of brevity, we report a couple of
examples related to the WISDM dataset in Figure 4.

(a) Going Downstairs (b) Jogging

Fig. 4: WISDM: examples of feature distribution skew. The
plot shows the correlation between clusters and activity pat-
terns.

From this analysis, it emerges that many clusters generated
by FedCLAR in WISDM exhibit a peculiar correlation with
activity patterns. Hence, the non-IID problem is reduced
with a positive impact on the recognition rate. For instance,
considering the activities in Figure 4, the improvement in
overall F1-score of FedCLAR with respect to FedAVG is
+24% for going downstairs (from 0.48 to 0.72), while +5%
for jogging (from 0.93 to 0.98). We observed an improvement

2We normalize raw sensor data, we apply PCA for dimensionality reduction
and we apply the K-Means algorithm. In order to find the optimal number of
clusters for each activity, we maximize the Silhouette score.

in the F1 score for each activity in WISDM whenever there
is a clear correlation between clusters and patterns.

We also noticed that the feature distribution skew does not
clearly emerge in MobiAct, since the users in this dataset
tend to perform activities with similar patterns. This is re-
flected by the results presented above: FedCLAR has a minor
improvement on this dataset with respect to WISDM. The
improvement of FedCLAR on MobiAct is still appreciable
since, differently from WISDM, this dataset suffers from a
significant label distribution skew. Hence, FedCLAR is still
able to improve the recognition rate by grouping users that
have similar labels distributions. Figure 5 shows this property
for a couple of activities. Considering the examples in this
figure, the improvement in F1-score of FedCLAR with respect
to FedAVG is +28% (from 0.30 to 0.58) for going upstairs,
while +12% for sitting (from 0.81 to 0.92). We observed
an improvement in F1 score for each activity in MobiAct
whenever there is a clear correlation between clusters and
skewed label distributions.

(a) Going Upstairs (b) Sitting

Fig. 5: MobiAct: examples of labels distribution skew. The
plot shows the average number of activity samples for each
user in the clusters generated by FedCLAR.



VI. DISCUSSION

A. Personal data protection

Among the limitations of the current version of FedCLAR,
there is the potential leak of private information to a honest-
but-curious service provider running the server infrastructure.
It is well known that, despite only model parameters are shared
with the server, some personally identifiable data could be
still inferred from them. In order to mitigate this issue, FL
approaches usually rely on Secure MultiParty Computation
(SMC) to aggregate the local weights in a privacy-preserving
fashion [34]. SMC makes it possible to hide from the service
provider the mapping between each local model and the corre-
sponding subject. Even when this type of protection is applied,
FL models are exposed to several types of attacks that extract
private information from the global model parameters [35].
Examples of such attacks are the reconstruction attack [36], the
membership inference attack [37], and the property inference
attack [38].

Among the three categories of attacks mentioned above,
property inference is particularly problematic for the HAR
domain and in particular for FedCLAR. First, since clusters
are derived server-side, the SMC based technique cannot be
applied, and the service provider could observe the relation-
ships between local models, clusters and subjects. Moreover,
a cluster may actually group users with similar sensitive
conditions. For instance, suppose that FedCLAR derives a
cluster composed only of subjects with Parkinson disease
and a similar gait impairment. An honest-but-curious service
provider may use external data of a subject with the same
health condition to understand in which cluster is included.
The cluster indirectly identifies all the associated subjects
revealing that they suffer from the same health condition.
There are several possible ways to extend FedCLAR in order
to address this and other privacy attacks as it would be required
for a real-world deployment. In the following, we mention
some of them but a complete investigation is out of the scope
of this contribution.

A promising solution, that has been recently proposed in
the literature, is a federated learning architecture based on
Trusted Execution Environment (TEE) [39]. In this scenario,
the server-side algorithms of FedCLAR are executed within
a protected environment. Indeed, code and data inside a
TEE are confidential. The participating clients would transmit
encrypted model weights to the service provider, which are
then decrypted inside the TEE to update the global models and
computing hierarchical clustering. The global model leaves the
TEE encrypted. Another possible approach is to use distance-
preserving homomorphic encryption to compute clusters and
specialized models in a privacy-preserving fashion [40]. The
drawback of this approach is that homomorphic encryption
may introduce significant computational efforts. Alternatively,
it would be possible to use Local Differential Privacy in order
to introduce noise during the training of the local models,
based on privacy preferences [41]. The major challenge in

this case is finding an acceptable trade-off between privacy
protection and recognition accuracy.

B. Clustering with a dynamic number of clients

In this work, we show the effectiveness of clustering within
a single FL process, with a fixed number of clients. However,
in FL, the global model is updated periodically. For instance,
considering a mobile computing scenario, this process may
happen every night, when the personal devices of the users
are idle and charging. Hence, two events can occur between
two updates: a) new clients join the system, b) clients that
previously contributed to training the global model abandon
the system. When those events occur, the clustering structure
may change. In order to tackle this challenge, a possibility is
that the cloud server stores every intermediate model computed
during clustering (i.e., the dendograms associated with inter-
mediate steps of hierarchical clustering). Hence, when clients
join or leave the system, the server can recompute an optimal
set of clusters by reversing some of the clustering steps. A
similar approach was proposed in [13].

C. Evaluation on a large scale

In this work, we took advantage of the public datasets suited
for this task and with the highest number of subjects. However,
real-world FL scenarios may involve thousands of users, or
even more. Hence, while FedCLAR exhibits promising results,
they need to be confirmed on more realistic experiments on a
larger scale.

A significant limitation of FedCLAR in large scale scenarios
is that, at each communication round, every participating client
is involved in the global model update. However, for the
sake of scalability, FL methods randomly sample a limited
number of clients at each communication round [4]. Hence, we
will investigate a scalable solution to distribute the clustering
process in multiple communication rounds.

Another significant problem related to deploying FedCLAR
on a large scale is the correct choice of the hyper-parameters.
In this work, we split the data of each user in 70% for
training and 30% for testing and performed an exhaustive
grid search. However, the hyper-parameters that proved to be
effective in our experiments may not reflect the ones that are
effective on a large scale. Hence, we will study the challenging
problem of choosing the correct hyper-parameters in large-
scale scenarios, where only a limited amount of labeled data
is actually available.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented FedCLAR, a novel federated
clustering approach for HAR. FedCLAR combines the recent
research on federated clustering with transfer learning ap-
proaches for FL-based HAR to mitigate the non-IID problem.
Our results indicate that FedCLAR outperforms state-of-the-
art FL solutions based on a single global model. Besides
the limitations described in Section VI, a significant problem
of FedCLAR is that it assumes that each client has high
availability of labeled data. However, this is not realistic in



real-world HAR scenarios. Hence, we will investigate if our
clustering approaches can be enhanced with self-supervised
and semi-supervised learning techniques to derive reliable
clusters with a limited amount of labeled data and, at the same
time, to maintain a high recognition rate.
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