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Abstract—The recognition of human activities in sensorized
smart-home environments enables a wide variety of healthcare
applications, including the detection of early symptoms of cog-
nitive decline. The most effective Human Activity Recognition
(HAR) methods are based on supervised Deep Learning clas-
sifiers. Those models are usually considered as black boxes,
and the rationale behind their decisions is difficult to under-
stand for human beings. The recent advances in eXplainable
Artificial Intelligence (XAI) offer promising tools to make HAR
models more transparent. The state-of-the-art explainable HAR
methods provide explanations for the output of classifiers that
periodically predict the performed activity on short time windows
(usually in the range of 15-60 seconds). However, non-technical
users may be more interested in investigating explanations
associated with complete activity instances (e.g., an instance
of the cooking activity may last 30 minutes). Unfortunately,
temporally extending the time window harms the recognition
rate of HAR classifiers. In this paper, we propose DeXAR++:
a novel method that generates explanations for human activity
instances based on deep learning classifiers. The sensor data time
windows used for classification are encoded as images. DeXAR++
aggregates the explanations generated by a computer-vision XAI
approach on each time window to obtain a single explanation for
approximated activity instances. Moreover, DeXAR++ includes a
novel visualization approach particularly suitable for non-expert
users. We evaluate DeXAR++ with both automatic and user-
based evaluation methodologies on a public dataset of activities
performed in smart-home environments, showing that our results
outperform the ones obtained by state-of-the-art methods.

Index Terms—eXplainable AI, Human Activity Recognition,
Deep Learning

I. INTRODUCTION

The sensor-based recognition of human activities in smart
homes is an enabling technology for a wide variety of health-
care applications [1]. For example, clinicians are interested
in continuously monitoring the behavior of fragile elderly
subjects to detect early symptoms of cognitive decline [2].

Even though Human Activity Recognition (HAR) has been
widely studied in the last two decades, several well-known
open issues still limit its deployment in real-world scenarios,
including annotated data scarcity and lack of personalization.

Supervised Deep Learning (DL) classifiers are very effective
in this domain [3]. However, they are usually considered as
black boxes, and the rationale behind their decisions is not
transparent to the end-users. Providing explanations to DL-
based HAR models’ decisions is crucial both for data scientists

to fine-tune the sensing setup and the model as well as for
clinicians/caregivers to trust and understand the output of the
system.

The eXplainable AI (XAI) paradigm recently emerged in the
general machine learning community to build more transparent
machine learning models [4]. XAI methods usually associate
each model’s output with an explanation that the target users
can effectively understand (e.g., indicating the portions of the
input that were important for the prediction). The majority of
existing XAI approaches have been proposed for the computer
vision and Natural Language Processing domains.

In a previous work, we proposed DeXAR [5]: an XAI ap-
proach for HAR based on deep learning models. This domain
poses new challenges since it implies explaining the spatio-
temporal relationships between raw sensor data measurements
that were important for classification. A significant limit of
DeXAR is that the activity model periodically classifies the
performed activity considering relatively short time windows
(e.g., in the order of seconds). Hence, explanations are gen-
erated on each time window, and they only reflect a small
portion of the whole activity instance (e.g., an instance of
the cooking activity may last 30 minutes). While explanations
generated on such time windows may still help data scientists
or technicians to refine the system, they are more difficult
to interpret considering non-technical users (e.g., clinicians,
caregivers, or the monitored subjects themselves), since they
are interested in investigating the whole activity execution.
Note that increasing the classification time window is not an
option since it would have a negative effect on the recognition
rate [6].

In this work, we extend DeXAR by proposing DeXAR++:
a method for explaining human activities instances using deep
learning classifiers in smart-home environments. Similarly
to DeXAR, DeXAR++ transforms sensor data into semantic
images to take advantage of CNNs and image-based XAI
approaches. DeXAR++ generates explanations about approxi-
mated activity instances by aggregating the explanations com-
puted on short time windows. In order to make explanations
readable by end-users who are non-expert in sensors and
machine learning, DeXAR++ generates them both as sentences
in natural language and graphical images.

We evaluated DeXAR++ considering a publicly available



dataset of Activities of Daily Living (ADLs) performed in
a smart-home environment. First, we adopted a quantitative
metric we recently proposed [5] to automatically evaluate the
consistency of the explanations with common-sense knowl-
edge about activity execution. For instance, “the activity is
Cooking because Bob is standing in the kitchen in front of
the electrical stove which is turned on” is an explanation
consistent with the Cooking activity. On the other hand, “the
activity is Eating because Bob was watching the television,
sitting at the kitchen table” is not an explanation consistent
with the Eating activity.

We also performed a user-based evaluation taking advantage
of the Amazon Mechanical Turk framework, involving 121
subjects that evaluated the quality of our explanations by
comparing three different image-based XAI methods. Our
results indicate that DeXAR++ outperforms DeXAR, that
generates explanations on time-windows instead of activity
instances. Moreover, our results confirm that XAI approaches
based on Model Prototypes [7] are more effective than saliency
and model induction methods.

The contributions of this paper are threefold:
• We propose a XAI method that explains approximated

activity instances based on DL models that perform
predictions on relatively short time windows.

• We propose a novel approach to visualize explanations
for non-technical users.

• A user-based study on a public dataset involving 121
participants shows that DeXAR++ generates explanations
that are better than the ones generated on time windows.

II. RELATED WORK

A. Human Activity Recognition in Smart-Home Environments

Human Activity Recognition (HAR) in smart-home envi-
ronments has been widely studied in the last decades [1],
[8]. While some approaches proposed solutions based on
cameras [9], such devices may be perceived as intrusive in
the home environment, especially considering elderly subjects.
In this work, we focus on unobtrusive sensor-based ADLs
recognition. Several sensors can be used in home environ-
ments: a) environmental sensors to track the interaction of
the subject with the surrounding environment (e.g., magnetic
sensors on doors, presence sensors, plug sensors, etcetera),
b) wearable sensors to keep track of the subjects’ physical
movements (e.g., smartwatches), c) micro-localization sensors
to keep track of the position of the user in the home (e.g.,
Bluetooth Low Energy beacons, UWB antennas).

Three main categories of HAR methods have been proposed
to classify the performed activities from the continuous stream
of sensor data: data-driven, knowledge-based, and hybrid.
Data-driven approaches are mainly based on supervised ma-
chine learning techniques. Deep learning is becoming predom-
inant in this area since it generally leads to high recognition
rates [3]. However, training data is generally hard to acquire
in smart-home environments due to privacy problems, intru-
siveness, and costs. Knowledge-based methods do not require

labeled data since they rely on logic-based formalisms (e.g.,
ontologies) that define semantic relationships between sensor
events and ADLs [10]. The main drawback of knowledge-
based methods is their lack of flexibility. Indeed, human activ-
ities exhibit high variability in execution modalities, dynamic
context information, and the intrinsic uncertainty of sensor
data. Finally, hybrid solutions are emerging to combine the
strengths of both worlds [11]. Knowledge-based methods are
directly interpretable and hence easily explainable. This paper
focuses on the more challenging task of explaining supervised
approaches based on deep learning.

Recently, some research groups proposed to tackle sensor-
based activity recognition as an image classification prob-
lem to take advantage of Convolutional Neural Networks
(CNNs) [12]–[16]. However, the images generated by those
approaches can not be directly interpreted without experience
in activity recognition and sensing.

B. Explainable AI for Human Activity Recognition

Most of the XAI approaches in the literature for HAR
consider methods based on cameras and computer vision [17]–
[19]. Deriving explanations for HAR approaches based on
sensor data poses new challenges.

The majority of existing approaches in this area considered
inherently interpretable models. For instance, the work pro-
posed in [20] is based on feature importance derived from
the model parameters of Random Forests. The authors in [21]
proposed a rule-based classifier in charge of automatically
learning a set of human-readable rules encoding correlations
between sensor events and activities. This model reaches
recognition rates similar to well-known interpretable classifiers
(e.g., Decision Tree, JRip) while generating simpler explana-
tions. In [22], the authors proposed a fuzzy rule-based model.

Besides using models that are not accurate as the ones
based on deep learning, the above-mentioned works do not
generate explanations dedicated to non-expert users. On the
contrary, HealthXAI [23] uses an inherently interpretable
model to provide explanations in natural language targeted to
clinicians. However, that work focuses on detecting high-level
abnormal behaviors of elderly subjects. Since HealthXAI is
also based on HAR (that is not explainable), we believe that
DeXAR++ tackles an orthogonal problem.

To the best of our knowledge, the only existing work that
tackles the problem of explaining deep learning HAR models
is DeXAR [5]. However, its explanations for non-expert users
are generated on relatively short time windows that do not
reflect the actual activity instances performed by the subjects.

III. METHODOLOGY

DeXAR++ aims at explaining the output of a deep learning
classifier in charge of recognizing human activities based on a
continuous stream of smart-home sensor data. The generated
explanations are targeted at humans with no experience in
machine learning and sensing (e.g., caregivers, clinicians) that
are interested in monitoring the resident’s behavior. However,
in order to maximize the recognition rate, activity classifiers



periodically provide an output considering relatively short
sensor data time windows. Usually, such time windows do
not reflect the duration of the whole activity instances.

Fig. 1. The time span of classification time windows compared to the time
span of the corresponding activity instances

Example 1: Figure 1 compares the time span of the clas-
sification time windows with the time span of the actual
activity instances performed by the subject. As it is possible
to note, as common in HAR methods, time windows have
fixed-length and overlap. Considering the Cooking activity, a
single instance is covered by a relatively high number of time
windows.

Example 2: Alice is an elderly woman living alone in her
smart apartment, which is instrumented with several sensors.
Based on the stream of sensor data, a deep learning classifier
outputs every 30 seconds the activities performed by Alice.
At 11:00 AM, Alice starts cooking homemade lasagna, and
she ends the preparation at 12:30 PM. Assuming that the
classifier always outputs the correct activity, during this
time interval, it predicts 180 times that the current activity
performed by Alice is preparing a hot meal.

By looking at Example 2, it is evident how each activity
instance may potentially be associated with a high number
of time windows. Existing XAI approaches are designed to
provide an explanation for each classified time window. While
this approach may be useful to technicians that need to tune
the classifier and the sensing setup, this approach may not
be effective considering non-expert end-users interested in
monitoring the overall activity instances (e.g., considering the
example above, that Alice is cooking from 11:00 AM to 12:30
PM). DeXAR++ aims at mitigating this problem by grouping
the classified time windows to approximate activity instances.
For each approximated activity instance, the explanations
generated on each time window are aggregated to generate
a single human-readable explanation.

A. Architecture

Figure 2 depicts the overall architecture of DeXAR++.
For the sake of this work, we assume a resident living alone

in her smart apartment. The home environment is instrumented
with several environmental sensors (e.g., magnetic sensors,
plug sensors, motion sensors, etcetera) to monitor the resi-
dent’s interactions with the home environment. The resident

Fig. 2. Overall architecture of DeXAR++

also wears a smartwatch equipped with inertial sensors (e.g.,
accelerometer, gyroscope, magnetometer) that continuously
monitor her physical movements. Sensor data are continuously
collected by a smart-home gateway and pre-processed by the
SEMANTIC INTEGRATION module, which is in charge of in-
ferring semantic states (i.e., high-level information with a clear
semantic that describes what happened within a time interval).
Then, semantic states are segmented into fixed-length and
overlapping time windows by the SEGMENTATION module.
In order to take advantage of the effectiveness of CNNs, the
IMAGE ENCODER module converts each segmentation window
of data to a semantic image representing temporal relation-
ships between semantic states. Each input image is provided
to the CNN CLASSIFIER to obtain the most likely activity
performed by the resident. Then, the XAI module outputs a
heat map as an explanation for each classification output. The
PREDICTIONS GROUPING module continuously clusters the
classified semantic images and the corresponding explanations
to approximately compute activity instances. Moreover, this
module is also in charge of generating a single explanation for
the approximated activity instances (as a heat map). Finally,
since heat maps are not intuitive for non-expert end-users, the
EXPLANATIONS GENERATOR module translates them into a
suitable format.

B. From Semantic Integration to Image Generation

We take advantage of the method that we originally pro-
posed in DeXAR [5] to transform the stream of sensor data
into a sequence of semantic images.

First, we infer from sensor measurements the semantic
states: high-level events with a clear semantics. Each semantic
state S[ta, tb] indicates that the high-level event S occurred
in the time interval [ta, tb].

Example 3: The semantic state fridge door open[t1, t2]
indicates that the fridge door has been opened in the time



interval [t1, t2], and it is generated by observing the activation
of the magnetic sensor at the timestamp t1 and its deactivation
at timestamp t2.

Semantic states are then segmented considering fixed-length
time windows of w seconds and an overlap factor ov. For each
time window, DeXAR++ generates a semantic image encoding
the temporal relationships between the semantic states that
occurred during a specific time interval [ts, te]. Note that ts is
the start timestamp of the interval, te is the last timestamp of
the time interval, ts < te, and te − ts = w.

Besides semantic states, a semantic image generated on the
interval [ts, te] also encodes the K activity instances that the
system reliably detected before the current one.

Example 4: Consider a semantic image computed consid-
ering a window in the interval [11:30:00AM, 11:30:30AM ].
Since the system reliably detected that the resident started
and concluded the activities Watching TV from 10:12:00AM
to 10:25:00AM and Using PC from 10:26:00AM to
11:28:00AM (and no other activities) these information are
encoded in the semantic image.

Note that DeXAR++ relies on approximated activity in-
stances (i.e., the same used to generate explanations) in order
to compute past activities. The specific algorithm will be
presented later in Section III-D.

For the sake of brevity, in this paper, we do not replicate
the specific details about the semantic image generation
process [5]. In the following, we provide an example of a
semantic image generated by DeXAR++.

Example 5: Figure 3 depicts an example of a semantic
image computed on a time window of 16 seconds
corresponding to the Clearing Table activity. The semantic
image is divided into two main components: semantic
states (highlighted in red) and past activities instances
(highlighted in green). The white segments in the first
component indicate the occurrence of the following
semantic states: DynamicHandManipulations[1, 6],
SittingOnDiningChair[1, 6]
DynamicHandManipulations[13, 16],
InTheDiningRoom[1, 12], and InTheKitchen[13, 16].
Indeed, the x-axis represents each second of the time window,
while the y-axis represents the different semantic states.
The white squares in the past activities component indicate
that, before the current activity, the resident completed the
activities Setting up table and Eating (in this order).

C. Semantic Image Classification and XAI explanations

Each semantic image is provided to a CNN classifier that
outputs the most likely activity A performed by the subject.
The specific CNN architectures used in our experimental
setting are reported in Section IV-D.

By applying XAI methods for computer vision (e.g.,
GradCAM [24], LIME [25]), it is possible to obtain a

Fig. 3. Example of image used to feed the activity classifier related to the
activity clearing table. The semantic states and the past activities sub-matrices
are highlighted in red and green, respectively

heat map h depicting the contribution of each pixel to the
classification of A by the deep learning classifier. Each pixel
in h has a value in the range [0, 1] based on its importance
during classification (i.e., relevance).

Example 6: Figure 4 shows the application of the GradCAM
algorithm on a semantic image that the CNN model classified
as Clearing Table. According to this specific XAI approach,
the most important features for classification are the past
activities performed by the resident (setting up the table and
eating) and the presence of the resident in the kitchen and
the dining room.

Fig. 4. Left: input image given to the classifier with ground truth clearing
table. Right: explanation for the predicted class clearing table using the XAI
method Grad-CAM

D. Predictions grouping

A heat map derived from a semantic image encodes the
features that are important to classify a specific time window.
In the following, we explain our novel approach to aggregate
classified semantic images and the corresponding heat maps
to generate explanations for approximated activity instances.

Algorithm 1 shows how we continuously process the seman-
tic images to derive activity instances1. For each input image
imgi, the CNN classifier outputs the most likely activity ai and

1Recall that activity instances are also needed to populate past activities in
the semantic images, as we discussed in Section III-B



its confidence ci. Thanks to an XAI algorithm that processes
images, we also compute the heat map hi, which explains
why imgi has been classified as ai. In Section IV-B, we will
describe the specific XAI algorithms that we experimented in
this work. We group consecutive semantic images (and their
corresponding explanations) classified with the same activity
label into an instance inst. In order to exclude unreliable
predictions, we only consider those instances that include at
least α predictions with a confidence higher than σ.

Algorithm 1 Approximating activity instances
1: instances← ∅
2: aold ← NIL
3: inst← ∅
4: for imgi in the stream do
5: (ai, confi)← classify imgi
6: hi ← explanation of ai using XAI
7: if ai == aold then
8: inst← inst ∪ {(ai, confi, hi}
9: else

10: if |{(a, conf, h) ∈ inst|conf > σ}| > α then
11: instances← instances ∪ {inst}
12: end if
13: inst← ∅ ∪ {(ai, confi, hi)}
14: end if
15: aold ← ai
16: end for

E. Generating an explanation for each instance

Given an activity instance inst =
{(a1, conf1, h1), . . . , (an, confn, hn)} derived by
Algorithm 1, DeXAR++ computes a single explanation
hinst by aggregating the heat maps h1, . . . , hn that are
associated with the predictions in inst. This process
computes the two components of hinst (i.e., semantic states
and past activities) separately.

1) Semantic states: Each heat map hi only encodes w
seconds of inst. Moreover each hi overlaps (with a factor ov)
the heat map hi−1. Hence, the overall duration (in seconds)
of the activity instance inst is:

l(inst) = w + w · (1− ov) · (n− 1) (1)

Example 7: Consider a segmentation window with size
w = 12s with an overlap factor ov = 75%. Suppose that the
system recognized an instance of the activity taking medicines
composed of 10 predictions. Considering Equation 1, the
overall duration of this instance is 12s+ 12s · 0.25 · 9 = 39s.

For this reason, we temporally align the semantic states
components of the heat maps h1, . . . , hn to capture the actual
temporal relationships between all the high-level events that
occurred during the activity instance. Indeed, the semantic
states component of hinst should represent the most important
semantic states that occurred in l(inst) seconds.

Example 8: Figure 5 shows an example of temporal align-
ment considering an instance of the activity Entering Home
composed of three time windows. Each column (considering

Fig. 5. Temporal alignment of the semantic state components of three
consecutive heat maps included in an Entering Home activity instance.

all the heat maps) encodes a second t of the whole activity
instance.

Algorithm 2 shows how DeXAR++ computes the semantic
states component of hinst after the temporal alignment of
h1, . . . , hn.

Algorithm 2 Computing hinst semantic states component
for semantic state s do

for second t = 1, . . . , l(inst) do
maxRelst ← max(relst (h1), . . . , relst (hn))
if maxRelst ≥ τ then

relst (h
inst)← maxRelst

else
relst (h

inst)← 0
end if

end for
end for

From now on, we denote t as the t-th second of inst after



the temporal alignment of the heat maps h1, . . . , hn of inst.
Let relst (hi) be the relevance of the pixel of the row encoding
the semantic state s in the heat map hi at second t. For each
semantic state s, DeXAR++ finds its maximum relevance (i.e.,
pixel value) maxRelst across all the heat maps of inst at each
second t. Specifically, maxRelst is computed as follows:

maxRelst = max(relst (h1), . . . , rel
s
t (hn)) (2)

Hence, we compute the relevance relst (h
inst) of the pixel in

the row encoding the semantic state s in hinst at second t as
follows:

relst (h
inst) =

{
maxRelst if maxRelst ≥ τ

0 otherwise
(3)

DeXAR++ uses the relevance threshold τ to include in hinst

only the semantic states that are highly relevant, excluding
noisy pixels.

Figure 6 shows the semantic states component of the ex-
planation obtained for the Entering Home instance previously
introduced as an example in Figure 5.

Fig. 6. Semantic states component of the explanation of an Entering Home
activity instance (Figure 5). Since the instance was composed of 3 temporal
windows of 16 seconds with ov = 0.8, l(inst) = 22.

2) Past activities: Similarly to the semantic states compo-
nent of hinst, for each past activity p, DeXAR++ determines
its maximum relevance among the heat maps h1, . . . , hn, as
follows:

maxRelp = max(relp(h1), . . . , rel
p(hn)) (4)

where relp(hi) is the relevance of the pixel encoding the past
activity p in hi. Thus, the relevance relp(hinst) of p in hinst

is determined by the following equation:

relp(hinst) =

{
maxRelp if maxRelp ≥ τ

0 otherwise
(5)

F. Explanations Generator

Given an instance inst, we post-process the heat map
hinst to generate an explanation for non-expert users. This
explanation comprises two components: a) a sentence in
natural language and b) a graphical plot that simplifies the

heat map. An example of explanation is provided in Figure 7.
The sentence is generated from the heat map by following
the NLP approach that we originally proposed in DeXAR [5].
However, while natural language is easy to understand for non-
expert users, its intrinsic ambiguity may negatively impact the
quality of explanations. This is especially true considering
temporal relationships between high-level events. For this
reason, DeXAR++ also provides a novel graphical plot that
is a simplified version of the heat map showing the temporal
relationships between the semantic states with positive rele-
vance in hinst.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation we car-
ried out to evaluate the effectiveness of the explanations
generated by DeXAR++.

A. Dataset

For the sake of this study, we consider the MARBLE [26]
dataset, which includes Activities of Daily Living (ADLs)
performed in a smart-home environment. We selected this
dataset to compare our results with the ones of DeXAR [5].

This dataset considers a home environment equipped with
several environmental sensors: magnetic sensors on some
drawers (e.g., the medicine drawer) to detect their opening/-
closing events, smart plugs to identify the usage of some home
appliances (e.g., the television), and pressure mats to detect
which chair the resident is sitting on. Overall, 12 subjects were
involved in the data collection campaign. While performing
ADLs, each user was also carrying: a) a smartphone in the
pocket in charge of detecting incoming and outgoing phone
call events and b) a smartwatch on the wrist in charge of
collecting inertial sensor data. Overall, the dataset includes
13 different ADLs’ types: Answering Phone, Clearing Table,
Cooking a Hot Meal, Eating, Entering Home, Leaving Home,
Making a Phone Call, Cooking a Cold Meal, Setting Up Table,
Taking Medicines, Working, Washing Dishes, and Watching
TV.

B. Experimental Setup

Since, to the best of our knowledge, DeXAR [5] is the only
approach in the literature facing the same problem tackled by
DeXAR++, it is the only baseline that we use for comparison.
Hence, in this work we propose a similar experimental setup.
Specifically, we split the dataset into three partitions: 70% for
training, 10% for validation, and 20% for test. We consider
three different XAI methods:

• Grad-CAM [24]: a saliency-based method that analyzes
how the last layers of the CNN activate in order to
generate the heat map.

• LIME [25]: a model induction method that considers the
classifier as a black box. By providing several perturbed
versions of the input, LIME generates a heat map that
highlights the most important pixels for classification.

• Model Prototypes [7]: a deep explainable method that
requires a specifically designed CNN to automatically



Fig. 7. Explanation for a Watching TV activity instance

learn prototypical representations of the output classes.
The learned prototypes are used to explain the output of
the classifier. For the sake of fairness, we use the method
proposed in DeXAR that has been adapted to the HAR
domain in order to generate heat maps.

We use two different CNN models depending on the XAI
method being used (the ones proposed in DeXAR). The first
is called CNN-GL, and it is a standard convolutional network
that is used to evaluate Grad-CAM and LIME. The second
is called CNN-MP, and it is an explainable-by-design model
that is required by Model Prototypes. Test set images are then
given as input to the trained CNN classifier in order to produce
the explanations used in our evaluation.

We selected the hyper-parameters of DeXAR++ with a grid
search approach. The length of the time-windows is w = 16s,
with an overlap factor ov = 0.8. Figures 8 and 9 show how
the values of α and σ affect the accuracy in deriving activity
instances when using CNN-MP and CNN-GL, respectively2.
By increasing α, DeXAR++ generates better activity instances.
However, this also increases the number of discarded time
windows. The same behavior is observed when σ is increased.
Considering the trade-off between accuracy in generating
activity instances and the number of discarded time windows,
we chose α = 2 and σ = 0.75 for CNN-MP: the 88.7% of the
activity instances generated by DeXAR++ are correct3, with a
12.5% of discarded predictions. Note that the 53.5% of those
discarded time windows were actually miss-classified. On the
other hand, we selected α = 1 and σ = 0.75 for CNN-GL. This
allows generating an 87.3% of correct activity instances, with
a discarding rate of 12.2%. In this case, the 60.1% of discarded
predictions were actually miss-classified. Figure 10 shows the
Empirical Cumulative Distribution Function of the number
of time windows for each instance predicted by DeXAR++,
considering both CNN-MP and CNN-GL. As it is possible
to observe, the distribution of the two models is similar. We
observed that most activity instances are characterized by a

2Recall that we only consider those instances containing at least α time-
windows predicted with a confidence greater than σ.

3We consider an activity instance correct when the 90% of its time windows
are correctly classified considering the ground truth.

high number of time windows.

Fig. 8. Impact of α and σ on CNN-MP.

Fig. 9. Impact of α and σ on CNN-GL.

For the sake of fairness, we report in Table I and II the
recognition rate that we obtain on both CNNs (at the time-
window granularity). These results are consistent with the ones
previously presented in DeXAR [5].



Fig. 10. Distribution of the number of segmentation windows included in the
each activity obtained with (a) CNN-MP and (b) CNN-GL

TABLE I
RECOGNITION RATE OF THE CNN USED FOR GRADCAM AND LIME

precision recall f1-score

macro avg 0.80 0.83 0.80
weighted avg 0.90 0.89 0.90

C. Evaluation Methodologies for Explanations

1) Explanation Score: We adopt an evaluation metric,
called Explanation Score, that we originally proposed to
evaluate DeXAR. This metric provides an automatic evaluation
of the explanations’ quality. In particular, the Explanation
Score estimates the degree to which explanations are consistent
compared to common-sense knowledge about the relationships
between activities and semantic states/past activities. The
common-sense knowledge consists of high-level properties of
the HAR domain that people acquire during their everyday
life and on which there is a general agreement. For instance,
washing dishes is an activity that is commonly performed in
the kitchen after eating while the subject is standing.

According to common-sense knowledge, a semantic state
or a past activity f partially explains an activity A if f
explains (even if partially) A.

Example 9: The semantic state television ON partially
explains the watching tv activity, while it does not partially
explain preparing a cold meal, even if it could actually occur
while preparing a cold meal.

The semantic model proposed in DeXAR (based on an
ontology) is used to quantitatively evaluate the explanations
automatically generated by DeXAR++. Given a heat map

TABLE II
RECOGNITION RATE OF THE MODEL PROTOTYPES MODEL

precision recall f1-score

macro avg 0.79 0.81 0.78
weighted avg 0.90 0.90 0.90

hinst, the corresponding activity A, and F ⋆ as the semantic
states and past activities with positive relevance in hinst, we
compute the common-sense relevance cr() ∀f ∈ F ⋆:

cr(f,A) =

{
maxt rel

f
t (h

inst) if f partially explains A

−maxt rel
f
t (h

inst) otherwise
(6)

The maximum pixel value for a semantic state/past activity
f in hinst is associated when f partially explains the activity
A, while the corresponding negative value is associated when
f does not partially explain A.

Finally, we compute the Explanation Score based on the
common-sense relevance:

ExplanationScore(F ⋆, A) =

{ ∑
f∈F⋆ cr(f,A)∑
f∈F⋆ |cr(f,A)| if F ⋆ ̸= ∅

−1 otherwise
(7)

Common-sense relevances of semantic states and past activ-
ities (whose values are included in the range [−1, 1]) impact
the explanation score. Note that the score is −1 if there are no
semantic states or past activities in F ⋆ that partially explain
A, while it is equal to 1 if every semantic state or past activity
partially explains A.

2) User-based evaluation: In order to estimate how non-
expert users would perceive the explanations, we performed
a user-based study by recruiting ≈ 600 users on the Amazon
Mechanical Turk platform. Unfortunately, many of them were
discarded from our analysis since we classified them as
unreliable. Indeed, we introduced some attention questions
to exclude bots and users providing random answers just to
obtain the reward. For instance, Figure 11 shows the answers’
distribution to a question that assessed whether users clearly
understood the aim of the study. Hence, we could only select

Fig. 11. Answers’ distribution to an attention question in our survey. Only
44% of the users provided the correct answer.

121 reliable users for our user-based evaluation. Overall, the
37% of those selected users were females, while the remaining
63% were males. The 29% of the selected users were aged
between 18 and 30, 58% were aged between 31 and 50,
while the remaining 13% were 50 years-old users. Considering
the education level, 26% of the selected users had a high-
school diploma, 58% a Bachelor’s degree, 11% a Master’s
degree, and the remaining 5% a doctoral level. Each user



TABLE III
EXPLANATION SCORE OF DeXAR++ COMPARED WITH THE ONES OF DEXAR [5]. NOTE THAT, CONSIDERING DEXAR, THE SCORE IS COMPUTED ON

EACH TIME WINDOW, WHILE ON DeXAR++ IT IS COMPUTED AT THE INSTANCE LEVEL. FOR EACH XAI APPROACH, WE ALSO SHOW THE SCORE ON THE
CORRECT PREDICTIONS AND THE WRONG ONES

Model Prototypes LIME Grad-CAM

All Correct Wrong All Correct Wrong All Correct Wrong

DeXAR [5] 0.94 0.95 0.87 0.80 0.82 0.70 0.65 0.64 0.67
DeXAR++ 0.96 0.97 0.91 0.85 0.88 0.60 0.80 0.81 0.78

was required to complete a survey to evaluate DeXAR++’s
explanations. In particular, we generated different sets of
activity instances detected by DeXAR++ randomly sampled
from the test set. Each set includes 13 activity instances
(one for each activity class). Each instance is associated with
three different explanations obtained by each considered XAI
method. Each user is first informed about the aim of the survey,
the home environment, and the considered activities. Then, the
system randomly assigns one of the generated sets of activity
instances to each user. For the sake of this work, we only
considered explanations associated with correctly classified
activity instances. We asked the participants to vote for each
explanation with a grade from 1 (absolutely not satisfying)
to 5 (completely satisfying). The users were not aware of the
method that generated each explanation.

D. Results

1) Explainability evaluation based on common-sense
knowledge: Table III compares the results of the common-
sense knowledge evaluation obtained through DeXAR++ with
the ones obtained by DeXAR. For clarity, the Explanation
Score is normalized in the range [0,1].

TABLE IV
IMPACT OF τ ON THE EXPLANATION SCORE OBTAINED BY THE ACTIVITY

INSTANCES GENERATED FROM THE PREDICTIONS OF THE MODEL
PROTOTYPES MODEL

τ Value Explanation Score
All Correct Wrong

0.0 0.81 0.80 0.84
0.1 0.87 0.87 0.89
0.2 0.91 0.91 0.90
0.3 0.94 0.94 0.91
0.4 0.96 0.96 0.91
0.5 0.96 0.97 0.91
0.6 0.94 0.94 0.91
0.7 0.91 0.91 0.91
0.8 0.89 0.89 0.91
0.9 0.83 0.82 0.91

The overall Explanation Score of DeXAR++ is computed by
averaging the score assigned to every activity instance detected
on the test set. On the other hand, considering DeXAR, we
compute the average of the scores assigned to each time
window on the test set.

Overall, DeXAR++ outperforms DeXAR regardless of the
XAI method used to generate the explanations. Hence, besides
providing a single explanation for the whole activity instances,
DeXAR++ also provides explanations that are more consistent

with the HAR common-sense knowledge encoded in our
semantic model. Consistently with DeXAR, Model Prototypes
outperforms LIME and Grad-CAM. This means that Model
Prototypes gives more importance to those semantic states and
past activities consistent with the common-sense knowledge
encoded in our semantic model. On the other hand, Grad-
CAM is the worst in terms of Explanation Score. Indeed, it
is known in the literature that such saliency-based approaches
often consider features that are not completely relevant for
classification [27]. Moreover, considering all the XAI methods,
the explanation score on wrongly classified activities is lower
than the score computed on the correctly classified ones. These
results confirm the quality of the considered metric.

Table IV shows the impact on the explanation score of
the parameter τ , which is the relevance threshold to choose
the semantic states/past activities that should be included in
hinst. We observed that a low τ value leads to including noisy
information in the final explanation, negatively impacting its
consistency with common-sense knowledge. On the other
hand, a too high τ score is too restrictive, leading to an
instance’s heat map with insufficient information to adequately
explain the activity.

2) User-based explainability evaluation: Figure 12 shows
the distribution of the grades provided by the recruited users
considering the different XAI approaches. We compare these
results with those of a similar user-based study performed
on DeXAR [5]. Model Prototypes is confirmed as the most
accurate XAI approach, while Grad-CAM is the one that
generally received the worst grades. Even though the results
of DeXAR++ seem to be better than the ones of DeXAR,
this result still has to be confirmed since the users involved
in the two studies were different. These results show that the
explanation score evaluation correctly estimated the actual user
perception of the explanations generated by DeXAR++.

V. CONCLUSION

In this paper, we presented DeXAR++: a deep explainable
method for sensor-based HAR. Compared to existing works,
DeXAR++ aims at providing explanations to whole activity
instances. The results of DeXAR++ show that the quality of
the generated explanations outperforms existing approaches
that provide explanations to time windows, providing a more
practical framework for non-expert users. In future work,
we will extend DeXAR++ in order to capture more com-
plex human behaviors, including anomalies in performing
activities. Indeed, among other applications, such a system



Fig. 12. Boxplot that describes the grade distribution of the user-based study.
We compare our results with the ones obtained in DeXAR.

would provide relevant indicators for clinicians non-experts
in machine learning interested in monitoring early symptoms
of cognitive decline. Hence, we will perform a user-based
evaluation considering clinicians (e.g., neurologists). Finally,
we will investigate how to mitigate the over-reliance problem
that is well-known in XAI systems. Indeed, non-expert users
may become over-confident in the system even when it is
wrong, just because it provides explanations.
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