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Abstract—Sensor-based Human Activity Recognition (HAR)
has been a hot topic in pervasive computing for many years, as
an enabling technology for several context-aware applications.
However, the deployment of HAR in real-world scenarios is
limited by some major challenges. Among those issues, privacy is
particularly relevant, since activity patterns may reveal sensitive
information about the users (e.g., personal habits, medical con-
ditions). HAR solutions based on Federated Learning (FL) have
been recently proposed to mitigate this problem. In FL, each
user shares with a cloud server only the parameters of a locally
trained model, while personal data are kept private. The cloud
server is in charge of building a global model by aggregating
the received parameters. Even though FL avoids the release of
labelled sensor data, researchers have found that the parameters
of deep learning models may still reveal sensitive information
through specifically designed attacks. In this paper, we propose
a first contribution in this line of research by introducing a
novel framework to quantitatively evaluate the effectiveness of
the Membership Inference Attack (MIA) for FL-based HAR.
Our preliminary results on a public HAR dataset show how the
global activity model may actually reveal sensitive information
about the participating users and provide hints for future work
on countering such attacks.

Index Terms—human activity recognition, federated learning,
privacy

I. INTRODUCTION

Sensor-based Human Activity Recognition (HAR) enables
the development of applications in several areas, including
healthcare and well-being [1]. Currently, the most accurate
HAR approaches rely on fully-supervised Deep Learning (DL)
methods. These models are usually trained in a centralized
fashion, using labeled sensor data from multiple individuals.
However, activity data may include private and potentially
sensitive information about the users (e.g., health conditions,
habits) [2]. Federated Learning (FL) is a promising framework
to mitigate privacy issues [3]. Indeed, in FL each user locally
trains a personal model using the available labeled data.
The personal model parameters of each participating user are
forwarded to a cloud server that is in charge of aggregating
them to generate a shared global model. In the last few years,
several research groups have investigated FL-based solutions
for HAR [4]. However, recent studies reveal that the model’s
parameters received and manipulated by the cloud server may
still reveal sensitive information about the FL participating

users [5]. Considering honest-but-curious attackers, this sce-
nario opens up to two privacy problems: 1) a cloud service
provider may infer private information for a specific user by
exploiting the global model parameters or by exploiting the
personal model parameters received from that participant, and
2) a participating user may infer sensitive information about
another participant by attacking the global model parameters
periodically received by the cloud server. While it is possible
to prevent the cloud server to attack personal model parameters
by using Secure Multiparty Computation [6] (i.e., by prevent-
ing the cloud server to see the individual contributions of the
users), attacks on the global model remain possible.

While several research works recently investigated how to
infer sensitive information from FL models in several domains,
to the best of our knowledge the potential privacy leakages of
federated HAR models have not been studied yet. With respect
to other well-studied problems like image classification, the
sensor-based HAR domain has its peculiarities. Indeed, several
new open research questions arise in this area. Is it possible to
understand from the global model which users participated to
FL training? Is it possible to understand which activities they
performed, when, where, and how?

In this work, we make a first step along this line of research
by proposing a novel framework to quantitatively measure the
potential information leakage of the global models’ weights
in federated HAR. Our framework relies on the Membership
Inference Attack (MIA) [7] to infer the following sensitive
information about participating users: a) whether a specific
subject is one of the FL participating users, b) whether a
specific participant contributed to the global model with a
particular activity. Our preliminary experimental evaluation
suggests that it is possibile to derive sensitive information from
HAR global models. Hence, we hope that this work may pave
the way to further research investigations in this area.

The contributions of this work can be summarised as
follows:

• We investigate the potential privacy problems in FL-based
HAR, proposing research directions in this area.

• We introduce a novel framework based on the Member-
ship Inference Attack to quantitatively measure privacy
leakages of the global model in FL-based HAR.



• Our preliminary results on a public dataset suggest that
the global activity model may reveal sensitive high-level
information from participating users and provide hints for
future work on countering such attacks.

II. RELATED WORK

Federated Learning (FL) has been proposed as a privacy-
preserving framework for distributed machine learning to
mitigate the privacy issues of centralized solutions [3], [8].
In FL, each client trains a local model with its available
labeled data, and it only transmits the model parameters to
the server instead of data. The server aggregates the received
parameters and generates the global DL model accordingly.
Recently, several FL solutions have been proposed for the
HAR domain [4], [9], [10].

However, recent studies show that even the parameters of
DL models may reveal sensitive information about training
data. In the literature, the most investigated attack techniques
are: a) the Membership Inference Attack (MIA) [7], [11],
[12], b) the Property Inference Attack (PIA) [13], and c) the
Reconstruction Attack (RA) [14]–[16]. Since our framework
is based on MIA, we describe this technique in detail in
Section III. The PIA technique aims at extracting properties
of training data that may not be directly related to the task of
the classifier (e.g., using the HAR model to infer if a subject
suffers from the Parkinson disease). The RA technique aims
at reconstructing prototypical examples of the samples used to
train the machine learning model (e.g., reconstructing sensor
data patterns that reveal sensitive physical characteristics of a
subject).

These attacks may be countered by adopting additional
privacy-preserving mechanisms like Differential Privacy (DP)
[17], [18] and Secure MultiParty Computation (SMC) [19].
However, those approaches provide privacy at the cost of a
reduced classification rate or system efficiency degradation.
Understanding and balancing those trade-offs is one of the
major challenges in this area.

III. MEMBERSHIP INFERENCE ATTACK IN FL-BASED HAR

A. Membership Inference Attack

The objective of the Membership Inference Attack (MIA)
is to infer whether a specific data sample has been used or not
to train a DL model. Formally, given a set X of data samples
(represented by feature vectors), let Dt be a labeled dataset
of pairs (x, y) where x ∈ X and y is a label. Dt is used to
train a target model F t.

MIA assumes the access to F t and uses a binary classifier
(i.e., the attack model) to determine if a data sample x ∈ X
appears in a pair (x, y) of Dt or not. In the first case we say
that x is a member data sample, while in the second case is
a non-member. The attack model performs such classification
by analyzing the behaviour 1 of F t in classifying the feature
vector x. Details about the construction of the attack model

1Examples of relevant behaviours are the gradients variations and the
confidence of the model while classifying an input data.

will be given in Section IV-A considering the specific domain
of HAR.

B. Membership Inference Attack in Federated Learning

In FL, an attacker may perform the MIA attack on the
global model (the target model F t). Since the FL cloud service
provider has no access to the training dataset Dt, the authors
in [11], [12] proposed to train the attack model using a shadow
model trained with a shadow training dataset.

A shadow model F s aims at imitating the behaviour of F t.
In particular, the attacker creates a pair of disjoint shadow
training sets Ds (members shadow data) and Ns (non-
members shadow data), such that each training set contains
labelled data samples in the same feature and label space as
Dt. Moreover, these training datasets should have a similar
distribution to Dt. In practice, shadow training datasets can be
obtained by public datasets or by generating synthetic data.
F s is trained by using Ds, and the attack model is trained

by analysing the behaviour of F s while classifying the data
samples in Ds and Ns. The intuition is that, since both F t and
F s are trained with data that share a similar data distribution,
the attack model trained considering the behaviour of F s in
classifying members and non-members data samples would
also be effective for F t.

C. Shadow models for HAR

Considering the specific HAR domain, the generation of a
shadow dataset Ds is particularly challenging. This is a well-
known limitation of the attacks based on MIA: approximating
the distribution of data strictly related to a specific set of
individuals is challenging [20]. In HAR, due to the high
intra- and inter-variability in activity execution among several
subjects (i.e., each subject has peculiar activity patterns and
habits), the underlying data distribution is not independent
and identically distributed (non-IID). If Ds is significantly
different from Dt, the attack performance of MIA degrades
accordingly [21]. This problem becomes serious when Dt

includes a large number of users with different characteristics.
For the sake of this work, we use MIA as a tool to quantify

the private information that can be potentially inferred from
the global model. For this reason we consider a worst-case
scenario in which the attacker manages to use a shadow dataset
Ds very close2 to the actual training dataset Dt. Moreover,
similarly to other applications of the MIA, we assume that the
attacker has access to some data samples of the participating
users to perform the attack.

IV. OUR FRAMEWORK

In the following, we propose a novel framework based on
Membership Inference Attack (MIA) to quantitatively measure
the amount of sensitive information potentially revealed by the
global model in FL-based HAR. Our framework relies on MIA
to derive high-level properties about specific subjects from
the global model. In particular, we investigate two research
questions:

2In the experiments this is implemented by taking Ds ⊂ Dt.



1) User Membership: Is it possible to infer from the global
model whether a certain user took part in the FL
process? This property may be crucial considering FL
systems that are specialised for a certain category of
users (e.g., subjects with the same disease).

2) Activity Membership: Is it possible to infer from the
global model whether a participating user performed a
specific activity?

For the sake of this work, we only consider honest-but-curious
attackers that infer sensitive data by periodically observing
the parameters of the global model: the cloud server and the
participating users.

A. Attack model training

Considering the notation introduced in Section III, in our
setting Dt = {(x1, y1), . . . , (xn, yn)} is the set of labeled
samples from all the participating clients, while F t is the
global model on the cloud server. F t is trained with a FL
approach. In order to perform the MIA attack, the attacker
trains a binary classifier A to determine if a given data sample
belongs to Dt. In particular, we take advantage of the attack
model recently proposed in [7]. This attack assumes that the
attacker can inspect the internal parameters of F t. In our FL
setting, this is actually possible. Figure 1 depicts a high-level
data-flow of the attack model training. In order to train A, the
attacker creates the shadow datasets Ds and Ns, as well as a
shadow model F s trained using Ds. We recall that Ds has a
similar distribution to Dt. Then, each data sample in Ds and in
Ns is provided to F s for classification. While processing each
input, the attacker observes the behavior of F s. In particular,
given an input x provided to the shadow model F s, the attacker
extracts:

• The confidence of F s in classifying x
• The output of each layer of F s while processing x
• The classification loss ℓ(F s(x), y)
• The gradients of the loss with respect to each parameter

of F t

These values are encoded in a feature vector, that is labeled
as member if x ∈ Ds and non-member if x ∈ Ns. The
resulting labeled feature vectors are used to train A.

B. Inferring user and activity membership

In the following, we illustrate how our framework infers
user and activity membership using an attack model based on
MIA.

Let U = {u1, . . . , un} be a set of n users. In order to
answer the research question 1), we use the attack model to
infer whether a certain user u ∈ U contributed in training the
global model. In this scenario, we assume that the attacker
knows the corresponding user for each available data sample.
The attacker infers that a subject u participated in training
the global model if the majority of the samples of u tested
by the attacker are classified as members. We quantitatively
estimate the success of the attack by computing the average
confidence of the attack model in classifying data samples of
u as members.

Fig. 1: Training of the attack model. The attacker observes the
behavior of the shadow model when classifying member and
non-member data points. The output is the training dataset for
the attack model.

In order to answer the research question 2), we use the
attack model to infer whether u participated in training the
global model with an activity a. In this scenario, we also
assume that the attacker knows the activity label for each avail-
able sample. The attacker infers that u participated in training
the global model with activity a when the majority of the
available labeled samples of u related to the activity a tested
by the attacker are classified as members. We quantitatively
estimate the success of the attack by computing the average
confidence of these classifications.

V. EXPERIMENTAL EVALUATION

A. Dataset

We perform a preliminary evaluation of our framework
using the publicly available MobiAct dataset [22]. In particu-
lar, MobiAct includes labeled data from inertial sensors (i.e.,
accelerometer, gyroscope, and magnetometer) from a smart-
phone placed in the pant’s pocket. Overall, MobiAct includes
data from 60 subjects. In our experiments, we considered
the following physical activities 3: standing, walking, jogging,
jumping, and sitting. Since this dataset involves a relatively
large number of subjects with respect to other sensor-based
HAR datasets, it is particularly suited to evaluate FL-based
solutions. In our experiments, we consider a FL client for each
user in MobiAct.

B. Experimental setup

1) Federated Learning: We use the FL experimental setup
recently proposed in [23], since it exhibited promising per-
formances for HAR. In particular, the activity model is a
feed-forward deep neural network composed of three fully
connected layers having respectively 128, 64, and 32 neurons,

3Note that we omitted from MobiAct those physical activities with a limited
number of samples as they are insufficiently represented and hence not suitable
for our evaluation. We believe that this problem is only related to this specific
dataset and that, in realistic settings, even short activities would be represented
by a sufficient number of samples.



Fig. 2: The evolution of the FL-score at different communica-
tion rounds

and a softmax layer for classification. The inputs of that
network are hand-crafted feature vectors extracted in real-
time from the stream of sensor data. We consider features
that proved to be effective for HAR in the literature [24].
We used Adam [25] as optimiser. The well-known FedAvg
algorithm [3] is in charge of aggregating the model parameters
received by clients and updating the global model. Each client
trains its local model for 10 epoch. Finally, we empirically
selected 30 as the number of FL communication rounds as
it guarantees the convergence of the global model avoiding
overfitting (see Figure 2).

2) Membership Inference Attack: The implementation of
MIA is based on the public ML Privacy Meter4 tool [7].
For each experiment, we trained the attack model for 150
epochs with a learning rate of 0.001, while the Adam optimiser
was used to minimise the loss function. As we mentioned in
Section III-C, in our experiments the shadow model is trained
by using a subset of labeled data from the participating users.

3) Metric: In order to quantitatively measure the probabil-
ity that a sample x was part of the target dataset Dt given a
target model F t, we use the confidence of the attack model
in classifying x as member. We will refer to this measure as
the membership probability (MP):

MP(x) = Pr(x ∈ Dt|F t)

Intuitively, an MP value closer to 1 indicates that x is likely
a member, while an MP value closer to 0 indicates that x is
likely a non-member.

4) Recogniton rate: Before evaluating our framework, we
performed an initial experiment to evaluate the recognition rate
of FL on MobiAct. The evaluation was performed considering
60 clients (one for each user). For each client, we used 70% of
data to train the FL model and the remaining 30% for testing.
Figure 2 shows the outcome of our experiment. From these
results we observed that the classifier quickly converges to
high F-1 scores.

4https://github.com/privacytrustlab/ml privacy meter

C. Evaluating user membership

1) Data preparation: The data partitioning schema is il-
lustrated in Figure 3. As usually proposed in FL methods,
we randomly select 15% of the users from the dataset to
initialize the global model (pre-training). The remaining users
are partitioned as follows: 50% of users participate to FL (FL
members) and 50% of users do not participate to FL (FL non-
members) 5. The global model is hence trained in a FL fashion
using data in Dt. We train the attack model by using 70% of
data from Dt labeled as members, and 70% from labeled as
non-members 6. We use the remaining 30% from both datasets
to evaluate the effectiveness of the attack model.

Fig. 3: Dataset splitting process adopted to evaluate user
membership

2) Results: Figure 4 shows the results of the user member-
ship attack at the data sample granularity. We observed a MP
value close or equal to 1 for most of the FL members’ data
samples, while a value close or equal to 0 for most of the FL
non-members’ samples. Thus, we can conclude that, overall,
the attack model is confident in discriminating members and
non-members samples.

Fig. 4: Distribution of the membership probability for members
versus non-members data

Figure 5 shows the same result at the user granularity. In
particular, for each user we average the MP score computed
on its test data sample. We can observe that the users that
actually participated in FL are associated with an average
higher MP value than those that did not participate. Hence, in

5Note that the union of labeled data from FL members corresponds to Dt.
6Note that these partitions correspond to Ds and Ns, respectively.



this scenario, the MIA attack potentially reveals if a specific
user participated to FL.

Fig. 5: Average membership probability assigned by the attack
model to each of the considered users.

D. Evaluating user membership with data not used in FL

In this experiment, we want to check if the attack recognises
the membership of a user even by analysing data samples from
that user that have not been used in training the global model.

1) Data preparation: In order to perform this experiment,
we consider the specific setting where the attacker has access
to 15% of data samples (not used to train the global model)
from 5% of the FL members. The data partitioning schema is
depicted in Figure 6.

Fig. 6: Dataset splitting process adopted to evaluate user
membership with data not used in FL

2) Results: Figure 7 summarizes the results of the attack at
the user granularity. We observed that data samples not used
in the FL training still reliably reveal the membership of the
corresponding users.

E. Evaluating activity membership

In this experiment, we consider the setting proposed in
Section V-C to understand if it is possible to determine
whether a user contributed to FL with a specific activity.

Fig. 7: Average membership probability assigned by the attack
model to each of the considered users.

For each activity, we computed the MP value for each test
data sample of both FL members and non-members subjects.
Figure 8 shows the outcome of this experiment considering
the activities walking and sitting.

(a) MP Walking (b) MP Sitting

Fig. 8: MP assigned to the samples of the activities Walking
and Sitting

We observe that the attack is effective for walking (a) while
not really for sitting (b). Indeed, Figure 8b shows that the
average MP is around 0.5. Since both FL members and non-
members perform this activity in a similar way, during the
training phase the attack model can not observe significant
differences in the shadow model behaviour when processing
members and non-members data.

Intuitively, considering the sensor setup used in MobiAct
and in several other HAR datasets, walking represents a set of
activities that are likely to differ in their pattern of execution
by different subjects, while sitting represents activities that
have limited variance in their execution patterns.

This may lead to conclude that the attack for this last
category of activities is not effective while it is effective for
those in the first category.

Nonetheless, activities in this first category are not neces-
sarily exposed to privacy risks in general. Indeed, considering
larger datasets where it is very unlikely that users perform the
activity in a unique way, it is questionable if the attack would
be effective as well.

Considering possible privacy protection approaches, we
believe that these results may provide useful information on
which activities may be more exposed, hence guiding, for



example, the distribution of artificial noise in obfuscation
strategies.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigated the problem of measuring
the potential privacy leakages of FL-based HAR models. In
particular, we proposed a novel framework based on the
Membership Inference Attack. Our preliminary results suggest
that the global activity model may actually reveal sensitive
information about the participating users.

However, this is only the very first step of a research
direction that we intend to explore in the near future. For
instance, we want to investigate whether the global model
parameters can also reveal sensitive information related to
HAR, including when, where, and how a user performed a
specific activity.

A major limitation of this work is using a subset of the target
data to train the shadow model. Clearly, this is not realistic
since the attacker cannot actually access this information.
We will investigate alternative strategies to train the shadow
model (e.g., using GAN to generate synthetic data) as well as
unsupervised membership attack methods [7], [26].

We also plan to evaluate other types of attacks besides
MIA. For instance, the reconstruction attack may be used to
recreate sensor patterns that reveal medical conditions of the
participating users, while the property-inference attack could
be used to infer high-level properties about specific users from
the global activity model.

Considering privacy preserving techniques, we plan to study
solutions based on Local Differential Privacy (LDP) with
heuristics guided by MIA-based analysis as mentioned in the
experimental section.

Finally, we will also consider additional HAR datasets to
more robustly assess our framework.
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