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Abstract—Neuro-symbolic AI methods aim at integrating the
capabilities of data-driven deep learning solutions with the ones
of more traditional symbolic approaches. These techniques have
been poorly explored in the sensor-based Human Activity Recog-
nition (HAR) research field, even if they could lead to multiple
benefits such as improving model interpretability and reducing
the amount of labeled data that is necessary to reliably train the
model. In this paper, we propose DUSTIN, a novel knowledge
infusion approach for sensor-based HAR. DUSTIN concatenates
the features automatically extracted by a CNN model from raw
sensor data and high-level context data with the ones inferred by
a knowledge-based reasoner. In particular, the symbolic features
encode common-sense knowledge about the activities which are
consistent with the context of the user, and they are infused within
the model before the classification layer. We experimentally
evaluated DUSTIN on a HAR dataset of mobile devices sensor
data that includes 14 different activities performed by 26 users.
Our results show that DUSTIN outperforms state-of-the-art
neuro-symbolic approaches, with the advantage of requiring a
limited amount of training data and training epochs to reach
satisfying recognition rates.

Index Terms—activity recognition, neuro-symbolic AI, knowl-
edge infusion

I. INTRODUCTION

Sensor-based Human Activity Recognition (HAR) is a well-
established research area, thanks to its many applications
ranging from healthcare to well-being [1]. The majority of
the approaches that have been proposed in the literature are
based on supervised deep learning solutions [2], [3].

Despite their undeniable achievements, purely data-driven
models have several disadvantages. A major issue is the need
for large labeled training data sets to build reliable recognition
models. Moreover, the decisions of deep learning models
are poorly interpretable. The integration of common-sense
knowledge in data-driven HAR approaches has the potential of
mitigating the above-mentioned issues [4]. Indeed, the human
knowledge about the relationships between human activities
and the users’ context (e.g., running is an activity that is
usually performed outdoor but less likely on rainy days)
can significantly improve standard approaches only based on
machine learning. However, to the best of our knowledge, no
existing works proposed the integration of such knowledge in
deep-learning HAR models.

Recently, neuro-symbolic AI methods have been proposed
to enhance the capabilities of deep learning models with
traditional symbolic AI approaches [5]. In these approaches, a
symbolic module designed by domain experts through human
knowledge is embedded in data-driven classification to reduce
the amount of necessary labeled data. At the same time, a
deep learning model whose decisions also rely on a reasoning
module that operates on explicit symbolic representations of
the application domain becomes inherently more transparent
for humans.

Among the neuro-symbolic approaches proposed in the lit-
erature, knowledge infusion is particularly promising. Specif-
ically, this technique consists of infusing external knowledge
(e.g., from knowledge graphs) into the data-driven component
of a system [6]. Knowledge infusion has mainly been exper-
imented for NLP applications with promising results [7], [8].
However, the effectiveness of such approaches for HAR is still
an open research problem. Indeed, in existing neuro-symbolic
solutions for HAR, external knowledge is only considered
before [9] or after [10] the training process, and it is not
infused into the deep learning model.

In this paper, we propose DUSTIN: a method for knowleDge
infUSion for human acTIvity recogNition. DUSTIN combines,
before the classification layer, the features automatically ex-
tracted from raw sensor data and high-level context data with
the ones inferred by a context-aware symbolic reasoner. The
considered symbolic features encode common-sense knowl-
edge about the consistency of activities with the user’s sur-
rounding context. Our experiments on a dataset of 26 users
performing 14 different activities show that DUSTIN outper-
forms existing state-of-the-art HAR neuro-symbolic solutions.
Besides, we experimentally show that DUSTIN can be used
to reduce the number of training epochs necessary to train an
activity recognition classifier and to improve its recognition
rates when a limited amount of labeled data is available.

The contributions of this paper are three-fold:
• We propose DUSTIN, a novel knowledge infusion

method for HAR to improve the latent space representa-
tion of raw sensor data and high-level context data based
on common-sense knowledge.

• Our experiments on a real HAR dataset show that
DUSTIN outperforms state-of-the-art hybrid data-driven



and knowledge-based HAR approaches.
• DUSTIN reduces the amount of labeled data and training

epochs that are required to reach satisfying recognition
rates, achieving an F1-score that is close to 90% when
using only the 20% of the training set.

II. RELATED WORK

A. Neuro-Symbolic AI and Knowledge Infusion

Neuro-symbolic AI aims at combining the strengths of
data-driven and knowledge-based AI approaches [5]. The
main advantages of data-driven approaches are their ability
to automatically learn meaningful features from raw data
and their robustness against uncertainty. However, these ap-
proaches require large amounts of training labeled data to build
reliable models, and their opacity contrasts with the need for
humans to understand the rationale behind each output. On
the other hand, knowledge-based approaches (e.g., reasoning
systems based on formal logic) are typically based on human
domain knowledge and developed through an explicit symbolic
representation [11]. This makes them inherently more trans-
parent for humans. The main drawback of purely symbolic
approaches is their rigidity which limits their scalability in
real-world scenarios. Indeed, complex domains (like HAR)
require significant manual efforts from domain experts and
knowledge engineers in designing and implementing sophis-
ticated rule-based models. The combination of these two
worlds has several potential advantages [5], [12], [13]: (1)
handling scenarios that are out of the training set distribution;
(2) making the decisions of the system more interpretable
and explainable to human users; (3) simplifying both the
detection and the resolution of potential wrong decisions of
the system; (4) making the system capable of learning from
smaller training data and (5) more easily adaptable to different
domains.

A promising Neuro-symbolic approach is the Knowledge
Infusion paradigm, which aims at incorporating external struc-
tured knowledge within a deep neural network. For example,
such knowledge can be obtained from knowledge graphs
(KGs). Since the infusion of knowledge can occur at different
levels of depth, a recent survey performed a categorization
of Knowledge Infusion approaches as shallow, semi-deep, or
deep [6].

In shallow infusion, the data-driven component is directly
fed or coupled with a pre-trained model or weight vectors
that encode the external knowledge. The use of pre-trained
models based on word embeddings (e.g., Word2Vec, GloVe)
is the most common form of shallow infusion. Given large text
corpora, these models are trained in an unsupervised manner
to capture the domain-specific meanings of words, which are
then represented as n-dimensional vectors. Such vectors can
then be used to feed a deep neural network for a specific
classification task [14].

In semi-deep infusion, learnable knowledge constraints are
used to guide the learning process of the data-driven model.
In [15], knowledge-based constraints are used to guide the
adversarial training process of generative models. Such an

approach has been experimented on the sentence generation
application domain to force the generative model to produce
sentences that match a given text template.

Finally, deep knowledge infusion aims at integrating exter-
nal knowledge within the hidden layers of the deep neural net-
work, combining the representation of the knowledge concepts
with the latent representation of data. For instance, in [16]
a Knowledge Infusion Layer (K-IL) has been specifically
designed to merge the output of the last hidden layers of an
LSTM with the output of a layer that encodes the external
knowledge provided by KGs.

Given this taxonomy, DUSTIN is positioned as a semi-
deep knowledge infusion approach, since the constraints from
a symbolic reasoning module are integrated into the deep
learning classifier to drive the learning process.

In general, knowledge infusion has been mainly applied to
the Natural Language Processing (NLP) domain [7], [8] and
computer vision [17]. Knowledge Infusion has also been used
in reinforcement learning tasks in [13] to guide the agent’s
decisions when it has little experience, relying on a set of
knowledge-based functions defined by domain experts.

B. Knowledge Infusion for sensor-based HAR

In the literature, only a few knowledge infusion methods
for HAR have been proposed. The majority of the approaches
are based on shallow knowledge infusion, taking advantage of
semantic reasoning only before or after the data-driven training
process [18], [19].

In [20], shallow infusion is used to associate frequent
patterns extracted from an unlabeled dataset using data mining
techniques with the corresponding activity. However, this
approach can be only applied to environmental sensors in
smart-home environments. Other shallow knowledge infusion
approaches of HAR take advantage of knowledge-based rea-
soning before the learning process. In [9], knowledge-driven
reasoning is adopted to infer an initial activity model which is
then fine-tuned using data-driven techniques, in order to adapt
it to the user’s habits. However, these approaches can only be
applied to environmental sensors data in smart-home environ-
ments, and not to inertial sensors data from wearable/mobile
devices like we propose in this work.

Considering wearable/mobile device data, a shallow ap-
proach has been proposed in [4]. In this work, the probability
distribution over the possible activities derived by the classifier
is refined by common-sense knowledge constraints to exclude
unlikely activities.

Differently from existing works, DUSTIN takes advantage
of semantic reasoning to guide the learning phase of a deep
learning HAR classifier. Hence, the resulting model incorpo-
rates such knowledge to improve the recognition rate.

III. METHODOLOGY

In this section, we present DUSTIN, our knowledge infusion
approach for sensor-based HAR. The main idea of DUSTIN is
that common-sense knowledge constraints in the HAR domain
(e.g., lying is more likely performed in indoor environments)



have the potential of driving the learning process of a classifier
based on deep learning. With respect to standard data-driven
approaches that only consider sensor data, DUSTIN learns
the correlations between input sensor data and the set of
activities that are consistent with the user’s context based on
symbolic reasoning. These correlations are particularly useful
in the classification step since the information about consistent
activities positively “revises” decisions purely based on sensor
data.

Besides an improved recognition rate, this mechanism has
the objective of reaching high recognition rates even with lim-
ited labeled data and with a lower number of epochs. Indeed,
learning the knowledge constraints without symbolic reason-
ing would require a significantly large dataset of activities
performed in a high number of different context conditions.
Hence, symbolic reasoning makes it possible to reduce the
need for training data.

Moreover, since the learning process is driven by knowl-
edge, DUSTIN generates a model with improved interpretabil-
ity. Indeed, the common-sense knowledge used to train the
classifier can also be used to partially understand the rationale
behind each classification output.

A. Overall architecture

In the following, we describe the overall architecture of
DUSTIN, which is depicted in Figure 1. The user’s physical
movements are continuously monitored thanks to the sensor
data stream generated by the inertial sensors of the user’s
mobile devices (e.g., smartphone and smartwatch) as well as
raw context data that describes the environment that surrounds
the user (e.g., GPS data).

First, the raw context data are provided to the CONTEXT
AGGREGATION module that is in charge of generating high-
level context data. For instance, given the GPS position, this
module returns the semantic position by interacting with a
dedicated web service.

Similarly to recent works in the literature [4], high-level
context data are provided to a SYMBOLIC REASONING mod-
ule that uses common-sense knowledge to determine the
activities that are consistent with the current context. For
instance, the running activity is not consistent when the user
is in the office during working hours.

The high-level context and inertial sensor data are then
provided as input (in separate channels) to the AUTOMATIC
FEATURE EXTRACTION modules of our DEEP LEARNING
CLASSIFIER. The output of the symbolic reasoner is translated
into a feature vector that is provided to the deep learning
model.

The KNOWLEDGE INFUSION module is in charge of in-
fusing (in the latent space) the context semantic constraints
encoded in the symbolic features into the features extracted
from inertial sensors and high-level context data. During the
training phase, this module learns the correlation between
the features learned by the data-driven classifier and external
knowledge. The symbolic features are also used during the

Fig. 1. Overall architecture of DUSTIN

classification phase (i.e., when using the trained model to
recognize activities).

Finally, the output of the KNOWLEDGE INFUSION module
is forwarded to the ACTIVITY CLASSIFICATION module to
predict the current activity performed by the subject.

B. Data-driven feature extraction

The streams of raw sensor data continuously collected by
each mobile device are temporally aligned and pre-processed
before they are provided to the DEEP LEARNING CLASSIFIER.
DUSTIN considers both inertial sensors data as well as high-
level context data.

Taking into account inertial sensors, we consider common
sensing devices installed on nowadays mobile devices (i.e.,
accelerometer, gyroscope, and magnetometer). In order to
reduce the intrinsic noise of the signals, we apply a median
filter to each stream.

High-level context data describe the environment which
surrounds the user, such as her current semantic location,
whether she is in an indoor or an outdoor setting, her proximity
to transportation routes, the current weather, and information
about the day of the week, the month, and the season. The
mobile devices collect such information both from built-in
sensors (e.g., GPS) as well as publicly available web services



(e.g., transportation service). These data are one-hot encoded
into a vector.

We apply a fixed-size segmentation on the pre-processed
data (without overlap). In our experimental setup, we con-
sidered segments of 4 seconds to detect both simple (e.g.,
lying) and complex (e.g., brushing teeth) activities. The inertial
and high-level context data segments generated as described
are provided as separate input flows to the AUTOMATIC
FEATURE EXTRACTION modules. In particular, our classifier
has one channel for each mobile device to receive inertial data,
while one single channel to receive all high-level context data
derived by all the considered devices. Each module is based on
convolutional layers in charge of deriving meaningful features
from each data stream.

More details about the hyper-parameters related to the
convolutional layers used in our experiments are reported in
Section IV-B.

C. Knowledge-based symbolic features inference

The SYMBOLIC REASONING module of DUSTIN (running
locally on the mobile devices) analyzes the user’s surrounding
context to infer symbolic features that encode common-sense
knowledge about the context-consistent activities. This module
relies on an ontology that models high-level relationships
between high-level context and activities. Specifically, thanks
to ontological reasoning (i.e., consistency check), it is possible
to infer the activities that can be performed considering the
user’s context.

For this work, we considered the ontology proposed in
[4]. This ontology models several categories of context data:
user’s semantic place, user’s presence in an indoor or outdoor
setting, user’s speed, weather conditions, user’s proximity to
public transportation stops and routes, user’s height variations,
environment’s noise and light levels, and temporal context (i.e.,
day of the week, month, and season). Figure 2 shows a small
portion of the context data using the Protégé tool1.

The ontology explicitly states the necessary conditions
which make an activity possible in a given context, taking
into account domain knowledge. For instance, as shown in
Figure 3, the activity brushing teeth should take place in an
indoor location (i.e., a building), while the user should have
null speed and null height variation.

To check whether an activity A is context-consistent,
DUSTIN adds to the terminological part of the ontology an
axiom representing an instance of Person which identifies the
user. Then, available context data are represented as ontolog-
ical concepts. Finally, DUSTIN relies on context reasoning to
check if A is consistent with the user’s context.

The high-level context data generated by the CONTEXT AG-
GREGATION module are automatically mapped to ontological
concepts. Most of the context data we considered have a one-
to-one mapping with ontological entities. For instance, the
user’s semantic location provided by public web services is
automatically mapped to the corresponding ontological fact,

1https://protege.stanford.edu/

Fig. 2. An excerpt of the context hierarchy in the reference ontology

as described in Example 1. Raw context data available as
scalar values are discretized by the CONTEXT AGGREGATION
module. For instance, each user’s speed value is mapped to one
of the following ontological concepts: NullSpeed, LowSpeed,
MediumSpeed, and HighSpeed. The rules used to discretize
scalar values rely on ranges of values designed by knowledge
engineers (e.g., speed values greater than 0 km/h and lower
than 8 km/h are mapped to LowSpeed).

The output of ontological reasoning (i.e., the context-
consistent activities) is encoded through a vector, in which
each position represents one of the activities that DUSTIN
can detect. The value of an element of this vector is 1 if the
corresponding activity is consistent with the user’s context, 0
otherwise.

Example 1: Alice is using a system that relies on DUSTIN.
When the SYMBOLIC REASONING module is triggered to gen-
erate the symbolic features to be infused into the data-driven
module, Person(Alice) is added as a fact. High-level context
data are then processed to expand the set of facts. Suppose that
the CONTEXT AGGREGATION module of DUSTIN derives
that Alice is in a park and that the speed value provided by
the GPS sensor of her smartphone is 2 km/h. These context
data are automatically instantiated in the ontology with two
individuals: Park(place) and LowSpeed(speed). Then, existing
relationships between Alice and the available context data are



Fig. 3. Definition of the activity ”Brushing Teeth” in our ontology

added as facts: hasCurrentSymbolicLocation(Alice, place) and
hasCurrentSpeed(Alice, speed). Finally, to check whether the
activity walking is consistent with Alice’s context, the sym-
bolic module adds two other axioms: Walking(currentActivity)
and isPerforming(Alice, currentActivity). The consistency be-
tween the set of facts and the domain knowledge will deter-
mine if walking is consistent with the current Alice’s context.
This last step is repeated for each activity that the system aims
at detecting, in order to create the symbolic features vector that
will be infused into the data-driven module.

D. Knowledge infusion and classification

The KNOWLEDGE INFUSION module combines the feature
automatically extracted by the convolutional layers from in-
ertial sensors and high-level context data with the symbolic
features provided by the symbolic module.

The KNOWLEDGE INFUSION module works in two steps.
First, the features are concatenated into a single feature vector
in the latent space to infuse the knowledge with sensor and
high-level context data. Then, the resulting feature vector is
provided to a sequence of fully-connected layers that learn
the correlations between input data and context-consistent
activities.

Finally, the ACTIVITY CLASSIFICATION module consists of
a Softmax layer that is in charge of providing as output the
activity currently performed by the subject.

IV. RESULTS

A. Dataset Description

We evaluated DUSTIN on a HAR dataset proposed in a
recent work [4]. The main advantage of this dataset is that
includes a wide variety of context-dependent activities.

Overall, the dataset includes data from 26 subjects that
carried a smartphone in their pocket and a smartwatch on
their dominant hand’s wrist. For both the mobile devices, the

dataset includes raw data about inertial sensors (accelerometer,
gyroscope, and magnetometer).

At the same time, the dataset includes context data gathered
combining the smartphone’s built-in sensors and public web
services. Taking into account the smartphone’s sensors, the
luminosity sensor and the microphone are used to measure
the environment’s brightness and noise levels, respectively.
Instead, the barometer and the GPS quantify the users’ height
and speed variations. At the same time, the dataset includes
the output of different web services: (1) Google’s Places
API provides the semantic places closest to the user; (2)
OpenWeatherMap provides current local weather conditions
(e.g., rainy, sunny); (3) Bing’s Traffic API provides the nearby
traffic situation, and (4) Transitland provides transportation
routes and stops that are close to the user. The dataset also
includes temporal context information, such as the moment of
the day (e.g., evening), the day of the week, the season, and
so on.

The high-level context data provided as input to the DEEP
LEARNING CLASSIFIER cover all the context data presented
in the dataset. However, only a subset of context types is
used by the SYMBOLIC REASONING module to infer which
are the context-consistent activities. Indeed, the environment’s
brightness and noise levels do not provide useful information
to infer meaningful symbolic features. At the same time,
without knowing the habits of the users involved in the dataset
collection campaign, the SYMBOLIC REASONING module
cannot rely on temporal context information like the day of
the week.

Overall, 14 different activities are included in the dataset:
walking, running, standing, lying, sitting, stairs up, stairs
down, elevator up, elevator down, cycling, moving by car,
sitting on transport, standing on transport and brushing teeth.
Overall, the dataset contains almost 9 hours of labeled data
(≈ 350 activities instances).

B. Experimental setup

In the following, we describe the specific setup of our
experiments. The two AUTOMATIC FEATURE EXTRACTION
modules related to the inertial sensors data provided by mobile
devices are composed of two convolutional layers with 8 3×3
and 64 2 × 2 filters, respectively, separated by a 2 × 2 max
pooling layer. After the second convolutional layer, we added
another 2 × 2 max pooling layer, followed by a flatten layer,
and, finally, a fully connected layer with 128 neurons. The
AUTOMATIC FEATURE EXTRACTION module that extracts
features from high-level context data is instead composed of
a single fully connected layer with 8 neurons.

The KNOWLEDGE INFUSION module is composed of a
Concatenation layer to combine inertial, context, and symbolic
features, followed by a dropout layer with a dropout rate of
0.1 and a fully connected layer with 256 neurons to extract
meaningful information from these concatenated features. Fi-
nally, the ACTIVITY CLASSIFICATION module consists of a
softmax layer for the final classification.



The evaluation has been carried out by splitting the dataset
as follows: 70% for the training set, 10% for the validation
set, and 20% for the test set. We considered 200 training
epochs, with a batch size of 32 samples. We chose the adam
optimizer and the categorical crossentropy as loss function.
Furthermore, we implemented the early stopping technique to
stop the learning process when the loss accuracy computed on
the validation set did not improve for 5 consecutive epochs.

C. Baselines

We compared DUSTIN considering three different base-
lines.

• Inertial only. This baseline represents a standard HAR
classifier that does not use context data. Hence, we
consider this baseline to evaluate the recognition rate
without the use of context data.

• DUSTIN without symbolic features. This baseline is used
to show the performance of the classifier that processes
high-level context data without infusing symbolic reason-
ing.

• DUSTIN without context features. This baseline repre-
sents how the infused knowledge impacts the recognition
rate when high-level context data is not provided to the
network.

For DUSTIN and all the baselines, we also evaluate the
application of a state-of-the-art context refinement method [4]
which discards from the probability distribution emitted as
output by the data-driven module those activities which are
not consistent with the user’s context (context refinement). This
shallow knowledge infusion approach for HAR is orthogonal
with respect to DUSTIN.

D. Experimental Evaluation

In the following, we report the results of the effectiveness
of DUSTIN on the dataset described above.

1) Overall results: Figure 4 shows the overall F-1 score of
DUSTIN compared to the baselines. Also, we show the effec-
tiveness of each approach with and without context refinement.
DUSTIN without context refinement outperforms Inertial only
by +46%, DUSTIN without symbolic features by +4% and
DUSTIN without context features by 1%. Consistently with the
literature [4], the use of context data significantly outperforms
solutions that are purely based on inertial sensors. Overall, the
results confirm the advantage of considering symbolic features
to improve the model accuracy. Note that the very limited
improvement obtained by DUSTIN with respect to DUSTIN
without context features data is that symbolic features implic-
itly encode context. Hence considering both information is
sometimes redundant for the classifier.

Even when context refinement is considered, DUSTIN still
outperforms the baselines. Note that Inertial only with context
refinement is exactly the knowledge infusion method proposed
in [4]. Moreover, context refinement does not have any positive
impact on the recognition rate of DUSTIN. This is because
knowledge infusion generates accurate predictions that do not
benefit from further refinements. Indeed, the more the output

Fig. 4. Overall results

probability distribution of the model is reliable, the more the
context refinement step is accurate.

2) Activity-level results: Figure 5 provides the results for
each activity in the dataset. As expected, the use of context

Fig. 5. Activities results

data has a positive impact on those activities that are strictly
related to the user’s surroundings. For instance, the proximity
of the user to public transportation routes is essential to rec-
ognize sitting/standing on transport, while elevator up/down
and stairs up/down benefit from information about height
variations. The solutions that are based on symbolic features
significantly outperform DUSTIN without symbolic features
considering the activities cycling and moving by car. Since



these activities share similar context data, learning these pat-
terns from high-level context data leads to worse recognition
rates. Moreover, only a few symbolic features are used to
represent context-consistency, hence the CNN focuses more
on inertial sensor data patterns (that are significantly different
considering the two activities).

Some activities do not exhibit an improvement when sym-
bolic features are considered. For instance, both elevator up
and elevator down are easily recognized by all the methods
that involve context data. This happens since this activity
is simply characterized by simple context information (e.g.,
height and speed variations).

We also want to point out that there are a few activities
that are slightly negatively affected by symbolic features.
This phenomenon occurs considering those activities that are
consistent with many contexts (e.g., walking). Hence, in such
cases, symbolic features may confuse the classifier.

Finally, these results confirm that the advantage of DUSTIN
with respect to DUSTIN without context features is limited and
focused only on some activities (e.g., brushing teeth).

3) Results with low labeled data availability: Figure 6
shows how the percentage of available labeled training data
affects the recognition rate. In these experiments, we only
considered DUSTIN and the baselines that use context since
the Inertial only approach reaches poor recognition rates even
with fully labeled data availability. Considering a very small

Fig. 6. Overall performance while varying the available training data

number of training samples (10% of the training set of the
considered dataset) all the considered approaches perform

poorly. In particular, the approaches that involve symbolic
features are the ones that perform worse. However, when more
training samples (20%) are available, the approaches based
on symbolic features show a significant boost in recognition
rate (that is close to 90% in terms of F1-score). Specifically,
DUSTIN exhibits an improvement of about +9% with respect
to DUSTIN without symbolic features. Besides, DUSTIN also
outperforms DUSTIN without context features by 2%. By
increasing the number of available labeled training samples,
the trend of the performances presented by these three methods
reflects the results previously described in Figure 4.

These results suggest that symbolic features have the po-
tential of enhancing the recognition rate of the classification
model when there are not enough available training data to
reliably extract meaningful features from high-level context
data.

4) Impact on the number of epochs: Figure 7 shows the
evolution of the recognition rate during the training phase (i.e.,
at each epoch) considering the approaches based on context
data. We observe that DUSTIN significantly speeds up the

Fig. 7. F1-score trend during training

convergence of the deep learning model with respect to other
approaches, quickly reaching high recognition rates. DUSTIN
without context features requires slightly fewer epochs, but it
under-performs DUSTIN during the whole learning process.
Finally, the number of required epochs is significantly higher
when symbolic features are not considered.



V. CONCLUSION

In this paper, we presented DUSTIN, our novel knowledge
infusion method for sensor-based HAR. This neuro-symbolic
approach relies on ontology reasoning to infer symbolic fea-
tures from the user’s context data. Such features are infused
in the latent layers of a deep neural network through their
concatenation with the features automatically extracted by
convolutional layers from raw inertial sensor and high-level
context data.

Even though our preliminary results are promising,
DUSTIN still has several limitations that we will tackle in
future work. First, the ontology design and implementation
require significant manual work from knowledge engineers
and domain experts. It is questionable if such a model can
generalize over all the possible context conditions and activi-
ties [21]. Hence, we will evaluate DUSTIN on other datasets
(e.g., the ExtraSensory dataset [22]) and we will also study
semi-automatic approaches to obtain such knowledge from
external sources (e.g., text, videos, and images on the web). We
will also investigate how to introduce probabilistic reasoning
in knowledge-based reasoning to improve flexibility.

Another significant limitation of DUSTIN is that ontological
reasoning is required during both training and classification.
This setting may be not suitable for real-world deployments on
mobile devices due to the computational complexity of ontolo-
gies. In future work, we plan to design alternative knowledge
infusion approaches where the deep learning classifier learns
the common-sense knowledge constraints without requiring
symbolic reasoning also during the classification phase. For
example, this could be achieved by designing a semantic loss
function to guide the learning process through knowledge. An
alternative solution is to train another neural network that is
specialized in mapping high-level context data to symbolic
features.

We will also investigate how to practically collect context
data in real-world deployments, since there may be problems
related to energy consumption, network delay, inference time,
QoS, etcetera.

Finally, our future efforts will also focus on analyzing the
interpretability of DUSTIN. Since the predictions of DUSTIN
rely on common-sense knowledge, they are inherently more
interpretable than fully data-driven approaches. Hence, we will
study how to design user-based experiments to investigate this
aspect. Also, we will study whether explanations obtained
through eXplainable AI (XAI) methods applied to the pre-
dictions of DUSTIN are consistent with the common-sense
knowledge.
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