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Abstract. While the sensor-based recognition of Activities of Daily Liv-
ing (ADLs) is a well-established research area, few high-quality labeled
datasets are available to compare the results of different approaches.
This is especially true for multi-inhabitant settings, where multiple res-
idents live in the same home performing both individual and collabo-
rative ADLs. The reference multi-inhabitant datasets consider only en-
vironmental sensors data and two residents in the same home. In this
paper, we present MARBLE : a novel multi-inhabitant ADLs dataset
that combines both smart-watch and environmental sensors data. MAR-
BLE includes sixteen hours of ADLs considering scripted but realistic
scenarios where up to four subjects live in the same home environment.
Twelve volunteers participated in data collection. We describe MAR-
BLE also providing details on the design of data collection and tools.
We also present initial benchmarks of ADLs recognition on MARBLE,
obtained by applying state-of-the-art deep learning methods. Our goal
is to share the result of a complex and time consuming data acquisition
and annotation task, hoping that the challenge of improving the current
baselines on MARBLE will contribute to the progress of the research in
multi-inhabitant ADLs recognition.

Keywords: activity recognition · smart-home · multi-inhabitant.

1 Introduction

The recognition of Activities of Daily Living (ADLs) in smart-home environ-
ments is a well-known research area in pervasive computing enabling intelligent
context-aware services [7]. Accurately recognizing ADLs is also crucial for com-
plex health-care systems that continuously monitor the behavior of fragile el-
derly subjects in their homes. For instance, the sequence of ADLs performed by
a subject and their execution modalities may reveal early symptoms of cognitive
decline [19]. Among other methods, ADL recognition has been shown to be fea-
sible through the intelligent analysis of data generated by unobtrusive sensors
deployed in the home environment and/or sensors on wearable devices.

Any new approach in this research area requires an empirical evaluation on
labeled datasets, i.e., datasets in which the stream of timestamped sensor values
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has been annotated with the actual ADLs performed by a subject specifying
the interval of time for each ADL. However, collecting these labeled datasets
is costly, time consuming and intrusive [6]. Moreover, publishing a dataset is
often constrained by privacy motivations [13]. Indeed, sensor and activity data
can be considered sensitive, and sometimes can even be used to re-identify a
subject even if explicit identifiers have been substituted by pseudonyms in the
dataset. For these reasons, there are only a few high-quality and publicly avail-
able ADLs datasets. However, public datasets are necessary to make research
more transparent through experiments reproducibility, to speed up new research
contributions, and to provide reference benchmarks.

A limitation of most of the existing ADLs datasets is that they only include
data from single-inhabitant settings, where only one subject is living in the
home [13]. This scenario is actually realistic considering the large amount of
elderly subjects living alone in their homes. However, multiple subjects may live
in the same home (e.g., married couples of elderly subjects, an elderly and her
caregiver, a whole family). In these settings it is often necessary to identify ADLs
performed by specific residents as well as those performed collaboratively.

Multi-inhabitant ADLs recognition is still a poorly explored research area
[4,13]. The main reference datasets are CASAS [8] and ARAS [2]. These datasets
have been collected in real home environments inhabited by two subjects. How-
ever, only environmental sensors were considered for data collection.

Wearable sensors can provide important additional information to signifi-
cantly improve ADLs recognition. By associating the physical movements of the
subjects to environmental sensor events it is possible to accurately discriminate
a larger number of activities (e.g., sitting at the kitchen table, eating at the
kitchen table and drinking at the kitchen table). Moreover, wearable sensors
can also monitor ADLs not captured only by environmental sensors. This is es-
pecially important considering that it can be too costly to deploy a significant
amount of environmental sensors that can capture all the possible household
items. Most importantly for multi-inhabitant settings, wearable sensors can be
used to address the data association problem [4]: how to associate each envi-
ronmental sensor event (e.g., the fridge has been opened) to the inhabitant that
actually triggered it? In this context, a wearable, being a personal device, iden-
tifies the subject and can also reveal the proximity to the environmental sensor
that was triggered. While constantly wearing devices may be considered unreal-
istic, smartwatches and wristbands nowadays are becoming quite common and
they represent a non-intrusive technology that can be continuously worn in home
environments.

Hence, in this paper we present MARBLE : a new publicly available dataset of
ADLs performed in multi-inhabitant settings. Differently from existing datasets,
MARBLE includes data from both wearable and environmental sensors. More-
over, MARBLE includes scenarios where up to four subjects perform activities
in the same home environment. Overall, MARBLE includes data from 12 differ-
ent subjects performing 13 types of ADLs. MARBLE contains around 16 hours
of labeled multi-inhabitant ADLs data.
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We believe that MARBLE can be used by the activity recognition community
to evaluate novel approaches both for single-inhabitant and multi-inhabitant
ADLs recognition. Moreover, MARBLE can be used to investigate novel data
association strategies.

The contributions of this paper are the following:

– We present a novel publicly available1 dataset of multi-inhabitant ADLs
that includes both environmental and wearable sensors data, where up to
four subjects perform ADLs both jointly and independently.

– We describe in details how we designed the data acquisition/annotation tools
and the collection of labeled data.

– We provide some benchmarks on the performance of state-of-the-art deep
learning approaches on MARBLE that could be used as baselines for future
work in this area.

2 Related Work

Single-inhabitant ADLs recognition has been extensively studied in the last
decades [7]. Results have been validated on several public datasets collected in
single-inhabitant settings, like the well-known OPPORTUNITY [14], CASAS [8],
and Amsterdam [11] datasets.

On the contrary, the literature on the same problem in multi-inhabitant set-
tings is less advanced. Only a few approaches have been proposed to tackle
this problem (e.g., [1, 3, 20, 22, 24, 25]). The lack of public datasets for multi-
inhabitant ADLs recognition is indeed one of the major issues in this research
area [13]. Some of the existing works validated their methods on datasets that are
not publicly available. Some public datasets [10,12,17] have been acquired from
video or audio streams, like the BEHAVE dataset [5]. However, those sensing
approaches are often perceived as too intrusive for home environments (espe-
cially considering elderly subjects), even if data is processed locally to preserve
residents’ privacy.

The public CASAS dataset is actually a collection of datasets, including some
that have been acquired in multi-resident settings [23]. For this reason, these
datasets have often been considered as the reference benchmark datasets also
for multi-resident ADLs recognition. The experimental setup in those datasets
mainly includes simple enviromental sensors, like PIR sensors, and magnetic
sensors. Activities have been performed by the residents both individually and
jointly. For instance, the Kyoto dataset (”WSU Smart Apartment ADL Multi-
Resident Testbed”) includes 15 different types of ADLs performed by two resi-
dents, including reading a magazine, watering plants, playing a game of check-
ers, and setting dining room table. Among the CASAS datasets, we also mention
PUCK [9], that combines wearable and environmental sensors similarly to our
dataset, but in a single-inhabitant setting.

Another public dataset that has been considered as a benchmark is ARAS [2],
that was collected in two different home environments, each one inhabited by

1 The dataset can be downloaded here: tinyurl.com/marbledataset
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two residents. Several environmental sensors have been used for data collec-
tion, including photocells, pressure mats, contact sensors, proximity sensors,
float sensors, and infrared receivers. Overall, the dataset includes 27 different
ADLs types, including taking shower, brushing teeth, sleeping, having conversa-
tion, and watching tv.

The major drawback of the two datasets described above is that they do not
include wearable sensors data, which is very informative for the data associa-
tion problem and to detect activities at a finer granularity, as described in the
introduction. Moreover, those datasets are limited to two residents in the same
home.

On the other hand, there are public datasets that only consider wearable sen-
sors. For instance, the DyadHAR dataset [21] includes inertial sensor data from
two subjects in an indoor environment wearing smart-phones on the belt and
performing ADLs (e.g., participating in a meeting, coffee-break, work, lunch).
The dataset also contains RSSI values from iBeacons in the environment.

The main advantage of MARBLE with respect to the described datasets
is that it combines environmental and wearable sensors in a multi-inhabitant
setting to capture a wide set of activities, and that it includes scenarios with up
to four participants.

3 MARBLE : Data collection design and tools

In this section, we describe in details the MARBLE dataset. We present our
design choices, the experimental setup, the data collection process and tools,
and the dataset format.

3.1 Dataset design

The design of MARBLE was driven by the multi-inhabitant ADLs recognition
problem, and in particular by data association. Indeed, during the design phase,
we realized that monitoring ADLs with a combination of environmental sensors
and wearable sensors is a promising but poorly explored direction [22]. Wearable
devices have the potential of: a) collecting data about the physical movements of
the subject, b) taking advantage of indoor positioning systems, and c) associating
an identity to each subject. On the other hand, wearable sensors alone can
not capture complex ADLs, while environmental sensors can provide precious
information about the interaction of the residents with the home environment.

Hence, the MARBLE dataset includes both data from wearable devices and
environmental sensors. We opted for smart-watches as wearables since they have
low obtrusiveness, they are becoming very common, and they can capture hand
gestures useful to reveal ADLs (e.g., washing dishes). Among environmental
sensors we include magnetic sensors to detect open/close of drawers and doors,
mat (pressure) sensors to detect when residents are sitting on chairs/sofa, plug
sensors to detect the usage of home appliances. We also planned to deploy BLE
beacons and WiFi APs to enable indoor positioning.

Due to privacy concerns, we were not able to acquire long term data from
actual inhabitants in real homes. Nonetheless, based on our previous experience
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in real world deployments and in-the-lab data collections [18], we designed a
new multi-inhabitant dataset acquisition campaign in a smart-home lab with
significant efforts in making it realistic and diverse. Moreover, annotations are
complete and very accurate.

Based on applications of interest for our lab, we planned the acquisition
of the following activities: Answering Phone, Clearing Table, Cooking, Eating,
Entering Home, Leaving Home, Making Phone Call, Preparing Cold Meal, Setting
Up Table, Taking Medicines, Using PC, Washing Dishes, and Watching TV.

We carefully designed several single- and multi-inhabitant scenarios for data
acquisition. Each scenario is a template that describes the type of activities that
subjects should perform and their order. As we will explain later, each scenario
has been performed several times by different subjects. We did not specify in de-
tails how each activity should be actually performed, allowing subjects to freely
execute activities with the goal of introducing high variability in the dataset.

In the following, we represent the MARBLE scenarios through several tables.
In these tables, the flow of time is represented vertically, from top to bottom. Ex-
cept from Table 1 where each column describes a single-inhabitant scenario, each
of the other tables describes a single scenario with a column for each resident.
Horizontal dashed lines indicate transitions between subsequent activities. When
residents collaboratively perform an activity the vertical line is suppressed. Each
designed scenario is identified by a letter followed by the number of residents
involved during the data acquisition for that scenario.

We designed four single-inhabitant scenarios graphically represented in Ta-
ble 1.

Table 1: Single-inhabitant scripted scenarios
A1 B1 C1 D1

m
o
rn

in
g

set table
cook

cook eat enter home
set table clear table watch tv answer call

eat wash dishes prepare meal prepare meal
clear table watch tv answer call watch tv
wash dishes make call make call answer call

use pc watch tv leave home take meds
answer call take meds enter home leave home

a
ft
e
rn

o
o
n

prepare meal make call take meds enter home
set table cook set table wash dishes
take meds set table prepare meal use pc

eat eat eat make call
make call clear table clear table use pc
clear table

leave home
wash dishes cook

use pc watch tv leave home

e
v
e
n
in
g

leave home enter home cook enter home
enter home prepare meal eat wash dishes

eat eat take meds watch tv
watch tv wash dishes use pc take meds
make call answer call answer call
take meds use pc leave home

take meds
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We designed three different scenarios involving two subjects concurrently
performing both independently and jointly the activities. These scenarios are
shown in Table 3. Finally, we also designed four different scenarios of ADLs
concurrently performed by four inhabitants, presented in Table 2.

Table 2: Multi-inhabitant scripted scenarios involving four subjects
A4

Subject 1 Subject 2 Subject 3 Subject 4
cook set table use pc watch tv

eat
wash dishes watch tv clear table use pc

B4
Subject 1 Subject 2 Subject 3 Subject 4
watch tv enter home use pc

watch tv
prepare meal watch tv eat leave home

C4
Subject 1 Subject 2 Subject 3 Subject 4
set table prepare meal enter home

eat use pc make call
watch tv

D4
Subject 1 Subject 2 Subject 3 Subject 4

enter home set table
eat

clear table watch tv
wash dishes cook watch tv answer call

Note that, despite scenarios describe the transition from an activity to an-
other as instantaneous, this will not be the case for their executions since tran-
sitions will have a duration. Moreover, activities specified as concurrent for dif-
ferent subjects may begin and end at slightly different times with also different
duration of transitions. For instance, Table 4 shows an execution of the scenario
A4 that we acquired during data collection. Since subjects freely executed the
ADLs, activities and transitions are not perfectly aligned as specified in A4.

3.2 Experimental setup

Figure 1 illustrates how the smart-home lab is divided into six semantic areas,
each representing a different room (hall, kitchen, dining room, medicine area,
living room, and office).

Different environmental sensors were deployed to monitor the interaction of
the subjects with their surrounding environment: five magnetic sensors, nine
pressure mats, and two smart-plugs. Figure 1 shows how these sensors were
deployed in the environment. Magnetic sensors monitored the interactions with
the pantry, the cutlery drawer, the pots drawer, the medicines cabinet, and the
fridge. Pressure mats monitored the interactions with four dining room chairs,
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Table 3: Scenarios involving two inhabitants
(a) A2 scenario

A2
Subject 1 Subject 2

m
o
rn

in
g

set table cook
eat

clear table wash dishes

use pc
watch tv
make call

watch tv
answer call take meds

a
ft
e
rn

o
o
n

prepare meal
cook

make call
take meds set table

eat
use pc

clear table
make call

leave home

e
v
e
n
in
g

enter home
eat

eat answer call
take meds use pc
make call take meds

watch tv

(b) B2 scenario

B2
Subject 1 Subject 2

m
o
rn

in
g

set table enter home
cook

watch tv
eat

watch tv
clear table prepare meal
wash dishes make call

watch tv
answer call

leave home
make call
take meds enter home

a
ft
e
rn

o
o
n

cook take meds
make call

prepare meal
set table

eat
wash dishes clear table

watch tv
leave home watch tv

e
v
e
n
in
g

enter home
watch tv

prepare meal cook
eat

wash dishes take meds
answer call use pc

use pc answer call
take meds leave home

(c) C2 scenario

C2
Subject 1 Subject 2

m
o
rn

in
g

cook enter home
set table

watch tv
eat

clear table prepare meal

wash dishes
answer call
make call

use pc leave home
answer call enter home

a
ft
e
rn

o
o
n

prepare meal take meds
set table prepare meal
take meds set table

eat
use pc wash dishes

make call clear table
watch tv

e
v
e
n
in
g

leave home
set table

enter home
eat

eat take meds
watch tv use pc
take meds

watch tv
make call

watch tv

watch tv
answer call
leave home

Fig. 1: The smart-home lab used in the dataset collection

the office chair, and four different seats in the living room (i.e., a couch and an
armchair). Smart-plugs monitored the interactions with the electric cooker and
the television. The environmental sensors communicated their readings through
the Z-Wave protocol to a Linux server in charge of storing data into a MongoDB
database.
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Table 4: One of the A4 multi-inhabitant scenario instances
A4 - Instance 1

Time Subject 1 Subject 2 Subject 3 Subject 4

15:26:43
15:26:55

set table15:26:58

cook
15:27:38

use pc15:28:37 watch tv
15:29:34

transition
15:29:35

transition15:30:04
transition15:30:43

transition15:30:46
eat

15:30:48
eat

15:30:50
eat

15:32:30
eat

15:32:34
eat

transition

15:32:35
transition

eat

15:32:37
eat

15:32:52
transition

15:32:53
clear table15:32:57

wash dishes
15:32:58

watch tv
15:34:25 use pc
15:35:21
15:35:24
15:35:35

In order to acquire sensor data from wearables, we developed a WearOS
application in charge of continuously transmitting the stream of inertial sensors
data to our Linux server. As wearable devices, we used smart-watches running
the WearOS operating system2.

Since we planned to monitor answering and receiving phone call activities,
the subjects also carried an Android smartphone in their pockets. We developed
an Android application in charge of communicating in real-time the phone events
to our Linux server (i.e., start/end of receiving/making phone calls).

As we discussed in Section 3.1, we planned to take advantage of smart-
watches also to collect data from indoor positioning systems to detect the se-
mantic location of each subject. However, indoor localization is an orthogonal
problem with respect to activity recognition. Hence, while we actually deployed
a specific microlocalization infrastructure3, MARBLE only includes the ground-
truth about the semantic areas of the residents.

3.3 Data collection

MARBLE includes data from 12 different volunteers that contributed to the
data collection by performing several instances of the scenarios described in Sec-
tion 3.1. The volunteers’ age was 27 ± 5, and they had no connection with our
research team. Ten volunteers contributed both to single- and multi-inhabitants

2 We used Huawei Sport 2 and other brands with similar features.
3 In our experimental setup, we used machine learning methods to analyse RSSI signal

of BLE beacons and WiFi APs in order to classify the semantic location of each
subject in real-time.
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scenarios, while the other two participated to single-inhabitant acquisitions only.
Each volunteer contributed to multiple scenarios. Considering privacy concerns,
each volunteer is only identified with a numeric pseudo-identifier in the dataset.
Hence, MARBLE does not contain any explicit identifier and it is very unlikely
that any re-identification can be performed based on sensor data. Before the
acquisition, we showed the smart-home environment and tools to the volunteers,
and we instructed them about the scenario they had to perform. As explained
before, the volunteers were free to execute each ADL as they felt more appropri-
ate. Since we had time restrictions for data collection (due to the availability of
volunteers), we limited the execution time of each performed ADL to a duration
that in some cases does not reflect the actual time a person would actually need,
but long enough to obtain a significant amount of labeled data. For instance,
considering Eating or Cooking, we asked our volunteers to perform the ADL only
for a few minutes.

As we previously mentioned, each instance of a scenario was performed by
different volunteers in order to guarantee sufficient variability and robustness.
Overall, we acquired 12 single-inhabitant scenario instances (two instances for
D1; three instances for A1 and C1; four instances for B1) and 20 multi-inhabitant
scenarios instances (three instances for A2, B2, B4, and D4; two instances for
A4, and C4; four instances for C2).

Table 5 shows, for each ADL type, the amount of recorded labeled data
(in minutes), the average duration (in seconds), and the number of collected
instances. Finally, Table 6 shows the overall amount of recorded labeled data (in
minutes) and the average duration (in minutes) for single-, 2-, and 4-inhabitants
scenarios.

Table 5: Statistics on labeled activities

recorded minutes average duration (s) instances
ANSWERING PHONE 68.6 67.5 61

CLEARING TABLE 38.5 39.9 58
COOKING 80.5 81.9 59

EATING 150.2 28.2 320
ENTERING HOME 19.3 12.2 95
LEAVING HOME 13.7 16.1 51

MAKING PHONE CALL 63.6 53.8 71
PREPARING COLD MEAL 53.0 59.9 53

SETTING UP TABLE 53.9 39.4 82
TAKING MEDICINES 36.3 28.3 77

TRANSITION 276.1 12.9 1282
USING PC 94.1 86.9 65

WASHING DISHES 54.6 48.2 68
WATCHING TV 267.6 90.2 178
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Table 6: Statistics on scripted scenarios

type of scenarios recorded minutes average duration (min)

single-inhabitant 307.5 25.6± 4.0
2-inhabitants 315.5 31.5± 7.7
4-inhabitants 84.0 8.4± 1.8

3.4 Data annotation

In order to make data acquisition as realistic as possible, annotation was per-
formed by a different team that was watching live video streams of what was
happening in each area of the smart-home lab.

The members of this team used a dedicated software that we implemented
to easily annotate in real-time: a) the ADL being performed by each subject, b)
the semantic area in which the subject is performing the ADL, and c) the as-
sociations between environmental sensor events and the subjects that triggered
them. The last type of annotation is particularly useful to evaluate the effective-
ness of novel data association strategies. Moreover, it also can be used to isolate
the environmental events triggered by each subject in order to evaluate single-
inhabitant approaches. Clearly, sensor data collected from the smart-watches are
automatically associated with the correct subject by the WearOS application.
Since annotating multi-inhabitant scenarios turned out to be a very hard task,
each member of the annotation team was in charge of annotating data for a
single subject.

In order to obtain accurate annotations, both the environmental sensors and
the annotation software communicated with the same gateway that was in charge
of providing the timestamps both to data and annotations, before storing them
in a MongoDB database. At the same time, the clocks of the smartwatches were
synchronized with the one of the gateway.

4 Experimental Evaluation

In this section we provide some benchmarks on MARBLE that could be used as
baselines for future work on multi-inhabitant ADL recognition methods. For the
sake of this work, we assume that data association can be computed perfectly
i.e., we assume that the association between each environmental sensor event and
the resident that triggered it, is always correct.4 We compare the performance of
different deep learning solutions that we have adapted to be applied to MARBLE
data.

4.1 Data pre-processing

In order to provide sensor data as input for deep learning networks, we apply
some simple pre-processing steps. Inertial sensors data are smoothed using a

4 We proposed in [3] a data association method evaluated on MARBLE. However, the
dataset was not public yet and it was not described in detail.
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median filter to reduce the intrinsic noise of inertial sensors. Then, inertial and
environmental sensors data are temporally aligned and segmented into windows
of w seconds, with an ov overlap factor. The two types of data are provided as
separate inputs to the networks.

For each window of inertial sensors data, we extract a matrix of shape (9, Lw),
where Lw is the average number of measurements collected by inertial sensors
(according to the sampling rate) when the segmentation window size is equal to
w seconds5. Each of the nine rows of the matrix encodes the measurements of
one of the three axes of a specific inertial sensor.

Regarding environmental sensors, for each window we generate a binary ma-
trix with shape (25, w), where w is the window size. Each of the 25 rows repre-
sents a specific environmental sensor or a specific semantic location. Each column
represents a specific second within the window (e.g., column 3 is the third sec-
ond inside the window). The value of the matrix at row i and column j is 1 if
sensor/location i was active at second j, 0 otherwise.

4.2 Considered approaches

In the following, we describe the methods that we implemented as benchmarks.
We warmly invite the researchers in this area to take advantage of this dataset
to validate more sophisticated solutions and compare them with the provided
baselines. We empirically determined the architecture of each network.

Fully Connected Deep Learning (DNN) The first method we evaluated
is a simple fully connected Deep Neural Network (we will refer to this approach
as DNN). We use DNN as a baseline to compare it with more advanced methods
in the literature. The flow of inertial sensors data is composed of two Fully
Connected (FC) layers of 64 neurons, two FC layers of 128 neurons, and four
FC layers of 256 neurons interleaved by a Dropout layer (with 0.5 dropout rate).
On the other hand, the flow of environmental sensors data is composed of four
FC layers of 64, 32, 128, 32 layers, respectively. Within both the data flows, we
flatten the output of the last layer with a Flatten layer. The two flows are then
merged using a Concatenation layer. Then, the DNN has a FC layer with 64
neurons followed by a Softmax layer used for classification.

Convolutional Neural Network (CNN) This approach is quite popular
in the literature, possibly due to its good performance, especially when multiple
types of sensors are considered [15]. Inertial measurements are provided as input
to a stack of two Convolutional layers, each one composed of 64 filters with a 2x2
kernel, followed by two Convolutional layers composed of 128 filters with a 2x2
kernel. Then, we flatten the output of the last convolutional layer with a Flatten
layer. The flow continues with two FC layers (64 and 32 neurons, respectively)
interleaved by a Dropout layer (0.5 as dropout rate). On the other hand, the
flow of environmental sensors data is composed of a Convolutional layer of 16
filters with a 2x2 kernel, a Flatten layer, and two FC layers (128 and 32 neurons,

5 Since the number of measurements in a window may slightly differ from Lw, we
interpolate missing values or downsample measurements when needed.
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respectively). The two flows are then merged using a Concatenation layer. Then,
the CNN has a FC layer with 32 neurons. Finally, a Softmax layer is used for
classification.

Convolutional and Recurrent Deep Learning (CNN-LSTM) Finally,
we implemented an approach that combines convolutional and recurrent lay-
ers (we will refer to this approach as CNN-LSTM). In particular, we slightly
adapted the method presented in [16] to include both inertial and environmen-
tal sensors. Inertial measurements are provided as input to two Convolutional
layers composed of 64 filters with a 2x2 kernel, followed by two Convolutional
layers composed of 128 filters with a 2x2 kernel. Hence, the output of the last
Convolutional layer is flattened with a Flatten layer. The network continues with
a LSTM layer of 256 units, followed by a Dropout layer with a 0.5 dropout rate
and a 64 neurons FC layer. On the other hand, environmental sensor data are
provided to a Convolutional layer of 8 filters with a 2x2 kernel, followed by a
Flatten layer, a 128 units LSTM, a Dropout layer with a 0.5 dropout rate, and a
FC layer with 32 neurons. Hence, the two flows are merged with a Concatenation
layer. The network then continues with two FC layers with 64 and 32 neurons.
Finally, a Softmax layer is used for classification.

4.3 Results

In the following, we show the performance on MARBLE of the approaches de-
scribed above. For each approach, we trained the corresponding neural network
with the data collected both in single- and multi-inhabitant scenarios. In this
way, the evaluation is affected by the interactions between the subjects of multi-
inhabitant scenarios. We chose the optimal segmentation parameters using a
grid search approach. In particular the best parameters we found are w = 6,
and ov = 0.8. Each approach was evaluated by considering an ideal perfect
association between the environmental events and the subjects that triggered
them.

We adopted three well-known evaluation methodologies and a new one that
is particularly significant for a multi-inhabitant dataset. The first methodology
simply consists of splitting the dataset in 70% for training, 10% for validation,
and 20% for testing. The second one is a 10-fold cross validation. The third
one is a leave-one-subject-out cross-validation: at each fold, one subject is used
as test set and the remaining subjects as training set. The leave-one-subject-
out is generally used to test the generalization capability of the classifier on
subjects that did not contribute with labeled data. Finally, we propose a new
evaluation methodology that we call leave-one-scenario-out cross-validation: at
each fold, an instance of one of the MARBLE scenarios is used as test set, while
the training set excludes both data from instances of the scenario considered in
the test set as well as data related to subjects that contributed to the test set.
This last methodology is the most restrictive one since it aims at assessing the
generality of the classifier over unseen users and also over sequences of activities
not included in the training set.

Figure 2 shows that the evaluation methodology has a significant impact
on the measured F1 score. We observed that the 70/10/20 methodology over-
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Fig. 2: Overall recognition rate based on the evaluation method

estimates the recognition rate. By using this evaluation methodology, it emerges
that CNN-LSTM outperforms the other approaches. However, both the training
and the test sets contain data samples related to the same subjects and sce-
narios, thus it is likely that this evaluation methodology suffers from overfitting
problems.

Fig. 3: Recognition rate of CNN-LSTM for each activity

The 10-fold cross-validation methodology is more robust and it provides a
better estimate of the recognition rate. However, at each fold, training and test
sets may still include data from the same subjects or scenarios. This type of
evaluation confirms that CNN-LSTM reaches the highest recognition rates.

Leave-one-subject-out and leave-one-scenario-out methodologies provide a
more robust assessment of the recognition rate than the other evaluation method-
ologies. By using these methodologies, we observed that all the considered ap-
proaches reach similar recognition rates. As expected, the leave-one-scenario-out
methodology is the one that estimates the recognition rate with the lowest F1
score values. The lower recognition rates reached by these methodologies is due
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Fig. 4: Confusion Matrix of CNN-LSTM (70/10/20)
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to the fact that our dataset includes activities that are particularly difficult
to recognize on subjects/scenarios that were not observed during the training
phase. Consider Figure 3, that shows how the evaluation methodology affects
the recognition rate of each activity.

We observed that activities like Eating, Watching TV, and Using PC reach
high recognition rates independently from the evaluation methodology. This is
due to the fact that these activities can be performed only in specific smart-home
areas, triggering environmental sensors that are not involved in other activities.
Some activities significantly decrease their recognition rate with more restric-
tive evaluation methodologies. This is also reflected by the confusion matrix in
Figure 4. For instance, Clearing Table and Setting Up Table are often confused
between them since they share similar inertial signals and the same environ-
mental sensors. Preparing a Cold Meal is sometimes confused with Cooking or
Washing Dishes since all these actions are performed within the Kitchen seman-
tic location.

It is important to note that the overall recognition rate reached by these
baselines is relatively high. However, this is likely due to the fact that we con-
sidered an unrealistic perfect data association. Figure 5 shows a comparison
between perfect data association (i.e., based on ground truth) and a naive data
association strategy. In particular, we considered a naive method that associates
each environmental sensors event with each subject in the home environment.
In order to better highlight the impact of data association, we only considered
environmental sensors and we discarded the activities that are not captured by
those sensors in the dataset (i.e., answering phone, entering home, leaving home,
making phone call, and washing dishes). We also grouped the activities clearing
table and setting up table since it is not possible to discriminate them only by
using environmental sensors in our dataset. A perfect data association of the
environmental sensors events dramatically affects the recognition rate of some
activities (≈ +40% in terms of F1 score), like cooking and using pc. On the other
hand, the improvement is lower for those activities that are often performed at
the same time by all the subjects of the scenario (e.g., eating and watching tv).
We believe that researchers may use MARBLE to investigate novel data associ-
ation strategies that outperform the recognition rate of the naive approach we
presented as a baseline. At the same time, the recognition rate of the perfect
data association can be considered as an upper bound while evaluating more
realistic strategies.

Finally, since one of the contributions of our dataset is the combination of
wearable and environmental sensors, we show in Figure 6 the impact of the
inertial sensors data provided by wearable sensors on the recognition rate of
each activity. We observed that some activities like clearing table, preparing a
cold meal, and washing dishes significantly benefit from wearable sensor data.
Indeed, those activities include significant hand gestures that are typical for
those activities. As expected, wearable sensor data do not have impact on those
activities that are monitored by distinctive environmental sensors (e.g., watching
TV ).
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Fig. 5: Comparison between a naive data association strategy and a perfect data
association with CNN-LSTM (70/10/20)

Fig. 6: Impact of inertial data on CNN-LSTM (70/10/20)
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5 Conclusion

In this paper we address the need of more public multi-inhabitant ADLs datasets
by the research community. We present MARBLE, a dataset that includes both
wearable and environmental sensors data collected in scenarios where up to
four residents concurrently and jointly perform activities in the same smart-
home environment. The major limitation of MARBLE is that it has not been
acquired by continuous monitoring of residents in real homes. Nonetheless, we
dedicated a significant effort in designing realistic scenarios, in leaving freedom
in activities execution, and in an accurate data acquisition, making the dataset
as realistic as possible. We believe that MARBLE can be used in the future
by several research groups to propose new approaches for single- and multi-
inhabitant ADLs recognition. Moreover, MARBLE can be used to evaluate novel
methods for data association, that is still one of the main open challenges of
multi-inhabitant settings.
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R.: Cnn-based sensor fusion techniques for multimodal human activity recognition.
In: Proceedings of the 2017 ACM International Symposium on Wearable Comput-
ers. pp. 158–165 (2017)
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