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Abstract—The majority of the approaches to sensor-based
activity recognition are based on supervised machine learning.
While these methods reach high recognition rates, a major chal-
lenge is to understand the rationale behind the predictions of the
classifier. Indeed, those predictions may have a relevant impact
on the follow-up actions taken in a smart living environment. We
propose a novel approach for eXplainable Activity Recognition
(XAR) based on interpretable machine learning models. We
generate explanations by combining the feature values with
the feature importance obtained from the underlying trained
classifier. A quantitative evaluation on a real dataset of ADLs
shows that our method is effective in providing explanations
consistent with common knowledge. By comparing two popular
ML models, our results also show that one versus one classifiers
can provide better explanations in our framework.

Index Terms—activity recognition, explainable artificial intel-
ligence, smart-homes

I. INTRODUCTION

The recognition of Activities of Daily Living (ADL) is
a well-known research area that has been widely explored
in the last years [1]. Recognizing the high-level activities
that humans perform in their daily life is crucial for several
applications, including ambient assisted living, well being,
and health-care [2]. ADLs recognition through wearable and
environmental sensors is mainly based on supervised machine
learning approaches [3]. These approaches can reach signif-
icantly high recognition rates, when large labeled training
sets are available. However, one of the major drawbacks of
machine learning methods in general is that the classifiers
do not provide an explanation for their output. A lot of
recent research efforts in AI have been focused on eXplainable
Artificial Intelligence (XAI) [4]. XAI aims at building machine
learning models capable of explaining the rationale behind
each prediction.

In the case of activity recognition, it may not be so rele-
vant explaining the prediction of low level actions like, e.g.,
gestures based on inertial sensors patterns. The same is not
true for high level activities like ADLs, since the prediction
must take into account data from different sensors, temporal
relationships between events, as well as low level actions.
Important decisions in a smart living environment may rely on
those predictions. Hence, inferring why the classifier predicted
a particular ADL is a crucial step in providing solutions

that are understandable, trusted and transparent. Consider,
for example, an ADL recognition system that is deployed
in the home of an elderly subject. The activities inferred
by this system are continuously monitored by clinicians to
support their diagnoses (e.g., cognitive decline). The context
of execution of some activities may also be considered a
behavioral anomaly that requires intervention. XAI would
allow clinicians to trust the machine learning predictions, since
explanations would make them more transparent and possibly
also reveal relevant details. Explanations are also useful to
refine the ADL recognition system by introducing, removing,
or re-positioning sensors, as well as modifying algorithms and
system parameters.

In this work, we propose a novel approach for eXplainable
Activity Recognition (XAR) for ADLs performed in smart
living spaces equipped with both wearable and environmental
sensors. From each sensor data stream, we extract a stream
of temporally characterised semantic states that, after prepro-
cessing, is given as input to a trained classifier. For each
ADL prediction, explanations are generated from a set of
features over the semantic states, by considering both the
feature importance and the feature values. Our solution is
applicable to all classifiers from which a feature importance
value can be derived from the model parameters.

In summary, the contributions of our work are the following:
• We introduce and formulate the problem of eXplainable

Activity Recognition.
• We propose a data-driven explainable activity recognition

method applicable to a large family of classifiers.
• We implemented the system and we provide a semantic-

based metric to quantitatively evaluate the explanations
on a real dataset of ADLs. By comparing two popular
ML models, our results indicate the superiority of one
versus one classifiers in providing explanations.

II. RELATED WORK

Explainable Artificial Intelligence (XAI) is emerging as
an effective way to make machine learning processes more
transparent [5]. Among other efforts, preliminary results from
the participants of the XAI program launched by DARPA
are available [4]. There are three main categories of XAI
approaches: interpretable models, model induction methods



(also called black box methods) and deep explanation based
methods. Interpretable models are ML algorithms that are
inherently explainable. For instance, Bayesian Rule Lists have
been proposed to represent the ML model with probabilistic
rules [6]. Well-known classifiers like decision trees are also
inherently interpretable [7]. Model induction approaches con-
sider the ML classifier as a black box [8]. Those methods
analyze the input and the output of the classifier in order
to reverse-engineer the rationale of the explanations. Finally,
deep explanation methods are based on specifically designed
deep neural networks that provide a sort of explanations [9].
Among these approaches we start our investigation on XAR
with interpretable models. Indeed, it has been shown that
activity recognition methods based on ad-hoc feature extrac-
tion and classic machine learning algorithms (e.g., Random
Forests) are still competitive solutions with respect the ones
based on deep learning [10].

There exists some preliminary work on explainable activity
recognition. In [11], an interpretable classifier based on rule
mining is proposed. The rules generated by the classifier
are used as explanations. With respect to that work, our
approach relies on standard machine learning algorithms com-
monly used for activity recognition. Other works that may
be classified as XAR focus on the quite different task of
activity recognition based on images, exploiting computer
vision techniques [12]. In general, the majority of the existing
solutions propose methods that generate complex associa-
tion rules between input and output (even with interpretable
models). We use machine learning models from which it is
directly possible to compute feature importance, and we use a
knowledge-based approach to combine the feature importance
with the values of the features. Feature importance is well-
known for being an human-understandable indication of the
impact of each feature in classification [13].

Finally, while the generation of human readable expla-
nations has been partially explored in the literature [14],
this aspect was never investigated for sensor-based activity
recognition.

III. SENSOR-BASED EXPLAINABLE ACTIVITY
RECOGNITION

In this section, we describe our novel approach for real-
time sensor-based eXplainable Activity Recognition (XAR).
The overall pipeline of our method is depicted in Figure 1.

The user is continuously monitored through several envi-
ronmental and/or wearable sensors that generate a stream of
measurements. In the first step of our approach we derive,
from each stream of raw sensors measurements, high-level
semantic states. Intuitively, a semantic state describes what
happens during a specific time interval (e.g., the cooking stove
was on from t1 to t2). The semantic states obtained from
each sensor are merged in a single stream. Then, we perform
segmentation on the stream of semantic states and we apply a
time-based feature extraction mechanism. A machine learning
classifier is in charge of inferring the most likely activity given
a feature vector. The goal of our method is to associate a

Fig. 1. The data flow of our eXplainable Activity Recognition method

set of semantic explanations to the prediction. For instance,
suppose that the classifier predicted the activity ”Cooking”. An
example of explanation could be “the subject is likely standing
in the kitchen, and she also just interacted with the stove”.

For each feature, we extract the feature importance value
from the parameters of the trained machine learning model.
Then, by combining the feature importance value and the value
of the feature in the feature vector, we compute the feature
relevance: a value that indicates how relevant the feature was
for the classification outcome. Note that the feature relevance
value carries information related both to the input data and
to the characteristics of the trained machine learning model.
Finally, we generate semantic explanations by considering the
predicted activity and the feature relevance values computed
from the feature vector that lead to that prediction.

In the following, we describe our methodology in detail.

A. Extraction of semantic states

The types of sensing devices that we consider in our
method belong to two categories: binary sensors and value-
based sensors. We derive from each stream of raw sensor
measurements a sequence of semantic states.

A binary sensor generates semantic states of two types
corresponding to its two possible values, even if typically
only one type is relevant for activity recognition. Con-
sider, for instance, a magnetic sensor on the drawer used
to store medicines. This sensor generates the state type
“Medicine drawer open” whose temporal extent (the time the
drawer remains open) may be relevant. The complementary
state type “Medicine drawer closed” is less relevant since
this is its normal state during all activities not involving
medicines, and we ignore it.

On the other hand, value-based sensors can generate seman-
tic states of several types. For example, an accelerometer that



monitors user postures can generate semantic states of types
“Standing”, “Sitting” and “Lying”.

In the following, we explain how we derive semantic states
from binary and value-based sensors.

1) Semantic states generated by binary sensors: Binary
sensors only generates the two values ON and OFF that can be
easily mapped into semantic states. The most common binary
sensors for activity recognition are environmental sensors.
For example, when someone sits on the pressure mat sensor
identified as P2 on a kitchen chair, our method generates
the semantic state Using kitchen chair[t,−]. Note that the
end time of this semantic state is undefined (i.e., the state is
currently active). Suppose that subsequently, at a time instant
t′, the same sensor P2 generates a sensor event with value
OFF . In this case our method, based on the knowledge that
this measurement implies that the person that was sitting
on the kitchen chair is now standing, updates the state to
Using kitchen chair[t, t′].

Clearly we assume that for each binary sensor there should
be a prior knowledge about the type of sensor, the correspond-
ing object, the possible actions, and the sensor’s location. We
believe that this assumption is realistic, since this information
can be gathered during the deployment of binary sensors.

2) Semantic states generated by value-based sensors:
Mapping value-based sensor data to semantic states requires
a more sophisticated approach. Consider, for instance, an
accelerometer. This sensor continuously generates acceleration
values on three axes at a high frequency. Clearly, it is not
possible to directly associate semantics to those raw values.

Nonetheless, machine learning methods can be used to infer
higher level information from the continuous stream of those
inertial sensors. For instance, inertial sensor measurements
generated by the sensors equipped on a wristband can be ana-
lyzed by machine learning classifiers to reliably derive simple
gestures (e.g., the user is raising her arm, the arm is still, the
user is performing some manipulation, etc). Deriving simple
physical activities, postures and gestures from inertial sensors
using machine learning is a well-established methodology in
the literature.

Hence, in our methodology we apply machine learning
algorithms to derive low-level activities from the streams of
value-based sensors. Low-level activities are then mapped to
semantic states. In particular, we generate a new semantic state
when a user switches from a low-level activity a1 to low-
level activity a2 For example, suppose that at time tj , the user
switched its low-level posture from standing to sitting and this
is captured by a machine learning classifier from the inertial
sensors data of the user’s smartphone. Given this situation,
our method updates the semantic state related to standing as
Standing[ti, tj−1] and generates a new semantic state related
to sitting as Sitting[tj ,−]. Despite this low level classification
is done with machine learning techniques, for the sake of
this work we only consider simple patterns corresponding
to low level actions that can be easily classified by existing
techniques. Hence, we assume that explanations for these low
level actions are not necessary.

B. Segmentation and feature extraction

In the following, we describe how we continuously segment
the stream of semantic states to extract feature vectors. Our
approach classifies the activity performed by the user each
time the start or the end of a semantic state st is observed. We
compute feature vectors that encode temporal dependencies
between st and the semantic states that recently started or
ended. Hence, given a state st that started or ended at time
t, we build a segment seg(st) that includes st and each
semantic state whose time interval [ts, te] has non-empty
intersection with the time interval [t′, t], where t′ is the time
of occurrence of the Kth state update before t. Segments
can have different durations, depending on the occurrence
of the K updates observed before the end of the segment.
Note that the underlying machine learning approaches that
derive semantic states from value-based sensors (as described
in Section III-A2) use a different segmentation strategy, relying
on a window size that is significantly lower.

Given a segment of semantic states, we generate two dif-
ferent sets of features: status based features and change point
based features. Status based features encode temporal depen-
dencies between active and non-active semantic states. On
the other hand, change point based features encode temporal
dependencies between starting and ending times of semantic
states. In status based features, for each state S that overlaps
the segment interval, we compute a feature fvST [S] that
encodes the discounted sum of the time-based contributions
considering an exponential temporal decay similarly to the
method proposed in [15], with the difference that active states
contribute with 1 to the discounted sum.

Change point based features are computed using a similar
approach. For each status type S, we have two corresponding
change point features: one related to the start time of state
instances fCP [Ss] and one related to the end fCP [Se].

The main difference with respect to status based features
is that change point based features capture the temporal
dependencies between the current semantic state with recent
changes associated to other semantic states (distinguishing
between beginnings and endings).

C. Activity classifier and feature importance

For each feature vector, a machine learning classifier outputs
the probability distribution over the possible activities. The
most likely activity is the predicted activity. In our method-
ology, the generation of explanations relies on the feature
importance values that can be obtained from the parameters
of the trained machine learning model. For each feature fi,
we derive from the model its importance Ifi : a value that
indicates the degree to which fi discriminates the predicted
activity with respect to the other activities. Each category of
classifiers encodes feature importance values in a different
way. For the sake of this work, we will focus on two machine
learning classifiers that proved to be accurate for activity
recognition and, at the same time, can be used in our study to
obtain feature importance values in two significantly different



ways: Random Forests and Linear SVM (i.e., SVM with linear
kernel).

1) Feature importance in Random Forests: We extract
feature importance values from Random Forests models by
considering the Gini index values associated with each node of
the forest. Intuitively, the Gini index indicates the probability
of miss-classification given a condition on a specific feature.
We extract feature importance by considering the mean de-
crease of the Gini index in order to derive which features
can better discriminate activities [16]. Note that, independently
from the method adopted to extract feature importance values
in Random Forests, the value for each feature is independent
from the activity predicted by the system because this model
is inherently multiclass.

2) Feature importance in Linear SVM: Differently from
Random Forests that are intrinsically multiclass, Linear SVM
models are not. Indeed, we consider the one versus one
classification strategy. Given two activity classes Ai and Aj ,
it is possible to understand which features discriminate Ai

from Aj by analyzing the hyper-plane that separates them.
A weight vector wij is associated with that hyperplane. The
size of wij is the number of features and each element in
wij indicates the importance of the corresponding feature for
the binary discrimination between Ai and Aj . We extract
feature importance values based on the activity predicted by
the classifier. Suppose that the system predicts that the most
likely activity is Ai. Hence, we can extract all the weight
vectors wij that are associated to the hyper-planes that separate
Ai with each other activity Aj ∈ A such that Ai 6= Aj . We
aggregate those weight vectors by computing their weighted
average, thus obtaining a single vector that encodes feature
importance values. Given the hyper-plane that separates Ai

and Aj , wij is weighted by 1 − p(Aj), where p(Aj) is the
probability of the activity Aj according to the classifier.

D. Feature relevance
Feature importance value reveals the impact of each fea-

ture in discriminating activities based on the trained model.
However, feature importance alone is not sufficient to provide
explanations, since the output of the classifier clearly depends
on the specific values contained in the feature vector fv
received as input. Intuitively, the most relevant features are
the ones that are important according to the trained classifier
and, at the same time, have high-values in the feature vector
(considering the specific feature extraction mechanism pro-
posed in Section III-B). On the other hand, a low value in the
feature vector should decrease the relevance, and, similarly a
low importance should also decrease the relevance.

More formally, given a feature fi, the corresponding value
fv[fi] in the feature vector fv, and its importance Ifi ac-
cording to the machine learning model, we obtain the feature
relevance fr(fi, fv) = fv[fi] · Ifi .
E. Semantic explanations generator

Since feature importance and feature values include both
model and input information and heavily influence the clas-
sifier in determining the predicted activity, we claim that

feature relevance can be used as a basis to generate semantic
explanations. We denote with F ?(fv) the set of features such
that the relevance is greater than a threshold β > 0. The set
F ? contains the most relevant features from which we want to
generate the semantic explanations for the user. We generate
a semantic explanation se for each feature fi ∈ F ? based on
the corresponding semantic state type S. As we explained in
Section III-B, we consider status based features and change
point based features.

Each status based feature f is associated with one state type
S. If the value of this feature in the corresponding feature
vector is greater than or equal to 1, it means that the state
S is active. Hence, we show to the user an explanation like:
“The state S is currently active”. Otherwise, if the value of
the feature in the corresponding feature vector is lower than
1, we show an explanation like: “The state S was recently
observed”. On the other hand, a change point based feature
is associated with the begin or the end of a semantic state
with type S. For each relevant change point based feature, we
show to the user an explanation like: “The state S recently
started/ended to hold”.

IV. EXPERIMENTAL RESULTS

A. Dataset

In this work, we take advantage of a dataset of ADLs
that we acquired in a controlled smart-home environment as
part of a related research on activity recognition. For the
sake of this evaluation, we focus on environmental sensor
data only. The sensors considered in the experiments of this
paper are: magnetic sensors that were positioned on some
doors and drawers (e.g., fridge, medicine drawer, etcetera),
pressure mat sensors on the chairs, smart-plug sensors to
detect the usage of home appliances (e.g., electrical cooker,
TV, etcetera), and virtual sensors on the mobile phones of the
participants to understand when they make or receive a phone
call. The activities that we consider are the following: cooking,
preparing a cold meal, setting up table, clearing table, eating,
taking medicines, using PC, watching TV, making a phone
call and answering phone. The activities were performed by
12 subjects not involved in this research and instructed only
about the organization of objects and tools in the smart-home
and on the set of activities to be performed. The ground truth
was acquired by cameras.

B. Examples of explanations

Before showing the actual evaluation, we provide some
examples of explanations produced by the running prototype
of our method. Figure 2 shows two specific examples, related
to the activities preparing cold meal and taking medicines.
Note that this interface maps the output of our method (see
Section III-E) into more user-friendly sentences in natural
language. In the preparing cold meal example, our interface
shows the most relevant semantic states that involve the pantry
drawer, the fridge and the cutlery drawer. These are likely
interactions that occurred when users prepared cold meals in
our dataset (e.g., preparing a salad). The taking medicines



(a) Preparing Cold Meal (b) Taking medicines

Fig. 2. Examples of real explanations generated by our framework

example shows that the activity is explained by reporting that
the user recently opened and closed the medicine drawer, but
also by the fact that she is currently sitting on the living room
chair (probably taking the medicines while sitting). Note that,
in both examples, the first two explanations are related to
recent changes in semantic states, while the last explanation
is a currently active semantic state.

C. Metric: Explanation Score

In order to quantitatively evaluate the quality of the expla-
nations generated by our approach, user-centric experiments
should be carried out with Human Computer Interaction
methodologies. However, during this work (mainly due to the
Covid-19 pandemic) we were not able to recruit a sufficient
number of users to conduct this study, and we plan it for future
work. Nonetheless, we performed a quantitative assessment of
our methodology by evaluating how much the explanations are
consistent with respect to a common-sense knowledge about
the relationships between activities and semantic states. We
defined an OWL2 ontology that expresses those relationships.
The ontology models, for each activity, its partially explaining
semantic states. A semantic state partially explains an activity
A if it explains (even if partially) A according to common-
sense knowledge. For instance, in our ontology the semantic
state fridge opened partially explains both the cooking and
taking medicines activities, while it does not partially explains
the activity watching tv. Our ontology also models groups of
semantic states that partially explain activities. For instance,
the semantic states using kitchen chair and manipulating a
fork together partially explain the eating activity. Our ontology
has been modeled by researchers of our group that were not
aware of how the activities were performed in the reference
dataset. We evaluate the degree at which our explanations
can partially explain the predicted activity according to the
ontology. Given a prediction A obtained from a feature vector
fv, we compute the common-sense relevance cr() of the
explanation sei corresponding to the feature fi associated to
a semantic state type Si as follows:

cr(sei, A) =

{
fr(fi, fv) if Si partially explains A
−fr(fi, fv) otherwise

(1)

Hence, semantic states that do not partially explain the
predicted activities are associated with a negative relevance,
while the partially explaining ones are associated with a
positive relevance. Then, we use the common-sense relevance
to compute the Explanation Score (Score for the sake of
brevity) that takes values in the range [−1, 1]:

Score(SE?, A) =

∑
se∈SE? cr(se,A)∑
se∈SE? |cr(se,A)|

(2)

where SE? is the set of explanations that the system
provides for the prediction of activity A. Explanations with a
low relevance have a minor impact on the explanation score.
If there are no explanations in SE?, the explanation score
is −1. Note that, by using this formula, the features that do
not explain A are associated with a negative common-sense
relevance that penalizes the resulting score. We use this metric
to perform a quantitative evaluation of the effectiveness of our
approach.

D. Results

In our experiments, we performed leave-one-out cross vali-
dation to evaluate the generalization capability of our method
in providing explanations to users that did not contribute to
the training set with labeled data. At each fold, we train the
classifier on 11 user and we test it on the remaining one.
The test phase includes machine learning classification and
semantic explanations generation. We use the F-1 score to
measure the recognition rate. For each activity predicted by
the classifier (independently if it is correct or not) we compute
the Explanation Score using the metric in Equation 2. In order
to provide a fair comparison with F1 score, we normalize
the Explanation Score in the range [0, 1]. We repeated each
experiment 1000 times and averaged the outcomes to show
statistically robust results. We empirically determined the
hyper-parameters (with grid search) as K = 10, χ = 0.8,
β = 0.01 for Random Forests, and β = 0.25 for Linear
SVM. Figure 3 compares the Explanation Score and the F1
score for both Random Forests and Linear SVM. Since feature
normalization is a common step in ML pipelines and it has a
strong impact on feature values, we also show its impact on
both classifiers.

While there are small differences in the recognition rate
of Random Forests and Linear SVM, their explanation scores
significantly differ. Indeed, Linear SVM reaches higher expla-
nation scores. This is due to the fact that, since we considered
a one versus one strategy for the Linear SVM classifier, we
were able to extract feature importance values based on the
predicted activity. On the other hand, feature importance in
Random Forests does not depend on the predicted activity,
and hence important features may be not relevant to explain
every prediction. Normalization has almost no impact on the
Explanation Score of Random Forests. This is probably due to



Fig. 3. Random Forests and Linear SVM with and without normalization

the fact that feature normalization has a small impact on the
trained forest. Nonetheless, we observed that the Explanation
Score on Linear SVM is significantly higher without normal-
ization. We indeed observed that feature importance values
of Linear SVM are significantly smoothed by normalization.
Even though the classifier can still reach high F1 scores even
with normalized features, the resulting feature importance
values are significantly less informative. Figure 4 compares
the F1 and the explanation scores for each activity for Linear
SVM. We observed that eating and setting up table activities
are poorly recognized by the classifier (due to an insufficient
number of states that characterize it) while they are associated
with a high explanation score. The few times that those
activities are correctly recognized, they are associated to good
explanations.

Fig. 4. Linear SVM: Explanation score vs F1-Score

V. CONCLUSION AND FUTURE WORKS

In this work, we proposed a novel approach for sensor-
based eXplainable Activity Recognition specifically designed
for activities of daily living. We believe that this work is a
first important step into a promising research direction that we
intend to further investigate in the following years. We indeed
plan several related future investigations. A major limitation
of our approach is that the semantic explanations do not
show temporal dependencies between states. For instance, an

explanation for eating could be “the state manipulating fork
started shortly after the start of the state sitting”. We will
investigate how to extract such explanations from our semantic
features that already encode some temporal dependencies.
Finally, we aim at extending the evaluation of our framework
with experiments on datasets including value-based sensors
and by performing a case study based on HCI methodologies.
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