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Abstract—According to the World Health Organization, the
rate of people aged 60 or more is growing faster than any other
age group in almost every country, and this trend is not going to
change in a near future. Since senior citizens are at high risk of
non communicable diseases requiring long-term care, this trend
will challenge the sustainability of the entire health system. Per-
vasive computing can provide innovative methods and tools for
early detecting the onset of health issues. In this paper we propose
a novel method relying on medical models, provided by cognitive
neuroscience researchers, describing abnormal activity routines
that may indicate the onset of early symptoms of mild cognitive
impairment. A non-intrusive sensor-based infrastructure acquires
low-level data about the interaction of the individual with home
appliances and furniture, as well as data from environmental
sensors. Based on those data, a novel hybrid statistical-symbolical
technique is used to detect first the activities being performed
and then the abnormal aspects in carrying out those activities,
which are communicated to the medical center. Differently from
related works, our method can detect abnormal behaviors at a
fine-grained level, thus providing an important tool to support
the medical diagnosis. In order to evaluate our method we have
developed a prototype of the system and acquired a large dataset
of abnormal behaviors carried out in an instrumented smart
home. Experimental results show that our technique has a high
precision while generating a small number of false positives.

I. INTRODUCTION

Several recent studies show that the proportion of elderly
people over the whole population is rapidly growing in most
countries. For instance, the European old-age dependency ratio
(i.e., the ratio of people aged 65 years or older to people aged
15-64 years) is projected to double in the next decades [1].
As a consequence, a growing portion of people is at high risk
of experiencing non communicable diseases, frailty and social
exclusion, and may need long-term care, including nursing at
home or frequent hospitalization. Of course, the inability of
living independently may not only spoil the quality of life
of elderly people and of those caring for them, but will also
challenge the sustainability of the entire health system. Hence,
there is a growing interest in exploiting pervasive computing
technologies to support independent living and healthcare,
especially for the senior population.

In this paper we propose a novel method to support early
detection of mild cognitive impairment (MCI) for elderly
people living independently at home. In the medical literature,
MCI is used as a clinical diagnosis to describe a transitional
state between healthy cognitive ageing and dementia, char-
acterized by preserved functional abilities [2]. According to

the criteria proposed by the International Working Group on
MCI, there are evidences of subtle differences in performing
instrumental activities of daily living (IADLs) among MCI
patients compared to both healthy older adults and individuals
with dementia [3]. Hence, long-term monitoring of daily living
activities and recognition of abnormal behaviors may help
practitioners to early detect the onset of cognitive impairment.

Different scales have been proposed to assess the cognitive
health of people based on questionnaires and interviews about
the ability of performing various kinds of IADLs [4]. However,
that approach is prone to reporting bias; moreover, it cannot
be applied to continuously monitor the cognitive health of a
large number of people, since it incurs evident overheads in
terms of time, resources and monetary costs. A few previous
works, reviewed in Section II, have tried to detect behavioral
markers of MCI onset through pervasive computing technolo-
gies, obtaining significant correlation between the predicted
and actual cognitive status of the patient. However, those
works have different limitations. Some of them require the
execution of ability tests about the performance of IADLSs in an
instrumented smart home of a hospital; hence, they incur high
costs and cannot be applied on a continuous basis. Other works
rely on continuous monitoring of low-level behavioral markers
(steps taken, walking speed...). While potentially useful to
trigger alarms about possible MCI onset, those markers do
not provide specific support to the diagnosis, since they do
not report fine-grained descriptions of the anomalies occurred
during the execution of IADLs.

In order to overcome the limitations of existing tech-
niques we propose FABER, a novel technique for Fine-
grained Abnormal BEhavior Recognition. Our method relies
on medical models describing abnormal activity routines that
may indicate the onset of early symptoms of MCI. These
models have been acquired through the collaboration with
cognitive neuroscience experts of a leading center for care
and research on neurodegenerative disorders. A non-intrusive
sensor-based infrastructure is deployed at the patient’s home,
which acquires low-level information about the interaction
with home appliances and furniture, as well as environmental
parameters. Based on sensor data, we first detect the general
activity being performed by the subject and then recognize
anomalies in performing that activity or a group of activities.
They include inappropriate timing and unnecessary repetitions
of subactions, but also high level observations like “irregularly



assuming meals” or “often consuming cold meals”. We use
a hybrid statistical-symbolical technique including supervised
learning, rule-based reasoning and probabilistic reasoning. Ab-
normal behaviors are communicated to the medical center for
further analysis and interpretation. Differently from previous
works, our method can be applied continuously at the patient’s
home and, thanks to symbolic reasoning postprocessing over
recognized activities, abnormal behaviors can be detected at
a fine-grained level. In order to evaluate our approach, we
have developed a prototype of our system, and collected a
large dataset from an instrumented smart home. Experimental
results show that our technique is able to detect most of the
abnormal behaviors that we have targeted while producing a
small number of false positives.

The rest of the paper is structured as follows. Section II dis-
cusses related work. Section III presents the FABER method.
Section IV briefly summarizes experimental results. Finally,
Section V concludes the paper.

II. RELATED WORK

Several studies in the neuropsychology research field show
that it is possible to distinguish between cognitively healthy
adults and cognitively impaired individuals based on subtle
differences in their behavioral patterns [3]. There is a grow-
ing interest in exploiting pervasive computing technologies
to automatically capture and measure those differences [5].
For instance, a sensor-based infrastructure has been used to
unobtrusively monitor the execution of IADLs by older adults
in a smart-home [6]; the results have shown a significant
correlation between the cognitive health status of the subject
and the level of assistance that he needed in order to complete
the activities. More recently, motion sensors and contact
sensors have been used in [7] to measure low-level activity
patterns, such as walking speed and activity level in the home;
results have shown that the coefficient of variation in the
median walking speed is a statistically significant measure to
distinguish MCI subjects from healthy seniors.

Based on this line of research, a few works have proposed
to apply artificial intelligence methods on data acquired in
sensor-rich environments, for assessing the cognitive health
status of an individual performing a fixed set of predefined
activities. In the work of Dawadi et al. [8], patients were
invited to execute a list of routines (e.g., write a letter, prepare
lunch) inside a hospital smart-home. Different kinds of sensors
were used to detect movements inside the home and to track
the use of furniture and appliances. Based on data coming from
the home sensors, machine learning methods were used to
assign a score to each performed activity; the score measures
the ability of the subject to perform the activity correctly. The
achieved scores were then used to predict the cognitive status
of the patient (cognitive health or dementia). However, exper-
imental results showed a not completely satisfactory degree of
correlation among the predicted scores and the ones assigned
by a human observer. In general, the low correlation may be
due to the intrinsic difficulty of capturing the variability of
human behaviors from a corpus of training data. In this work,

we take a different approach: we use supervised learning only
to detect the start- and end-times of activities, while we rely
on domain knowledge provided by neuroscience experts to
recognize the actual anomalies. To the best of our knowledge,
our work is the first one that tries to apply this approach to
cognitive health assessment.

The supervised learning approach has been applied in other
works, including [9], [10], using other learning methods. A
further difference with those works is that they assume that
the patient executes a predefined set of IADLs following the
instructions of practitioners in a medical center, while our
method is intended to run continuously at the patient’s home,
and does not interfere with the normal behavior of the patient.

Finally, we mention that several research efforts have been
made to automatically detect abnormal behaviors for surveil-
lance applications. Typically, in that field, abnormal actions are
recognized based on the analysis of audio and video and on
the application of machine learning techniques [11]. However,
audio- and video-based systems are not suitable to our problem
due to obvious privacy issues. Moreover, surveillance systems
are mainly targeted to low-level physical actions, such as
assaults, fights, stealing of objects, while our goal is to monitor
high-level daily living behaviors, which are subject to high
variability of execution based on the characteristics of the
specific individual, on the environment and on many other
contextual conditions.

III. THE FABER HYBRID TECHNIQUE

In this section we illustrate the Fine-grained Abnormal
BEhavior Recognition (FABER) hybrid technique to support
early detection of MCL

A. Recognition framework

In Figure 1 we show the recognition framework. The
system is implemented at the elderly’s home. A smart-home
monitoring system running on a mobile device (e.g., a tablet)
is in charge of executing the FABER algorithms. Different
sensors, including environmental sensors, presence sensors,
and RFID readers, are attached to furniture and instruments,
and communicate raw data to the SEMANTIC INTEGRATION
LAYER. That layer is in charge of using raw sensor data to
detect simple actions (e.g., “the fridge door has been opened”)
and other events (e.g., “the temperature in the kitchen is more
than 30 degrees Celsius”). Actions and events, together with
their timestamps, are communicated to the MARKOV LOGIC
NETWORK (MLN) REASONER using a shared vocabulary. The
reasoner periodically (e.g., daily) analyzes the event logs and
infers the start/end time of activities based on the received
data. The inferred activity boundaries are communicated —
together with actions and events— to the KNOWLEDGE-BASED
INFERENCE ENGINE. The inference engine evaluates the rules
modeling abnormal behaviors, which are extracted from a
medical knowledge base of MCI models and indicators. Fi-
nally, detected abnormal behaviors are communicated to the
hospital center for further analysis by the doctors.
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Recognition framework

B. Semantic integration of sensor data

The SEMANTIC INTEGRATION LAYER is in charge of ac-
quiring raw sensor data and to use them for inferring semantic
descriptions of the current context, which are exploited by the
MLN reasoner to detect the activity boundaries. Depending
on the kind of available sensors, that module applies simple
inference methods to derive basic actions and events. For
instance, a rule states that “if the presence sensor detects a
presence near the kitchen table, and the sensor on the kitchen’s
chair detects a weight higher than 50Kg, then the current
action is sitting at the kitchen chair”. Timestamped actions
and events are represented using a shared vocabulary and
communicated to the MLN reasoner.

C. Detection of activity boundaries

After presenting our temporal model, we illustrate Markov
Logic Networks (MLN) and we explain how we use this
probabilistic logic to detect activity boundaries. More details
about our method can be found in [12].

1) Temporal model: Suppose that, in our system, the fol-
lowing temporal sequence of sensor events occurs:

(event(ej,,t1), event(ej,,ta), ..., event(e;, ,tm) ),

where event(ej,,t;) indicates that the sensor event e;, oc-
curred at time instant ¢;. For the sake of this work, we assume
that sensor nodes communicate their sensed events in real-time
to a gateway. The gateway is in charge of assigning a unique
timestamp to each event, based on the time at which it is
received. Hence, we impose a total order on event timestamps
(t1,toy. .. tm ).

2) MLN: Temporal sequences of sensor events can be
ambiguous to interpret, since the same sequence can result
from the execution of different and possibly mutually exclusive
activities.

Example 1: Consider the following first-order logic (FOL)
knowledge base:

Va, ej, e, t;, tir1 event(ej,t;) A event(ey, tiy1) (D
— currentActivity(a, t;).

YVt currentActivity(SetTheTable,t) 2)
— —current Activity(WashDishes, t).

Formula (1) states that the temporal sequence of two sensor
events e; and e occurring at ¢; and ¢;,, respectively, indi-
cates the execution of an activity a at ¢;. Formula (2) states
that the current activity of an individual cannot be “set the
table” and “wash dishes” at the same time instant. Suppose
to instantiate event e; to ClosingSilverwareDrawer and ey,
to OpeningGlasswareCabinet. The rules below, obtained by
grounding formula (1), encode the fact that the occurrence of
the temporal sequence s = ( event(ClosingSilverwareDrawer,
t;), event(OpeningGlasswareCabinet, t;11) ) can indicate both
activities “set the table” and “wash dishes” at ¢;:

event(ClosingSilverware Drawer,t;) A 3)
event(OpeningGlasswareCabinet,t; 1)

— currentActivity(SetTheTable, t;).
event(ClosingSilverwareDrawer,t;) N 4)
event(OpeningGlasswareCabinet, t;11)

— currentActivity(WashDishes, t;).

However, the derivation of both activities as instances of
currentActivity at the same time instant ¢; would violate
formula (2), making the model inconsistent.

The main idea of Markov logic [13] is to allow FOL
formulae to be “softened”. The validity of a soft formula
is evaluated according to the probability of being true with
respect to a set of axioms describing reality. Each soft formula
is associated to a weight that represents the confidence on the
validity of the formula. Weights are generally learned from a
training set of observations. The main inference task of MLN
reasoning is to determine the most probable set of axioms
representing reality that can be inferred based on the defined
formulae and a set of observations. Intuitively, formulae with
higher weight will have higher influence in deriving these
axioms.

Example 2: Referring to Example 1, MLN can solve the
described problem by assigning formula (1) to the set of soft
formulae and formula (2) to the set of hard formulae. The ac-
tual weights for the instantiations of formula (1) are estimated
through supervised learning on a training set. Suppose that
the estimated weight of formula (3) is higher than the one of
formula (4) since, in the training set, the sensor event sequence
5 is more frequently observed during “set the table” than
during “wash dishes”. In that case, if 5 is observed, the MLN
reasoner would infer that the most probable currentActivity at



t; is “set the table”. The MLN reasoner cannot derive both
activities, since this would violate the hard formula (2). Of
course, in order to effectively recognize the current activity, we
need to use multiple formulae involving complex sequences of
sensor events.

3) Detecting activity boundaries through MLN: In our
model, the observations correspond to the sensor events.
Predicate nextEvent(t;,t;41) indicates that the sensor event
occurred at time t; occurred before the one at ¢;,;, and
no other sensor event occurred between them. As explained
in Section III-C2, in our architecture we ensure that no
more than one sensor event can occur at a given time in-
stant. Other predicates correspond to the activity boundaries:
startActivity(a,t) indicates that activity a begins at time ¢
and endActivity(a,t) indicates that activity a ends at time ¢.
The approach used for boundary recognition, initially proposed
in [14], is to write appropriate soft formulae to create a
correlation between windows of n consecutive sensor events
and start/end of activities. For example, for n = 2 we use the
following soft formulae:

o event(+ey,t1) Aevent(+eg,t2) A nextEvent(ty,t2) —

start Activity(+a, t1)

o cvent(+ey,t1) Aevent(+ea,ta) A nextEvent(ty,tz) —

endActivity(+a, ta)

The + symbol before a variable means that a weight is
learned for each grounding of that variable. For each couple of
consecutive sensor events, the first one of the above formulae
correlates the first event with the start of an activity; the second
formula correlates the second event with an activity end. The
most effective value of n depends on the characteristics of
the pervasive system and on the considered activities. In our
work, we experimentally choose the optimal value of n (more
details can be found in [12]).

We use hard formulae to express common sense knowledge
about activity boundaries. For instance, in order to specify that
it is impossible that an activity starts and ends at the same time,
the following hard formulae are declared:

o startActivity(a,t) — —endActivity(a,t)

o endActivity(a,t) — —startActivity(a, t)

The weights of the soft formulae are learned using a training
set of sensor events acquired during the execution of the
considered activities. Soft formulae with learned weights and
hard formulae are then used to compute MAP inference [13] on
new data coming from the SEMANTIC INTEGRATION LAYER.

D. Modeling abnormal behaviors

As anticipated, our method relies on medical models of ab-
normal behaviors that may indicate the onset of MCI. In order
to acquire those models, we collaborated with cognitive neuro-
science experts from the Institute Fatebenefratelli’, Lombardy
—a leading center in the field of mental health research and re-
search on neurodegenerative disorders— within the SECURE?

IIRCCS (Research and Care Institute) St John of God Clinical Research
Centre, Brescia — http://www.irccs-fatebenefratelli.it

2SECURE: Intelligent System for Early Diagnosis and Follow-up at Home,
http://secure.ewlab.di.unimi.it/

research project funded by Lombardy region and MIUR Italian
ministry. Those anomalies have been selected during different
project meetings among the technical and medical partners
of the project, based on the medical practice and relevant
literature [4]. In this work, we have considered anomalies
related to food preparation, food consumption, and compliance
to medical prescriptions. The anomalies are defined in natural
language by the clinicians; e.g., “an anomaly occurs when the
patient prepares a meal but forgets to consume it”.

In our model, each IADL consists of a sequence of simple
actions, which we call “steps”. For instance, a patient could
perform the IADL “taking medicines” by executing this se-
quence of steps: open the medicine repository, retrieve the
medicine box, return the medicine box, close the medicine
repository. We classified anomalies in the two categories:

o Non-critical anomaly. An anomaly is considered as non-
critical when the patient skips a relevant step while
performing a IADL, or spends too much time to perform
the activity, but still he is able to complete the activity cor-
rectly. For instance, we consider a non-critical anomaly to
occur when the patient forgets to close a repository after
taking something from it. Non-critical anomalies can be
considered as minor indicators of possible cognitive dis-
orders, only if they occur more frequently than expected,
or if their temporal trend significantly increases with time.

e Critical anomaly. A critical anomaly occurs when the
patient skips some necessary step while performing an
activity, forgets to execute a required activity, or performs
the activity more times than expected. Critical anomalies
are stronger indicators of possible MCI onset. These
anomalies are further divided into four categories:

— Omission: there are some steps in each IADL which
are necessary and it is mandatory for the patient
to perform them in order to complete the activity
correctly: a critical omission occurs when the patient
skips any of such steps. For instance, a critical
omission related to the activity “taking medicines”
is: “the patient forgets to retrieve the prescribed
medicine during the prescribed time’.

— Replacement: this anomaly occurs when, during a
IADL, a patient replaces a correct step with a wrong
one; for instance, “the patient has placed the butter
inside a non-refrigerated cabinet”.

— Wrong activity: it occurs when the patient performs
an activity that should not be done. For instance, this
anomaly occurs when the patient takes a medicine
that was not prescribed.

— Repetition: this anomaly occurs when the patient
repeats the same activity more times than expected;
for instance, when the patient consumes the morning
breakfast twice in a day.

However, human behaviors are characterized by wide vari-
ability; factors such as contextual conditions, individual habits
and personality traits may determine the execution of various
anomalies that are not necessarily due to cognitive impair-



TABLE I
EXAMPLES OF RULES MODELING ABNORMAL BEHAVIORS

No. | Rule

Anomaly type

anomaly(cr, fridge, T1) “—

(T1 < Tg).

action(return, RF,S,T1) A
action(close, door, S,T>) N RefFood(RF) N NonRefStorage(S) A

Critical replacement: the patient has placed
a food item that needs refrigeration inside a
non-refrigerated cabinet.

anomaly(nca, prepBF,Th)

< startActivity(prepBreak fast,T1) A

Non-critical anomaly: the patient spent too

2 endActivity(prepBreak fast, To) A ((T2 — T1) > 45minutes). much time to prepare breakfast.

3 anomaly(co, medicine, null) — prescribed(M,T1,T2) A | Critical omission: the patient has not re-
not((action(retrieve, M,C,T) AN MedCabinet(C) A (Th < T < T>). trieved a prescribed medicine in due time.

4 anomaly(wa, medicine,null)  «  not(prescribed(M,T1,T2)) A | Wrong activity: the patient has taken a

action(retrieve, M,C,T) A MedCabinet(C) N Medicine(M).

medicine that was not prescribed.

ment. This is especially true for non-critical anomalies, as
leaving repositories open, which may be normally done by
cognitively healthy people for negligence or hastiness. Hence,
the considered anomalies are not intended to provide an auto-
matic diagnosis of the patient’s cognitive status. For instance,
consider the example of wrong activity given above: the fact
that the patient takes a medicine that was not prescribed
is critical if he does it unintentionally (e.g., for a memory
disorder). In other cases it may be a normal behavior; e.g.,
if the patient intentionally takes an over-the-counter drug that
does not interfere with his medical prescriptions. Therefore,
the frequency of detected anomalies and their temporal trend
are used as a mean to trigger alarms to the practitioners for
further inspecting the history of detected anomalies and their
fine-grained descriptions.

In order to automatically reason with anomalies, we rep-
resent them as rules in propositional logic. The anomalies
are represented by the predicate anomaly(Categ, Obj, Time).
Categ defines the category of the anomaly. Obj defines the
objects or activities involved in the anomaly; for example, in
case of a critical omission, the missed medicine may be the
object related to that anomaly. Time defines the time (e.g.,
day, or exact instant) at which the anomaly has happened.
Table I shows the representation of a few anomalies. The
semantics of not is the one of negation as failure. Predicate
prescribed(m,tq,t2) states that the patient must take medicine
m from time ¢; to time ¢4 of the current day. Medicine(o) (resp.
Food(o)) states that object o is a medicine box (resp. food
item). Action(a, 0,0, t) states that the patient executed action
a on objects 0 and o’ at time t. Holds(s,0,t1,t2) states that the
status of object o has been “s” from t; to t5 (for instance,
“the microwave oven has been on from 11:30 to 11:55”). The
Holds predicate allows us to express temporal conditions that
are useful in the definition of different anomalies. Temporal
expressions that we use in our rule-based definitions include
the interval of time during which an action is performed, the
temporal distance between two actions, the temporal duration
of an activity, the temporal order among activities.

E. Recognizing abnormal behaviors

Abnormal behaviors are recognized by an inference engine,
which periodically (e.g., at the end of each day) evaluates
the rule-based anomaly definitions considering the data ac-
quired and inferred during the considered time period: activity

boundaries, actions and sensor events, as well as external
knowledge including the medical prescriptions of the patient
and the classification of objects in categories. Those data are
represented by the predicates introduced in Section III-D, and
added to the propositional logic knowledge base.

Example 3: Consider an elderly person living indepen-
dently at home. Suppose that furniture and devices, including
food cabinets and the fridge, are equipped with a magnetic
sensor to detect the open and close actions. An RFID tag is
attached to some food boxes to identify their content (e.g.,
rice, milk, coffee, sugar). RFID readers in the proximity of
the cabinets and fridge are in charge of detecting which item
has been retrieved or returned. Suppose that at 08:05 AM the
patient opens the fridge f and retrieves the milk box m to
prepare breakfast. Then after a few minutes he mistakenly puts
the milk box in the non-refrigerated food cabinet ¢ and closes
its door. Hence, based on the sensed events, the following
axioms are automatically added to the knowledge base:

action(open, door, f, 8:05:00 AM).
action(retrieve, m, f, 8:05:07 AM).

action(return, m, c, 8:12:30 AM).
action(close, door, ¢, 1:12:35 AM).

Since the knowledge base contains the axioms RefFood(m)
(stating that the milk box contains a food item that must be
kept refrigerated) and NonRefStorage(c) (stating that c is a
non-refrigerated storage), rule 1 in Table I fires, recognizing
an abnormal behavior.

1V. EXPERIMENTAL EVALUATION

Dataset acquisition and experimental evaluation are exten-
sively reported in [12]; in the following we summarize the
main findings.

A prototype implementation of the whole system has been
developed in Java within the activities of the SECURE project.
We have instrumented a kitchen in a smart home lab using
different kinds of sensors to detect low-level actions and
events. Used sensors include RFID readers, magnetic sensors,
temperature sensors, pressure and presence sensors. We have
acquired a dataset of IADLs and anomalies related to medicine
intake, meal preparation, and meal consumption, asking to
voluntary actors to reproduce the daily routine of 21 patients
in our smart home lab. Executed IADLs and anomalies re-
alistically reproduce the behavior of two groups of elderly



persons: 7 healthy seniors (group 1), and 14 elderly people
with early symptoms of MCI (group 2). We assumed that every
individual lives alone in his/her home. We have considered
seven categories of critical anomalies and four categories
of non-critical ones. During his/her one-day routine, each
individual in group 1 does not execute any critical anomaly,
but may execute a few non-critical ones. Group 2 individuals
may perform several non-critical and critical anomalies.

During the execution of the activities and anomalies, we
have acquired the timestamped data coming from the sensors
deployed in the smart home and we have manually annotated
the dataset with the start- and end-time of activities and
anomalies. Group 1 individuals did 7 non-critical and O critical
anomalies; group 2 individuals did 29 non-critical and 28
critical anomalies. We experimentally evaluated the FABER
method using leave-one-day-out cross-validation.

TABLE 11
PRECISION, RECALL AND F1 SCORE

[ ANOMALY TYPE [ PRECISION [ RECALL [ F1 SCORE |

Non-critical 0.893 0.926 0.909
Critical 0.923 1 0.96
[ TOTAL [ 0.898 | 0.964 | 093 |

Table II reports the results in terms of precision, recall and
F1 score; the latter is the harmonic mean of precision and
recall. The achieved precision was close to 0.9. Most false
positives were due to mispredictions of the activity boundary
detection module. However, the precision of critical anomaly
recognition is significantly higher than the one of non-critical
one. When activity boundaries were correctly recognized,
in most cases FABER recognized the occurred anomalies,
achieving an overall recall larger than 0.96. Overall, the system
produced 6 false positives during the 21-days activities of
the two groups. We claim that the number of false positives
is compliant with the requirements of clinicians, especially
considering that the individuals totally performed more than
150 instances of activities during the experimentation. A
preliminary clinicians’ assessment of the FABER system can
be found in [15].

V. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the challenging issue of unob-
trusively recognizing abnormal behaviors exhibited by elderly
persons at home. We have proposed the FABER hybrid tech-
nique to recognize anomalies at a fine-grained level, based
on the integration of supervised learning and symbolical rea-
soning, and on sensor data acquired from the smart-home in-
frastructure. Differently from existing approaches, our method
provides detailed information about the detected anomalies,
which can be exploited by practitioners for early detection
of MCI. We designed the models of anomalies collaborating
with cognitive neuroscience experts, and we implemented a
prototype of FABER in a smart home lab. Experiments with
a large dataset of activities show that FABER achieves high
recall while generating a small number of false positives.

The achieved results are promising, but we plan to improve
this work in several directions. Our current anomaly recog-
nition method is based on non-probabilistic rules that strictly
determine the detection of an abnormal behavior based on a
user-defined set of observations. We consider extending this
rigid system with probabilistic reasoning, possibly by means
of a probabilistic logic. We also plan to investigate alternative
activity recognition methods to improve the activity boundary
detection rates. Other future work includes addressing the
case of multi-inhabitants, concurrent and interleaved activities.
Finally, we are working closely with clinicians to extend the
set of significant anomalies to be monitored and we are already
conducting experiments in patients’ homes.
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