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Abstract. Hierarchical classification problems gained increasing atten-
tion within the machine learning community, and several methods for
hierarchically structured taxonomies have been recently proposed, with
applications ranging from classification of web documents to bioinfor-
matics. In this paper we propose a novel ensemble algorithm for mul-
tilabel, multi-path, tree-structured hierarchical classification problems
based on the true path rule borrowed from the Gene Ontology. Local
base classifiers, each specialized to recognize a single class of the hierar-
chy, exchange information between them to achieve a global “consensus”
ensemble decision. A two-way asymmetric flow of information crosses the
tree-structured ensemble: positive predictions for a node influence its an-
cestors, while negative predictions influence its offsprings. The resulting
True Path Rule hierarchical ensemble is applied to the prediction of gene
function in the yeast, using the FunCat taxonomy and biomolecular data
obtained from high-throughput biotechnologies.

1 Introduction

Several interesting real-world classification problems are characterized by hierar-
chical relationships between classes [1, 2, 3]. These problems come from different
fields, ranging from textual classification of web content [1, 2], to gene function
prediction in bioinformatics [3, 4], and share the common property that a certain
general class may be further specified by more refined classes at different levels
of an overall hierarchy. For instance, in the FunCat taxonomy [5] the general
class ”metabolism” has several child classes, such as ”amino acid metabolism”,
”C-compound and carbohydrate metabolism”, ”lipid and fatty acid metabolism”
and others that provide more detailed specifications and subdivisions of the par-
ent class. Moreover each child class, e.g. ”amino acid metabolism”, can be further
subdivided in ”metabolism of the aspartate family”, ”metabolism of the cysteine
- aromatic group” and so on, thus resulting in a complex hierarchy divided at
multiple levels.

Several hierarchical algorithms have been proposed in the literature, with dif-
ferent characteristics and purposes, considering for instance methods restricted
to multilabels with single and no partial paths [1, 6], or other methods extended
to multiple and also partial paths [2, 7]. Nevertheless, algorithms that explic-
itly take into account the relationships between the classes of the structured
hierarchy received much less attention.



In particular in this paper we propose a hierarchical ensemble algorithm, by
which classifications of positive examples in child nodes influence the prediction
of the parent node in a recursive way, while negative predictions in a node
influence the prediction in the descendant nodes. This general behaviour is a
consequence of the true path rule, a term borrowed from the Gene Ontology [8]:
according to this rule, if an example belongs to a class, it belongs to all its
ancestors, and if does not belong to a class it does not belong to all its offsprings.

In the next section the main motivations and characteristics of the proposed
ensemble algorithm are presented and discussed. Then in Sect. 3 we test the pro-
posed method on a complex hierarchical gene function prediction problem, using
the FunCat taxonomy and bio-molecular data obtained from public databases,
and discuss some drawbacks and possible enhancements of the proposed hierar-
chical ensemble approach. The conclusions end the paper.

2 An Ensemble Algorithm Based on the True Path Rule

2.1 Definitions and Notation

We consider a multiclass multilabel classification problem where the classes are
structured according to a given hierarchy.

More precisely, an example x can be assigned to 1 or more classes of the set
Ω = {ω1, ω2, . . . , ωm}. The assignments are coded through a vector of multilabels
y =< y1, y2, . . . , ym >∈ {0, 1}m, by which if x belongs to class ωj , then yj = 1,
otherwise yj = 0.

The classes are structured according to a hierarchy and can be represented by
a directed graph, where nodes correspond to classes, and arcs to relationships
between classes. Considering that each node corresponds to a class, the node
corresponding to the class ωi may be simply denoted by i. We denote by child(i)
the set of children nodes of i, while par(i) represents the set of the parents of
node i. Moreover ychild(i) denotes the labels of the children classes of node i and
analogously ypar(i) denotes the labels of the parent classes of i.

A classifier D : X → {0, 1}m computes the multilabel associated to each
example x ∈ X, and di(x) ∈ {0, 1} is the label predicted by the classifier for
class ωi. For the sake of simplicity if there is no ambiguity we represent di(x)
simply by di.

2.2 The True Path Rule

The proposed algorithm is inspired by the ”true path rule” that characterizes
the hierarchy of the gene functional classes of both the Gene Ontology (GO) [8]
and FunCat [5] taxonomies:

“If the child term describes the gene product, then all its parent terms
must also apply to that gene product”



This means that if a gene is annotated with a specific functional term (functional
class), then it is annotated with all the ”parent” classes, and with all its ancestors
in a recursive way. On the contrary if a gene is not annotated to a a class, it
cannot be annotated to its offsprings. (Fig. 1).
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Fig. 1: True path rule: if example x belongs to class G then it belongs also to class D,
B and A. On the contrary if an example x does not belong to class C it cannot belong
to class F or L.

From the “true path rule”, for a given example x, considering the parents of
a given node i, the following rules can be immediately deduced:{

yi = 1 ⇒ ypar(i) = 1
yi = 0 ; ypar(i) = 0 (1)

As a consequence a classifier that respects the true path rule needs to obey the
following rules: {

di = 1 ⇒ dpar(i) = 1
di = 0 ; dpar(i) = 0 (2)

On the other hand, considering the children of a given node i, the following
rules can be immediately deduced:{

yi = 1 ; ychild(i) = 1
yi = 0 ⇒ ychild(i) = 0 (3)

and a classifier that respects the true path rule needs to obey the following rules:{
di = 1 ; dchild(i) = 1
di = 0 ⇒ dchild(i) = 0 (4)

From eq. 1 and 3 we can observe an asymmetry in the rules that govern the
assignments of positive and negative labels. Indeed we have a propagation of
positive labels from bottom to top of the hierarchy (eq. 1), and a propagation
of negative labels from top to bottom (eq. 3). On the contrary negative labels
cannot propagate from bottom to top, and positive predictions cannot propagate
from top to bottom.



2.3 The Main Ideas behind the Algorithm

We can design a hierarchical classifier that uses the predictions made at each
node by local ”base” classifiers and puts together their decisions to realize an
ensemble that obeys the “true path rule”. More precisely the basic ideas behind
the true path rule ensemble algorithm are the following:

1. A set of base classifiers associated to each class/node of the graph provides
a local decision about the assignment of a given example to a given node.

2. Positive decisions for a node influence the decisions made by the parent
nodes in a recursive way (that is a positive decision influences the parent
and may propagate from bottom to top across the graph). On the contrary
negative decisions do no affect decisions of the parent node (that is they do
not propagate from bottom to up, eq. 2).

3. If the classifier takes a negative prediction for a given node (taking into
account the local decision of its descendants), it in turns set to negative all
its descendants, to preserve the consistency of the hierarchy according to the
true path rule. On the contrary positive decisions do not influence decisions
of child nodes (eq. 4).

The decision of the ensemble classifier is thus the result of the local predic-
tions made by the base classifiers associated to each node modified in order to
take into account positive predictions that comes from the bottom of the graph
and negative predictions that comes from the top of the graph.

We propose an algorithm for tree-structured graphs that scans the tree from
bottom to top through a per level traversal of the tree. Base classifiers estimate
local probabilities p̂i(x) that a given example x belongs to class ωi, and the
ensemble corrects the local probabilities to estimate the “consensus” probability
pi(x). More precisely, given the local estimates of the probabilities p̂j(x) made
by the base classifiers across the tree T of the m classes, the probability that an
example x belongs to class ωi is:

pi(x) = P (ωi|x, T, p̂j(x), 1 ≤ j ≤ m) (5)

2.4 The Hierarchical Ensemble Algorithm

The algorithms starts to train the m base learners (one for each node/class of the
hierarchy); each trained classifiers computes an estimate of the local probabilities
p̂j(x). The core of the algorithm is represented by the evaluation phase, where
the ensemble provides an estimate of the “consensus” global probability pi(x).
A detailed representation of the evaluation phase of the algorithm is given in
Algorithm 1. In the algorithm there are two main for loops: the external for
(from row 1 to 26) handles a per level bottom-up traversal of the tree, while
the internal (from row 2 to 25) scans the nodes at each level. If a node is a leaf
(row 3), then the consensus probability pi is equal to the local probability p̂i(x).
Note that a positive decision is taken if pi(x) is larger than a threshold t (row
5): a natural choice for t is 0.5. If a node is not a leaf (row 10), at first the



Algorithm 1 True Path Rule (TPR) hierarchical ensemble
Input:
- a test example x
- tree T of the m hierarchical classes
- set of m classifiers (one for each node) each predicting p̂i(x), 1 ≤ i ≤ m

1: for all levels k of T from bottom to top do
2: for all nodes i at level k do
3: if i is a leaf then
4: pi(x)← p̂i(x)
5: if pi(x) > t then
6: di(x)← 1
7: else
8: di(x)← 0
9: end if

10: else
11: φ(x)← {j|j ∈ child(i), dj(x) = 1}
12: pi(x)← 1

1+|φ(x)|

“
p̂i(x) +

P
j∈φ(x) pj(x)

”

13: if pi(x) > t then
14: di(x)← 1
15: else
16: di(x)← 0
17: for all j ∈ subtree(i) do
18: dj(x)← 0
19: if pj(x) > t then
20: pj(x)← t
21: end if
22: end for
23: end if
24: end if
25: end for
26: end for

Output:

- the ensemble decisions di(x) =

(
1 if x belongs to node i

0 otherwise

- the probabilities pi(x) that x belongs to the node i ∈ T

set φ(x) collects all the children nodes for which we have a positive prediction,
and the consensus probability pi of the ensemble is computed by considering
both the local estimate of the probability p̂i and the probabilities computed by
the children nodes for which a positive decision has been taken (row 12). Note
that in case of a negative decision for the node i, all the classes belonging to
the subtree rooted at i are set to negative (rows 17-18). The algorithm provides
both the multilabels associated to the example x and the probabilities pi that a
given example belongs to the class i, 1 ≤ i ≤ m.



3 Experimental Results

3.1 Hierarchical Classification of Functional Classes of Genes

We considered the functional classification of yeast genes for a large number
of classes structured according to the FunCat (Functional Catalogue), a hierar-
chically tree-structured, controlled classification system enabling the functional
description of proteins from any organism [5].

We selected only the genes annotated to FunCat (funcat-2.1 scheme), avail-
able from the MIPS web site (http://mips.gsf.de/projects/funcat), using
the Hcgene R package [9]. We also removed the genes annotated only with the
”99” FunCat class (”UNCLASSIFIED PROTEINS”) and selected classes with
at least 20 positive examples, in order to get a not too small set of positive
examples for training. The resulting tree has a depth equal to 5 and includes
about 200 functional classes. Different strategies can be chosen to select nega-
tive examples for each functional class [10, 9]. In this work negative examples
for each class have been selected in such a way that they are not annotated for
the class, but belong to the parent class (i.e. positive for the parent class). In
this way only negative examples that are not too dissimilar to the positive ones
are selected.

3.2 Data sets

We chose four different types of bio-molecular data obtained from high-throughput
bio-technologies and available from public databases or from literature. The
main characteristics of the data we used in our experiments are summarized
in Tab. 1. Proteins are constituted by structured and functionally character-

Table 1: Data sets

Data set n. examples n. feat. n.classes

Protein domain 3529 5724 211

Phylogenesis 2445 24 187

Gene expression 4532 250 230

PPI - BioGRID 4531 5367 232

ized regions usually referred as domains joined by unstructured regions named
loops. To capture this source of functional information we considered the E-value
assigned to each gene product by a collection of profile-HMMs, each of which
trained on a specific domain family, using data from the Pfam (Protein fami-
lies) database [11]. The E-values have been obtained by means of the HMMER
software toolkit [12].

Phylogenetic data have been obtained through BLAST searches [13]: each
feature corresponds to the negative logarithm of the lowest E-value reported by



BLAST version 2.0 in a search against a complete genome, with negative values
(corresponding to E-values greater than 1) truncated to 0 [14].

We merged the gene expression experiments of Spellman et al. (gene expres-
sion measures relative to 77 conditions) [15] with the transcriptional responses of
yeast to environmental stress (173 conditions) by Gasch et al. [16], thus obtaining
real-valued vector data with 250 features.

Finally we downloaded protein-protein interaction (PPI) data from the Bi-
oGRID database, that collects PPI data from both high-throughput studies and
conventional focused studies [17]. Data are binary: they represent the presence
or absence of protein-protein interactions.

3.3 Experimental Setup

For each data set we evaluated the performance of three different ensembles: the
Flat ensemble, that does not take into account the hierarchical structure of the
data, the Hierarchical Top-Down and the proposed True Path Rule (TPR) Hi-
erarchical Bottom-Up ensemble. The classical hierarchical Top-down algorithm
classifies an example x, where di(x) is the classifier decision at node i and root(T )
denotes the set of nodes at the first level of the tree T , in the following way:

yi =





di(x) if i ∈ root(T )
di(x) if i /∈ root(T ) ∧ ypar(i) = 1
0 if i /∈ root(T ) ∧ ypar(i) = 0

As base learners we used 2nd and 3rd degree polynomial SVMs. The probabilistic
output of the SVMs composing TPR ensembles has been computed using the
sigmoid fitting proposed in [18].

Considering the large unbalance between positive and negative examples
available for each class, we evaluated the performance of the ensembles through
the F-measure, i.e. the harmonic mean between precision and recall, by apply-
ing for each data set 5-fold cross-validation techniques. We performed a limited
model selection for the base learners, by applying a grid search only to the first
level nodes (classifiers) of the tree (the nodes closest to the root), and then we
extended the resulting best model parameters to all the other classifiers of the
tree.

3.4 Results

Results of the comparison between Flat, Top-down and True Path Rule hier-
archical ensembles are summarized in Tab. 2. The table reports the average
F-measure across classes, using the same 0/1 loss for each class of the hierarchy.
Data in bold denote results for an ensemble better than both the other two (at
0.05 significance level), according to the 5-fold cross-validated paired t-test [19].
True Path Rule ensembles achieve significantly better results with respect to
both Flat and Hierarchical top-down ensembles: only with Gene expression data



Table 2: Average F-measure across FunCat classes: comparison between Flat, Top-
down and TPR (true path rule) ensembles.

Data set Flat Top-down TPR

Protein domain 0.0976 0.1246 0.1590

Phylogenetic 0.0204 0.0005 0.0708

Gene expression 0.0882 0.1139 0.1058

PPI - BioGRID 0.0396 0.0255 0.1257

Average across data 0.0614 0.0661 0.1153

Top-down ensembles perform better, even if the difference is not statistically
significant.

Looking at Tab. 3 we can observe that the better results of TPR ensembles are
due to a better balancing between precision and recall. Indeed on the average the
higher recall is obtained by the Flat ensemble, while the higher average precision
by the Top-down ensembles (Tab. 3). In both cases the recall and precision of the
TPR ensemble is on the middle, but results in a larger F-measure. Nevertheless,
for real applications to gene function prediction, the precision is actually too
low to be useful in practice. Indeed in real applications an ”in silico” prediction
needs to be validated by ”in vitro” biological functional validation, and we need
a reasonably high precision to justify the more expensive biological validation.

Note that here we consider the average precision, recall, and F-measure across
classes, and hence we may obtain an average F-measure that is lower of both
the average precision and recall.

Table 3: Average Precision and Recall across FunCat classes: comparison between
Flat, Top-down and TPR (true path rule) ensembles.

Flat Top-down TPR
Data set Prec. Rec. Prec. Rec. Prec. Rec.

Protein domain 0.1133 0.3256 0.3370 0.0800 0.1488 0.2395

Phylogenetic 0.1288 0.2095 0.0103 0.0002 0.1050 0.0853

Gene expression 0.0669 0.3772 0.1518 0.0961 0.0757 0.2777

PPI - BioGRID 0.1462 0.2282 0.2235 0.0145 0.1862 0.1204

Average across data 0.1138 0.2851 0.1806 0.0477 0.1289 0.1807

Even if the average accuracy across classes is quite high (for both Hierarchical
Top-down and TPR ensembles is larger than 90%, while for Flat is about 75%,
data not shown), note that this results is not so significant, considering the large
unbalance between positive and negative examples for most functional classes.
On the contrary the F-measure is quite low: the average across data sets is only



0.1153 for TPR ensembles and this result is halved with both Flat and Top-down
ensembles (Tab. 2).

These relatively poor results are due to the intrinsic complexity of the hi-
erarchical multiclass multilabel classification of genes [20]. In many cases bio-
molecular data obtained through complex bio-technologies are affected by a rel-
atively high degree of noise. Moreover, usually each data set can provide useful
information only for a subset of classes, while for others may be substantially
uninformative. It is well-known that by combining multiple sources of data we
can substantially improve the results [14, 3], and we may expect substantial
improvements by applying data fusion techniques with TPR ensembles.

Another important problem is the local model selection of each base learner.
In the experiments, for computational complexity reasons, we applied a relatively
moderate model selection strategy limited only to the first level of the tree
hierarchy (16 nodes/classes out of more than 200). By applying a computational
intensive model selection through internal cross validation we may expect a
further improvement of the results of TPR ensembles.

4 Conclusions

In this work we presented a novel ensemble algorithm for multiclass multilabel
hierarchical classification problems. The training phase is straightforward (even
if computationally intensive), but the core of the algorithm is represented by
the evaluation phase. At this stage the base classifiers associated to each node
of the tree exchange information in an asymmetric way from bottom to top and
top to bottom: positive predictions affect the decisions at “higher level” nodes
(i.e. ancestor nodes), while negative predictions affect offsprings, according to
the true path rule borrowed from the Gene Ontology.

Even if this algorithm has been conceived for the prediction of the function
of genes at genome-wide level, it is sufficiently general to be applied in other
similar hierarchical problems in different fields and contexts.

The preliminary experimental results show that TPR ensembles are compet-
itive with respect to both classical Flat and Hierarchical Top-down ensembles,
and suggest also further directions to improve the basic TPR algorithm. For
instance, considering that the decision for a class is influenced only by positive
decisions of its offsprings, an ongoing research line consists in explicitly balanc-
ing the weigth of the local predictor with respect to that of its children: in this
way we could tune the precision and the recall of the ensemble. Moreover, by
introducing model selection strategies at each node and data fusion techniques
to exploit multiple sources of biomolecular data, we may expect to substantially
improve the overall performance of the ensemble.
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