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1 Mouse networks

In the MouseFunc setting, 21603 mouse proteins and 2815 GO terms with a number

of annotations ranging from 3 to 300 have been considered, excluding GO annotations

based solely on the “inferred from electronic annotation” (IEA) evidence code. A ran-

domly selected set of 1718 proteins is held-out and their annotations have to be predicted

using the annotations of the remaining proteins. We collected 17 types of protein pro-

files from MouseFunc, including protein family profiles, expression data, protein-protein

interactions, phenotypes, phylogenetic profiles. These data are briefly described below,

while the correspondences indices-networks are shown in Table S1. The indices corre-

spond to those of Figure 5, 8, 9 and Table 4 of the main paper. The names in

parenthesis correspond to the “Network” column of Table S1.

Expression data - 4 networks. Expression data from oligonucleotide arrays for

13,566 genes across 55 mouse tissues (Zhang et al., 2004) (Zhang); expression

data from Affymetrix arrays for 18,208 genes across 61 mouse tissues (Su et al.,

2004) (Su); tag counts at quality 0.99 cut-off from 139 SAGE libraries for 16,726

genes (Siddiqui et al., 2005) (Sageavg, Sagesum).

∗DI - Department of Computer Science, University of Milan, Italy
†Corresponding author
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Sequence patterns - 2 networks. Protein sequence pattern annotations from Pfam-A

(release 19) for 15,569 genes with 3,133 protein families (Finn et al., 2006) (Pfam);

protein sequence pattern annotations from InterPro (release 12.1) for 16,965 genes

with 5,404 sequence patterns (Mulder et al., 2005) (Interpro).

Protein interactions - 2 networks. Protein-protein interactions from OPHID for

7,125 genes, downloaded on 20 April 2006 (Brown and Jurisica, 2005), in adjacency

and distance format (PPIbin, PPIdist).

Phenotypes - 1 network. Phenotype annotations from MGI for 3,439 genes with 33

phenotypes, downloaded on 21 February 2006a (Eppig et al., 2007) (Pheno).

Conservation profile - 4 networks. Conservation pattern from Ensembl (v38) for

15,939 genes across 18 species (Kasprzyk et al., 2004) in binary and score format

(Phylobin, Phyloscore); conservation pattern from Inparanoid (v4.0) for 15,703

genes across 21 species (O’Brien et al., 2005), binary and score format (Inpbin,

Inpscore).

Disease associations - 1 network. Disease associations from OMIM for 1,938 genes

to 2,488 diseases/phenotypes, downloaded on 6 June 2006b (Wheeler et al., 2007;

Hamosh et al., 2005) (Omim).

GO Annotation networks - 3 networks. In addition to genomics and proteomics

association networks, we constructed three networks by using the annotations to

a given domain of GO and computing the Pearson’s correlation of binary vectors

associated to each couple of genes. We obtain a network for each GO domain:

GO.XX, where XX is one of BP (Biological Process), MF (Molecular Function)

and CC (Cellular Component). When predicting GO term c in domain XX, we

exclude the network GO.XX from the set of networks to be integrated.

aPhenotype Annotations from MGI [ftp.informatics.jax.org/pub/reports]
bDisease Associations from OMIM [ftp.ncbi.nih.gov/repository/OMIM/]
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[Table 1 about here.]

Then we constructed 17 functional association networks from the collected profiles,

using different pre-processing procedures for respectively binary and real-valued profiles

and PPI data (see next section for more details). To integrate the 17 networks we

considered the union of their nodes, thus resulting in an integrated network with 21603

nodes. Finally, among the 2815 GO classes, we selected those with at least one annotation

in the test set, obtaining 1847 GO terms.

2 Preprocessing of mouse networks

We constructed 17 functional association networks from the collected profiles, using dif-

ferent pre-processing procedures for respectively binary and real-valued profiles and PPI

data. For binary data, if β is the proportion of ones (proteins for which a given feature

is present), then all ones were replaced with − log(β) and zeros with log(1− β). In this

way the “weight” of very uncommon features is emphasized (Mostafavi et al., 2008). Fi-

nally the score for each gene pair has been set to the Pearson’s correlation coefficient of

the corresponding feature vectors. For continuous data we directly adopted the pairwise

Pearson’s correlation coefficient, and for gene expression data the squared correlation, in

order to take in account both negative and positive correlation.

Finally for PPI interaction data we constructed pairwise interaction scores using the

approach proposed in (Chua et al., 2006), where the similarity score for genes i and j is

Sij =
2|Ni ∩Nj |

|Ni \Nj |+ 2|Ni ∩Nj |+ 1
×

2|Ni ∩Nj |

|Nj \Ni|+ 2|Ni ∩Nj |+ 1

where Nk is the set of the neighbors of gene k (k is included).

To maintain sparse the resulting association networks, we set to 0 the negative corre-

lations, and the edge threshold to a value such that each node has at least one neighbour.

Finally, each network W has been normalized as follows:

Ŵ = D
−1/2

WD
−1/2 (1)
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where D is a diagonal matrix and dii =
∑

j wij its diagonal elements.

3 MouseFunc methods compared with UNIPred

Table S2 contains the description of the best eight methods of the MouseFunc challenge.

These methods are rankers, that is they provide for each gene i only a real score si.

Accordingly, to compute the F-score we first scale these scores in the interval [0,1] by

using the following equation:

s∗i =
si −min(s)

max(s)−min(s)

where min(s) = mini si and max(s) = maxi si. In this way the lowest score in s corre-

sponds to 0 and the highest score in s corresponds to 1. Then, we set a threshold for

scores at 0.5, i.e. genes corresponding to scores greater than 0.5 are predicted as pos-

itive and the remaining genes are predicted in the negative class. We outline that this

technique for computing binary labels might be suboptimal for some of the compared

algorithms; method-specific techniques to set the thresholds may lead to better results.

[Table 2 about here.]

4 COSNet and UNIPred correlation by GO ontol-

ogy

Figure S1 reports the correlations averaged by GO ontology between F-scores achieved

by the supervised linear classifier constructed at step 1.2 of UNIPred (see Section 2.3.2 of

the main paper) on each single-source network and the corresponding F-scores computed

by COSNet. The correlation is much higher for MF terms on networks 11, 14 and 15,

whereas, on networks 11, 12 and 13, CC terms show a lower correlation than those

of other two ontologies. For the remaining networks, CC terms in general achieve the
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highest correlations. Moreover, these correlations show also a higher variance w.r.t. the

correlations relative to BP and MF ontologies.

[Figure 1 about here.]

5 Mouse updated GO annotations

Regarding GO annotation release (15 August 2012), we excluded all the annotations

with IEA evidence, obtaining annotations for 18996 genes and 2712 GO terms with 3-300

annotations. Among these genes, 1255 are labeled genes belonging to the MouseFunc test

set. The 2607 missing genes with respect to the GO 2006 release include pseudogenes

(151), genes with solely IEA annotations (887), not classified genes (781), merged genes

(419) and others (DNA segment, gene segment, etc., 520). Among the 2712 GO terms,

1782 have at least one gene annotated in the test set, with 1147 BP, 418 MF and 217 CC

terms. We also re-computed the GO networks GO.BP, GO.MF and GO.CC using the

new release of GO annotations.

6 Yeast and fly networks

The considered yeast and fly networks are briefly summarized in Tables S3 and S4 re-

spectively. We integrated respectively 19 and 13 networks. To avoid biases, we excluded

e.g. GO.XX association networks when we predicted GO XX terms, where XX is one of

BP, MF, CC.

[Table 3 about here.]

[Table 4 about here.]
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7 Results on integrated mouse networks

In Table S5 we show the overall average results of the MouseFunc I participants and

UNIPred integration strategies WA, WAC WAP.

[Table 5 about here.]

[Table 6 about here.]

In addition to F-score results, we also report in Figure S2 the results in terms of AUC

and P20R averaged by GO category.

[Figure 2 about here.]

[Figure 3 about here.]

Table S6 shows the statistically significant differences in average performance according

to the Wilcoxon signed-ranks test (Wilcoxon, 1945) at α = 0.01 significance level. The

improvements of our method in terms of F-score are statistically significant w.r.t. all the

methods and all the domains up to method G (Funckenstein) in domain MF. Moreover,

even in terms of P20R the differences are significant in favour of UNIPred, except for

method G and C (GeneMANIA), where there is no statistically significant difference.

For the AUC results, UNIPred performs significantly worse than other methods only in

BP domain when compared with method C, and hierarchical methods D and G.

Importantly, all the weighted strategies of UNIPred perform better than the un-

weighted sum average (UA) and among the weighted strategies, WA seems performing

better than the others. These results are to some extent expected, since similar results

have been achieved in the literature (Mostafavi and Morris, 2010). Nevertheless, in Fig-

ure S3 the results of UNIPred integration strategies and UA integration averaged by GO

category show that per class strategy (WAP) tends to perform worse on more unbalanced

categories (BP, MF, CC 3-10 categories) and better in the other categories (see e.g. BP
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categories for P20R results). For instance, the WAP strategy considerably improves per-

formances on CC 11-30 category w.r.t. all the other strategies. These results are likely

due to the excessive unbalance of classes with a very low number of annotations, which

may affect the effectiveness of the cost-sensitive strategy of UNIPred for such extreme

cases, and may introduce over-fitting problems.

8 Results on integrated yeast and fly networks

Fig. S4 shows the results in terms of AUC averaged by GO categories for yeast and fly or-

ganisms, and the fly P20R and F-score results. Confirming results obtained with mouse,

GeneMANIA outperforms UNIPred in terms of AUC, and UNIPred performs significantly

better than GeneMANIA in terms of both F-score and P20R. MS-kNN achieves compet-

itive performance in terms of AUC, especially on yeast data, where it is the best method

in BP 31/101, MF 101 and CC 11 categories.

[Figure 4 about here.]

7



9 Proof of Theorem 1

If H = < W , k, ρ > is the parametric Hopfield network constructed by COSNet on

network G = 〈V,W 〉 (Frasca et al., 2013), fα̂,γ̂ is the optimum line computed by UNIPred

with respect to the labeling function Lc, and Fc (see Section 2.3.2 in the main paper) the

corresponding F-score value, then the following theorem holds:

Theorem 1 If ρ = α̂ and k = γ̂, then Fc = 1 iff Lc(S) is an equilibrium state of H

restricted to neurons in S.

Proof. The prof follows from Fact 3 in Frasca et al. (2013) by setting S+ = S+, S
− = S−,

UP = U+, U
N = U−, I

+ = I+, I
− = I−, I

+
α,γ = I+,ρ,k, I

−
α,γ = I−,ρ,k, x(U

P , UN) = 0,

x(S+, S−) = Lc(S) and Fscore(α, γ) = Fc. Remind that, in the learning phase, when

x(UP , UN) is set to 0 (UNIPred case), it means that to learn the optimal parameters just

nodes in S are considered, i.e. both UP and UN are the empty set.
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Figure S1: (a) Correlation of COSNet prediction per class F-score on 17 single mouse
networks and the corresponding per class weights assigned by UNIPred by considering
term belonging solely to (a) Biological Process, (b) Molecular Function and (c) Cellular
Component ontologies.
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Figure S2: Comparison of the MouseFunc methods and UNIPred in terms of AUC (a)
and P20R (b) averaged across the twelve considered GO categories.
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Figure S3: Comparison of UNIPred integration strategies on mouse data in terms of AUC
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Figure S4: Performance on yeast and fly data averaged by ontology and cardinality of
annotations of GO terms. AUC for yeast (a) and fly (b), F-score (c) and P20R (d) for
fly. ”Avg” corresponds to the ontology average results irrespective of the cardinality of
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O. G. Troyanskaya (Barutcuoglu et al., 2006)

and Bayesian integration of
diverse data sources (Aguilar et al., 2010)

Method E W. K. Kim, C. Krumpelman, Combination of classifier ensemble and
E. Marcotte gene network (Kim et al., 2008)

Method F T. Joshi, C. Zhang, GeneFAS
G. N. Lin, D. Xu (Chen and Xu, 2004; Joshi et al., 2004)

Method G W. Tian, M. Tasan, Funckenstein (Tian et al., 2008)
F. D. Gibbons, F. P. Roth

Method H Y. Qi, J. K. Seetharaman Protein Function Prediction
and Z. B. Joseph Using ’Query Retrieval’

Methods (Qi et al., 2007)

Table S2: MouseFunc I participants.
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Type Source Genes

Co-expression Busti et al. (2012) 5436

Co-expression Chin et al. (2012) 5585

Co-expression Sanz et al. (2012) 5585

Co-expression Kovacs et al. (2012) 5585

Genetic interactions Aguilar et al. (2010) 321

Genetic interactions Alamgir et al. (2010) 90

Genetic interactions Costanzo et al. (2010) 4346

Genetic interactions Libuda and Winston (2010) 143

Genetic interactions BioGRID (Stark et al., 2006) 4280

Physical interactions Breitkreutz et al. (2010) 887

Physical interactions Kaake et al. (2010) 332

Physical interactions Muller et al. (2010) 266

Physical interactions Ossareh-Nazari et al. (2010) 406

Physical interactions BioGRID (Stark et al., 2006) 4752

Shared protein domains InterPro (Apweiler et al., 2001) 3964

Shared protein domains Pfam (Sonnhammer et al., 1997) 3541

GO association network GO BP annotations 5775

GO association network GO MF annotations 5775

GO association network GO CC annotations 5775

Table S3: Yeast networks description.
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Type Source Genes

Co-expression Baradaran-Heravi et al. (2012) 8857

Co-expression Busser et al. (2012) 8857

Co-expression Colombani et al. (2012) 8857

Co-expression Lundberg et al. (2012) 8857

Genetic interactions BioGRID (Stark et al., 2006) 929

Genetic interactions Yu et al. (2008) 1414

Physical interactions Guruharsha et al. (2011) A 1866

Physical interactions Guruharsha et al. (2011) B 3833

Physical interactions BioGRID (Stark et al., 2006) 558

Shared protein domains InterPro (Apweiler et al., 2001) 5627

GO association network GO BP annotations 9631

GO association network GO MF annotations 9631

GO association network GO CC annotations 9631

Table S4: Fly networks description.
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Method AUC P20R F-score

BP MF CC BP MF CC BP MF CC

Method A 0.672 0.796 0.766 0.204 0.470 0.284 0.113 0.340 0.163

Method B 0.709 0.789 0.737 0.204 0.469 0.334 0.113 0.328 0.197

Method C 0.859 0.929 0.890 0.314 0.607 0.479 0.175 0.406 0.281

Method D 0.825 0.894 0.872 0.320 0.591 0.423 0.140 0.346 0.229

Method E 0.809 0.870 0.845 0.209 0.492 0.366 0.028 0.170 0.208

Method F 0.742 0.848 0.795 0.203 0.529 0.343 0.104 0.340 0.198

Method G 0.810 0.890 0.846 0.351 0.653 0.467 0.188 0.434 0.231

Method H 0.759 0.859 0.805 0.194 0.462 0.297 0.091 0.322 0.143

COSNet-UA 0.795 0.906 0.887 0.329 0.587 0.465 0.196 0.392 0.314

UNIPred-WA 0.792 0.920 0.883 0.356 0.648 0.494 0.205 0.443 0.342

UNIPred-WAP 0.764 0.911 0.863 0.356 0.630 0.519 0.202 0.422 0.331

UNIPred-WAC 0.781 0.900 0.870 0.316 0.558 0.454 0.202 0.434 0.350

Table S5: Prediction performance in terms of AUC, P20R and F-score for the MouseFunc
methods and UNIPred with integration strategies WA, WAP and WAC. UA is the un-
weighted average sum integration. The values are averaged across the three GO domains
BP, MF, CC. The best results are reported in boldface.
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Method AUC P20R F-score

BP MF CC BP MF CC BP MF CC

Method A + + + + + + + + +

Method B + + + + + + + + +

Method C − = = = = = + + +

Method D − + + + + + + + +

Method E = + + + + + + + +

Method F + + + + + + + + +

Method G − + + = = = + = +

Method H + + + + + + + + +

Table S6: Statistically significant differences at α = 0.01 significance level between
UNIPred and the methods participating to the MouseFunc challenge. The symbol “+”
means a difference statistically significant in favour of UNIPred, “=” means no statisti-
cally significant difference, “-” means a difference statistically significant in favour of the
other method.
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