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Abstract. The Human Phenotype Ontology (HPO) provides a concep-
tualization of phenotype information and a tool for the computational
analysis of human diseases. It covers a wide range of phenotypic ab-
normalities encountered in human diseases and its terms (classes) are
structured according to a directed acyclic graph. In this context the pre-
diction of the phenotypic abnormalities associated to human genes is a
key tool to stratify patients into disease subclasses that share a common
biological or pathophisiological basis. Methods are being developed to
predict the HPO terms that are associated for a given disease or dis-
ease gene, but most such methods adopt a simple ”flat” approach, that
is they do not take into account the hierarchical relationships of the
HPO, thus loosing important a priori information about HPO terms. In
this contribution we propose a novel Hierarchical Top-Down (HTD) al-
gorithm that associates a specific learner to each HPO term and then
corrects the predictions according to the hierarchical structure of the un-
derlying DAG. Genome-wide experimental results relative to a complex
HPO DAG including more than 4000 HPO terms show that the proposed
hierarchical-aware approach significantly improves predictions obtained
with flat methods, especially in terms of precision/recall results.

Keywords: Human Phenotype Ontology term prediction, Ensemble meth-
ods, Hierarchical classification methods, Disease gene prioritization

1 Introduction

The characterization of human diseases through detailed phenotypic data and
the ever increasing amount of genomic data available through high-throughput



technologies can improve our understanding of the bio-molecular mechanisms
underlying human diseases. Indeed phenotypic analysis is fundamental for our
understanding of the pathophysiology of cellular networks and plays a central
role in the mapping of disease genes [1].

To this end the Human Phenotype Ontology (HPO) project [2] provides a
comprehensive and well-structured set of more than 10000 terms (classes) that
represent human phenotypic abnormalities annotated to more than 7000 heredi-
tary syndromes listed in OMIM, Orphanet and DECIPHER databases [3]. This
resource offers an ontology, that is, a conceptualization of the human phenotypes
that can be processed by computational methods, and provides a translational
bridge from genome-scale biology to a disease-centered view of human patho-
biology [4]. The HPO provides also hierarchical relationships between terms,
representing the is a relation between them, whereby each term may have more
than one parent, thus resulting in a Directed-Acyclic-Graph (DAG) structure of
the overall ontology.

In this context, the prediction or ranking of genes with respect to HPO terms
is an important computational task . This task is related but different from the
classical disease-gene prioritization problem, in which genes are prioritized with
respect to specific diseases [5]. Indeed we rank genes with respect to HPO terms.
Note that HPO terms do not themselves represent diseases, but rather they
denote the individual signs and symptoms and other clinical abnormalities that
characterize diseases. Thus, one disease is characterized by ≥ 1 HPO term, and
many HPO terms are associated with multiple distinct diseases.

Several computational methods have been applied to predict gene - pheno-
type associations [6, 7, 8, 9], but they do not take into account the hierarchical
relationships that characterize phenotypes both in human and model organisms.
The resulting “flat” predictions, i.e. predictions unaware of the relationships be-
tween the different phenotypes, may provide inconsistent results. For instance, if
we adopt the HPO to catalogue human phenotypes and we try to predict HPO
terms independently of each other, we could associate to some human gene the
HPO term “Atrial septal defect” but not the term “Abnormality of the cardiac
septa”, thus introducing an inconsistency since “Atrial septal defect” is obvi-
ously a subclass of “Abnormality of the cardiac septa”. Besides inconsistency,
flat predictions loose the available “a priori” knowledge about the hierarchical
relationships between HPO terms, thus suggesting that hierarchy-aware meth-
ods could at least in principle introduce improvements in the gene-phenotype
predictions. To overcome the limitations of “flat” approaches, we could apply
computational methods for hierarchically structured output spaces, but most of
them have focused on tree-structured ontologies [10, 11, 12, 13] and only a few
on DAG-structured taxonomies [14, 15] and, even if they have been applied in
computational biology, e.g. to the prediction of protein functions [16], to our
knowledge no hierarchy-aware methods have been applied to the prediction of
HPO terms associated to human genes.

To fill this gap, we propose a simple and novel hierarchical method, i.e.
the Hierarchical Top-Down (HTD) ensemble method conceived to deal with the



DAG structure of the HPO. At first a base learner associated with each consid-
ered HPO term is applied to provide “flat” gene-phenotype associations. Then
the algorithm gradually visits the HPO DAG level by level from the root (top)
to the leaves (bottom), and modifies the flat predictions to assure their hier-
archical consistency. One of the main advantages of the proposed approach is
that it always provides consistent predictions, that is predictions that respect
the hierarchical structure of the HPO. Moreover, by exploiting the parent-child
relationships between HPO terms, the proposed hierarchical approach can signif-
icantly improve HPO flat predictions, as shown by the large set of experiments
involving more than 20, 000 human genes and more than 4, 000 HPO terms. The
HTD method is simple, fast and can be applied by using in principle any base
learner for both hierarchical multi-label phenotypic classification and ranking of
human disease genes.

2 Hierarchical Top-Down (HTD) ensembles for the HPO
taxonomy

Let G =< V,E > be a Directed Acyclic Graph (DAG) with vertices V =
{1, 2, . . . , |V |} and edges e = (i, j) ∈ E, i, j ∈ V . G represents a taxonomy
structured as a DAG, whose nodes i ∈ V represent classes of the taxonomy and
a directed edge (i, j) ∈ E the hierarchical relationships between i and j: i is
the parent class and j is the child class. In our experimental setting the unique
root node root(G) is represented by the top HPO term “HP:0000001”: all the
other HPO terms are its descendants. The set of children of a node i is denoted
child(i), and the set of its parents par(i).

To each HPO term i is associated a “flat” classifier fi : X → [0, 1] that
provides a score ŷi ∈ [0, 1] for a given gene x ∈ X. Ideally ŷi = 1 if gene x is
associated to the HPO term i, and ŷi = 0 if it is not, but intermediate scores
are allowed. The ensemble of the |V | flat classifiers provides a score for each
node/class i ∈ V of the DAG G:

ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > (1)

We say that the multi-label scoring y is valid if it obeys the true path rule
(also called the annotation propagation rule) that holds also for other DAG-
structured ontologies, such as the Gene Ontology (when restricted to subclass
relations) [17]:

y is valid ⇐⇒ ∀i ∈ V, j ∈ par(i) ⇒ yj ≥ yi (2)

According to this rule, if we assign a HPO term i to a gene, then also its parent
HPO terms must be assigned to the same gene: in other words an assignment to
a node must be recursively extended to all its ancestors. Note that this implies
that a score for a parent HPO term must be larger or equal than that of its
children. Consequently, if a certain HPO term is classified as a negative example



because its score is below threshold, then all of its descendents must also be
classified negative.

In real cases it is very unlikely that a flat classifier satisfies the true path
rule, since by definition the predictions are performed without considering the
hierarchy of the classes. Nevertheless by adding a further label/score modifica-
tion step, i.e. by taking into account the hierarchy of the classes, we can modify
the labeling or the scores of the flat classifiers to obtain a hierarchical classifier
that obeys the true path rule.

To this end we propose a Hierarchical top-down algorithm (HTD), that mod-
ifies the flat scores according to the hierarchy of a DAG through a unique run
across the nodes of the graph. It adopts this simple rule by per-level visiting the
nodes from top to bottom:

ȳi :=

 ŷi if i ∈ root(G)
minj∈par(i) ȳj if minj∈par(i) ȳj < ŷi
ŷi otherwise

(3)

Note that ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > represents the set of the predictions obtained
by the (HTD) algorithm from the flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >.

The node levels correspond to their maximum path length from the root.
More precisely, having L = {0, 1, . . . , ξ} levels in the HPO taxonomy, ψ : V −→
L is a level function which assigns to each HPO term i ∈ V a level, i.e. its
maximum distance from the root. For instance, nodes {i|ψ(i) = 0} correspond
to the root node, {i|ψ(i) = 1} is the set of nodes with a maximum path length
from the root (distance) equal to 1, and {i|ψ(i) = ξ} are nodes that lie at a
maximum distance ξ from the root.

Fig 1 shows that we need to visit the HPO hierarchy per level in the sense
of the maximum and not of the minimum distance from the root: this is neces-
sary to preserve the consistency of the predictions. Indeed looking at the HTD
scores obtained respectively with minimum and maximum distance from the
root (bottom-left of Fig. 1), we see that only the maximum distance preserves
the consistency of the predictions. Indeed, focusing on node 5, by traversing the
DAG levels according to the minimum distance from the root, we have that the
level of node 5 is 1 (ψmin(5) = 1) and in this case by applying the HTD rule (3)
the flat score ŷ5 = 0.8 is wrongly modified to the HTD ensemble score ȳ5 = 0.7.
If we instead traverse the DAG levels according to the maximum distance from
the root, we have ψmax(5) = 3 and the HTD ensemble score is correctly set
to ȳ5 = 0.4. In other words at the end of the HTD, by traversing the levels
according to the minimum distance we have ȳ5 = 0.7 > ȳ4 = 0.4, that is a child
node has a score larger than that of its parent, and the true path rule is not
preserved; on the contrary by traversing the levels according to the maximum
distance we achieve ȳ5 = 0.4 ≤ ȳ4 = 0.4 and the true path rule consistency is
assured. This is due to the fact that by adopting the minimum distance when
we visit node 5, node 4 has not just been visited, and hence the value 0.4 has
not been transmitted by node 2 to node 4; on the contrary if we visit the DAG
according to the maximum distance all the ancestors of node 5 (including node



Fig. 1. Levels of the hierarchy must be defined in terms of the maximum distance from
the root (node 1). Small numbers close to nodes correspond to the scores of the flat
predictions. The Hierarchical top-down scores obtained respectively by crossing the
levels according to the minimum and the maximum distance from the root are shown
in the bottom-left.

4) have just been visited and the score 0.4 is correctly transmitted to node 5
along the path 2 → 4 → 5.

More precisely, given a DAG G =< V,E >, the level function ψ, a set of
flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > for each class associated to each node
i ∈ {1, . . . , |V |}, the HTD-DAG algorithm assures that for the set of ensemble
predictions ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > the following property holds:

∀i ∈ V, j ∈ par(i) ⇒ ȳj ≥ ȳi (4)

Indeed, by applying the rule (3) from the top to the bottom of the hierarchy we
assure that the scores of the parents are larger or equal than those of its children.
Moreover by visiting “per level” the hierarchy according to the ψ function (levels
are defined in the sense of the maximum distance) we assure that each parent
has just been visited before their children and by observing that each node is
visited only once it cannot be changed by the successive top-down steps of the
algorithm, thus assuring that ∀i ∈ V, j ∈ par(i) ⇒ ȳj ≥ ȳi.

There are several ways to implement the function ψ that computes the maxi-
mum distance of each node from the root. We applied the classical Bellman-Ford
algorithm [18]: by recalling that it finds the shortest paths from a source node
to all the other nodes of a weighted digraph, it is sufficient to invert the sign of
each edge weight to obtain the maximum distance (longest path) from the root.
We outline that other methods (e.g. procedures based on the topological sort of
graphs) are more efficient, but considering that the levels should be computed
only once, on modern computers there are not significant differences in terms of
the mean empirical computational time.
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Fig. 2. Hierarchical Top-Down algorithm for DAGs (HTD)
Input:
- G =< V,E >
- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, ŷi ∈ [0, 1]
begin algorithm

01: A. Compute ∀i ∈ V the max distance from root(G):
02: E′ := {e′|e ∈ E, e′ = −e}
03: G′ :=< V,E′ >
04: dist := Bellman.Ford(G′, root(G′))
05: B. Per-level top-down visit of G:
06: ȳroot(G) := ŷroot(G)

07: for each d from 1 to max(dist) do
08: Nd := {i|dist(i) = d}
09: for each i ∈ Nd do

10: x := minj∈par(i) ȳj
11: if (x < ŷi)
12: ȳi := x
13: else

14: ȳi := ŷi
15: end for

16: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >

Fig. 2 shows the pseudo code of the overall HTD algorithm. Rows 1 − 4
provide the maximum distance of each node from the root, whereas the block
B of the algorithm implements a per-level top-down visit of the graph (rows
5− 16).

Starting from the children of the root (level 1) for each level of the graph the
nodes are processed and the hierarchical top-down correction of the flat predic-
tions ŷi, i ∈ {1, . . . , |V |} to the HTD-DAG ensemble prediction ȳi is performed
according to eq. 3. It is easy to see that the complexity of block B (rows 5−16) is
linear in the number of vertices for sparse graphs (and the HPO is just a sparse
DAG).

3 Experimental set-up

3.1 The Human Phenotype Ontology

Ontologies are high-level representations of knowledge domains based upon con-
trolled vocabularies. The Human Phenotype Ontology (HPO) aims at providing
a standardized categorization of the abnormalities associated to human diseases
(each represented by an HPO term) and the semantic relationships between



them. Each HPO term describes a phenotypic abnormality and is developed us-
ing medical literature and cross-references to other biomedical ontologies (e.g.
OMIM [3]).

A key feature of HPO is its ability, based upon an equivalence mapping
to other publicly available phenotype vocabularies, to allow the integration of
existing datasets and to strongly promote the interoperability with multiple
biomedical resources [4].

The experiments presented in this manuscript are based on the September
2013 HPO release (10, 099 terms and 13, 382 between-term relationships). The
annotations of the 20, 257 human genes were taken from the same HPO release.
After pruning the HPO terms having less than 2 annotations we obtained a final
HPO DAG composed by 4, 847 terms (and 5, 925 between-terms relationships)

3.2 Construction and integration of the protein functional network

The set of human genes considered in the experiments presented here was ob-
tained from the recent critical assessment of protein function annotation (CAFA2)
international challenge. Starting from an initial set of 20,257 human genes we
constructed, for each gene, different binary profile vectors representing the ab-
sence/presence of bio-molecular features in the gene product encoded by the
considered gene. More precisely, we constructed for each gene 8 binary vectors
containing the features obtained, respectively, from InterPro [19], Pfam [20],
PRINTS [21], PROSITE [22], SMART [23], SUPFAM [24], Gene Ontology [17]
and OMIM [3]. All these annotations were obtained by parsing the raw text an-
notation files made available by the Uniprot knowledgebase (release May 2013,
considering only its SWISSprot component database). We then obtained a sim-
ilarity score between each pair of genes simply by computing the Jaccard simi-
larity between the feature vectors associated with the genes.

Following this strategy we obtained 8 gene networks (one for each of the
aforementioned data sources). The final functional interaction network used in
the presented experiments was constructed using a simple unweighted integration
strategy that does not involve any learning phase in the network integration
process: the Unweighted Average (UA) network integration method[25]. In UA
the weight of each edge of the combined networks is computed simply averaging
across the available n networks:

w̄ij =
1

n

n∑
d=1

wd
ij (5)

In order to construct a more informative network, we added also two more
functional gene networks taken from the literature and previously published
in [26, 27].

3.3 Kernelized score functions

As base learner we used a semi-supervised network-based learning method re-
cently successfully applied to gene disease prioritization [28], gene function pre-



diction [29] and drug repositioning [30]. Kernelized score functions adopt both
a local and a global learning strategy. Local learning is accomplished through
a generalization of the classical guilt-by-association approach [31], through the
introduction of different functions to quantify the similarity between a gene and
its neighbours. A global learning strategy is introduced in form of a kernel that
can capture the overall topology of the underlying biomolecular network.

More precisely, by this approach we can derive score functions S : V −→ R+

based on properly chosen kernel functions, by which we can directly rank a
gene v according to the values of S(v): the higher the score, the higher the
likelihood that a gene belongs to a given class [29]. The score functions are
built on distance measures defined in a suitable Hilbert space H and computed
using the usual “kernel trick”, by which instead of explicitly computing the inner
product < φ(·), φ(·) > in the Hilbert space, with φ : V −→ H, we compute the
associated kernel function K : V × V −→ R+ in the original input space V .

For instance, given a vertex v, a set of genes VC belonging to a specific class
C, we can obtain the following Average score SAV :

SAV (v, VC) =
1

|VC |
∑
x∈VC

K(v, x) (6)

In principle any valid kernel K can be applied to compute the aforementioned
kernelized score, but in the context of gene - phenotype association ranking, we
used random walk kernels [32], since they can capture the similarity between
genes, taking into account the topology of the overall functional interaction net-
work.

In our experiments we applied a 1-step random walk kernel: in this way
we explicitly evaluate only the direct neighbors of each gene in the functional
interaction network. It is worth noting that other kernels may lead to better
results, but here we are mainly interested in verifying whether our proposed
HTD algorithm can improve upon Flat predictions, and not in fine tuning and
achieving the best possible results.

4 Results

We compared our proposed HTD ensemble methods with flat predictions ob-
tained with 1-step random walk kernelized score functions, by applying classical
leave-one-out techniques.

In terms of the average AUC across the 4846 considered HPO terms, even if
the difference in favour of HTD is very small (0.7923 vs 0.7897), by looking at
the results of the single HPO terms, HTD improves over flat in 3346 HPO terms,
achieves the same AUC for 554 HPO terms and ”looses” in 956 terms. This means
that for more than 3/4 HPO terms we obtain an improvement, and this explains
also why, according to the Wilcoxon rank sum test the difference between the
methods is statistically significant in favour of HTD at 10−5 significance level.

Also better results are obtained when we consider the precision at a fixed
recall level. Indeed in this case the average values across HPO terms are quite



Table 1. Average AUC, and precision at 10, 20 and 40% recall (P10R, P20R and
P40R). Flat stands for flat ensemble method, HTD for Hierarchical Top-Down, Max for
Hierarchical Maximum, And for Hierarchical And and Or for Hierarchical Or ensemble
methods. Methods that are significantly better than all the others according to the
Wilcoxon rank sum test (α = 10−5) are highlighted in bold.

Flat HTD Max And Or

AUC 0.7897 0.7923 0.7879 0.8151 0.7880

P10R 0.1620 0.1957 0.1315 0.1665 0.1352

P20R 0.1278 0.1535 0.1081 0.1283 0.1110

P40R 0.0812 0.0890 0.0728 0.0758 0.0741

consistent: for instance the average precision at 20% recall is 0.1535 vs 0.1278,
and another time for most HPO terms we obtain a significant increment when
the HTD hierarchical correction is applied to the flat predictions.

Table 1 summarizes the average results across terms for the HTD, Flat and
three heuristic hierarchical ensemble methods originally proposed for the hierar-
chical prediction of Gene Ontology terms [14]. HTD achieves always significantly
better results than the flat approach, both in terms of AUC and precision at a
fixed recall. Moreover it obtains significantly better results than all the other
compared hierarchical ensemble methods. The only exception is with respect to
the AUC where the And hierarchical method achieves better results.

Fig. 3 compares the precision at different recall levels for all the hierarchical
and the flat ensemble methods: the HTD solid line marked with circles is con-
sistently above all the other curves, showing that HTD achieves on the average
better results than all the other competing methods.

Even if the average precision at a fixed recall rate is relatively low with all the
methods we presented (Fig. 3), we note that we tried to perform predictions also
with terms having only two positive annotations, a very difficult task that likely
leads in most case to precision values very close to 0. Moreover by applying score
functions with 2-step or more random walk kernels, we could better exploit the
overall topology of the network and at least potentially achieve better results,
especially with terms having a small number of annotations or with “positive”
nodes relatively “far” from each other. In any case, at least for low values of recall,
HTD shows on the average relative improvements of the precision between 10
and 20%, with respect to the Flat approach. On the contrary, the heuristic Max,
And and Or methods are not able to outperform the Flat approach, confirming
previous results in the context of gene function prediction [14].

5 Conclusions

The prediction of human gene–abnormal phenotype associations is an impor-
tant step toward the discovery of novel disease genes associated with hereditary
disorders. Several computational methods that exploit “omics” data can be suc-
cessfully applied to predict or rank genes with respect to human phenotypes, but



usually their predictions are inconsistent, in the sense that do not necessarily
obey the parent-child relationships between HPO terms (i.e. a gene may achieve
a score for a child term larger than that that of its parent HPO term).

We showed that our proposed method provides predictions that are always
consistent, according the “true path rule” that governs the HPO taxonomy.
Moreover the HTD ensemble method can enhance “flat” predictions by exploit-
ing the hierarchical relationships between HPO terms. Indeed our experimental
results showed that HTD, by using kernelized score functions as base learner, can
significantly improve the precision-recall curves. We obtained a significant incre-
ment using also other base learners (e.g. the classical label propagation algorithm
described in [33] – data not shown), and in principle our proposed hierarchical
method is independent of the base learner used to provide the initial “flat” scores.
From this standpoint HTD can be applied to improve the performance of any
“flat” learning method, and to provide consistent and more reliable predictions
for novel gene - phenotype predictions by exploiting the DAG structure of the
Human Phenotype Ontology.
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