
A neural network algorithm for semi-supervised node

label learning from unbalanced data

Marco Frascaa, Alberto Bertonia, Matteo Rea, Giorgio Valentinia,∗

aDipartimento di Informatica, Università degli Studi di Milano, via Comelico 39, 20135
Milano, Italy.

Abstract

Given a weighted graph and a partial node labeling, the graph classifica-
tion problem consists in predicting the labels of all the nodes. In several
application domains, from gene to social network analysis, the labeling is
unbalanced: for instance positive labels may be much less than negatives.
In this paper we present COSNet (COst Sensitive neural Network), a neural
algorithm for predicting node labels in graphs with unbalanced labels. COS-
Net is based on a 2-parameters family of Hopfield networks, and consists
of two main steps: 1) the network parameters are learned through a cost-
sensitive optimization procedure; 2) a suitable Hopfield network restricted to
the unlabeled nodes is considered and simulated. The reached equilibrium
point induces the classification of the unlabeled nodes. The restriction of the
dynamics leads to a significant reduction in time complexity and allows the
algorithm to nicely scale with large networks. An experimental analysis on
real-world unbalanced data, in the context of the genome-wide prediction of
gene functions, shows the effectiveness of the proposed approach.

Keywords: Hopfield neural networks, Semi-supervised learning in graphs,
Learning from unbalanced data, Node label prediction

∗Corresponding author. DI - Dipartimento di Informatica Università degli Studi di
Milano, Via Comelico 39, 20135 Milano, Italy, Tel +39 (02) 503.16225, Fax +39 (02)
503.16373

Email addresses: frasca@di.unimi.it (Marco Frasca), bertoni@di.unimi.it
(Alberto Bertoni), re@di.unimi.it (Matteo Re), valentini@di.unimi.it (Giorgio
Valentini)

Preprint submitted to Neural Networks January 28, 2013

1. Introduction

The increasing interest in application domains where data are naturally
represented as connected nodes in a graph, i.e. biological networks (Wuchty
et al., 2003; Pena-Castillo et al., 2008), social networks (Borgatti et al., 2009)
and the World-Wide-Web (Dorogovtsev & Mendes, 2003), motivated the de-
sign and analysis of novel network-based learning algorithms. Indeed several
problems can be modeled as supervised or semi-supervised machine learning
problems in undirected graphs. For instance, in label prediction problems
nodes represent partially labeled instances, the edges pairwise similarities
among nodes and the aim is to label the unlabeled part of the graph by
exploiting the topology of the network and the a priori knowledge coded in
the labeled nodes (Bengio et al., 2006).

Several methods have been proposed for node classification in networked
data. Algorithms based on the guilt-by-association principle set unlabeled
nodes according to the majority of the labels in their direct neighborhoods (Mar-
cotte et al., 1999; Oliver, 2000). By extending this approach, indirect neigh-
bours, that account for pairs of nodes connected through intermediate ones,
have been used to extend the notion of pairwise-similarities among nodes (Chua
et al., 2006; Li et al., 2010; Bogdanov & Singh, 2010). Other methods focused
on clustering nodes into functional modules based on the graph topology, and
assigning to unlabeled nodes the most common labels in a given module (Sha-
ran et al., 2007; Zhu et al., 2010). Furthermore, nodes can propagate labels
to their neighbors with an iterative process until convergence (Zhu et al.,
2003; Zhou et al., 2004). Markov Random Walks have been applied to tune
the amount of propagation we allow in the graph, by setting the length of
the walk across the graph (Szummer & Jaakkola, 2001; Azran, 2007), and
methods based on both local and global learning strategies, exploiting both
local guilt-by-association rules and the overall global topology of the graph
have been recently proposed (Re & Valentini, 2012).

Other approaches are based on graph regularization (Belkin et al., 2004;
Delalleau et al., 2005), and on the exploitation of the properties of the
graph Laplacian associated to the weight matrix of the graph (Belkin &
Niyogi, 2003). Methods based on the amount of functional flow through the
nodes (Nabieva et al., 2005), on global graph consistency (Vazquez et al.,
2003; Karaoz et al., 2004), on Markov (Deng et al., 2004) and Gaussian
Random Fields (Tsuda et al., 2005; Mostafavi et al., 2008), and recently on
kernelized score functions (Re et al., 2012) have been applied to the predic-

2

tion of gene functions.
For their common characteristics, many of the described approaches can

be cast into a common framework where a quadratic cost objective function
is minimized (Bengio et al., 2006). In this context, global graph optimization
techniques usually require time/space intensive procedures, whereas it is not
ensured a relevant improvement of the predictive capabilities. For instance,
in the gene function prediction problem (GFP), Murali et al. (2006) showed
that a minimum cut algorithm, that achieves a global optimum of the ob-
jective function, does not provide a substantial advantage over simple local
consistency procedures, while substantially increases the computational time
(its complexity is cubic with respect to the number of nodes in dense graphs).
From this point of view, it seems natural a neural approach based on Hopfield
networks, that can reach a local minimum of the quadratic objective func-
tion, but with a relevant gain in computational time complexity (Hopfield,
1982).

Unfortunately, both local and global methods tend to suffer a decay in the
quality of solutions when input data are highly unbalanced, that is when posi-
tive examples (resp. negative) are significantly less than negatives (resp. pos-
itives). This issue is particularly relevant in problems like GFP, where the im-
balance in data requires the adoption of cost-sensitive strategies (Mostafavi
et al., 2008; Cesa-Bianchi & Valentini, 2010; Valentini, 2011). Moreover,
many of the described approaches may not preserve the prior knowledge
coded in the initial labeling and in the pairwise similarities, and this is a
relevant issue when we assume that the prior knowledge is not affected by
noise. Finally, many approaches based on neural networks do not distinguish
between the node labels and the values of the neuron states (Karaoz et al.,
2004), thus resulting in a lower predictive capability of the network.

In order to address these issues, we propose COSNet (COst Sensitive neu-
ral Network)1, a novel neural algorithm based on Hopfield networks, whose
main characteristics are the following:

1. Available a priori information is embedded in the neural network and
preserved by the network dynamics.

2. Labels and neuron states are conceptually separated. In this way a class
of Hopfield networks is introduced, having as parameters the values of

1A preliminary version of COSNet has been proposed in Bertoni et al. (2011)

3

neuron states and the neuron thresholds.

3. The parameters of the network are learned from the data through an
efficient supervised algorithm, in order to take into account the unbal-
ance between positive and negative node labels.

4. The dynamics of the network is restricted to its unlabeled part, preserv-
ing the minimization of the overall objective function and significantly
reducing the time complexity of the learning algorithm.

In order to motivate our approach, in Sect. 2 the GFP problem is de-
scribed as a semi-supervised classification problem characterized by very un-
balanced classes. Hopfield networks and the main issues related to this type
of recurrent neural network are discussed in Sect. 3, and the “sub-network
property” by which we can safely restrict the dynamics of the Hopfield net-
work to its unlabeled part is introduced in Sect 4. COSNet and its regularized
version are described and discussed in Sect. 5. Finally, in Sect. 6 we apply
COSNet to the genome-wide prediction of gene functions in a model organ-
ism, including 232 functional classes of the FunCat taxonomy (Ruepp et al.,
2004), and using six different types of biomolecular data. The paper ends
with the conclusions.

2. An unbalanced semi-supervised learning problem in graphs: gene
function prediction

To motivate our approach, we introduce a relevant unbalanced learn-
ing problem in computational biology: the gene function prediction problem
(GFP). GFP is a multi-class, multi-label classification problem that can be
modeled as a set of two-class classification problems, since each gene may be-
long (positive example) or not (negative example) to a given functional class.
Functional classes are usually very unbalanced, with negative examples that
largely outnumber positives.

In our setting GFP is formalized as a semi-supervised problem of label
learning in graphs (Bengio et al., 2006). Genes are represented by a set
of nodes V = {1, 2, . . . , n}, and relationships between genes are encoded
through a symmetric n × n real weight matrix W , whose elements wij rep-
resent functional similarities between pairs (i, j) of genes.

For a given functional class c, the nodes V are labeled with {+,−},
leading to the subsets P and N of positive and negative vertices for class c.

4

For most model organisms usually the functional labeling is known only for
a subset S ⊂ V , while is unknown for U = V \ S. Let be S+ = S ∩ P and
S− = S ∩N : we can refer to S+, S− and W as the “prior information”.

The gene function prediction problem consists in finding a bipartition
(U+, U−) of genes in U on the basis of the prior information. Genes in U+ are
then considered candidates for the class P ∩ U . From this standpoint, GFP
is set as a semi-supervised learning problem on graphs, since gene functions
can be predicted by exploiting both labeled and unlabeled nodes/genes and
the weighted connections between them.

Finally, to simplify the problem, we assume that the prior knowledge is
not affected by noise. Nevertheless, it is worth noting that in the functional
taxonomies negative examples for a class c in general are simply genes that
are not classified for c, and may correspond to false negatives due to lack of
knowledge about their biological function.

3. Hopfield Networks for gene function prediction

A Hopfield network is a recurrent neural network whose dynamics admits
a Lyapunov function (Hopfield, 1982). This model has been used in many
different areas, including content-addressable memory (Wang, 2003; Liu &
Hu, 2009; Zhang & Zhang, 2005), discrete nonlinear optimization (Tsirukis
et al., 1989), binary classification for GFP (Karaoz et al., 2004).

Here we introduce Hopfield networks with binary neurons as binary clas-
sifier for the GFP problem. The classical Hopfield network has neurons with
activation values−1 and 1; in this paper we consider as activation values sinα
and − cosα, where α is a real number (0 ≤ α ≤ π

2
) enclosed in the definition

of the network. The main motivation of this parametric setting of activation
values consists in extending the classical Hopfield network model in order
to deal with unbalanced classification problems, where one of the classes is
heavily under-represented in comparison to the other class. In particular, in
the GFP problem the negative class samples largely outnumbers the positive
ones, and our hypothesis is that, by putting more “strength” on positive neu-
rons, we may obtain network dynamics characterized by a larger influence
of positive neurons, thus “counterbalancing” the bias in favour of the nega-
tive class. Analogously, we can handle the case in which positive instances
outnumber negatives by putting more “strength” on negative neurons. This
can be achieved by conceptually separating labels and neuron states: neuron
states are set to sinα for “positive” neurons (i.e. those labeled with +1)

5

and to − cosα for −1 labeled “negative” neurons. By automatically learning
the α parameter from the data (Section 5), we obtain different absolute ac-
tivation values for positive and negative labeled neurons: for instance, when
α > π

4
, the activation value sinα of positive neurons is larger than the abso-

lute value of the activation − cosα of negative neurons, and the opposite is
true when α < π

4
. In this way, by decoupling labels from activation values,

labels belonging to the under-represented class may still propagate across the
networks, even if the large majority of neurons are labeled with the oppo-
site class, thus avoiding convergence to trivial cases (e.g. “all negative” or
“all positive” labelings) or more in general improving the sensitivity of the
classification.

Formally, a parametric Hopfield network H with neurons V = {1, 2, . . . , n}
is a triple H = < W ,γ, α >, where:

W = (wij) is a n×n symmetric matrix whose elements wij ∈ [0, 1] represent
the connection strength between neurons i and j, with wij = wji for
each pair (i, j) and wii = 0

γ = (γ1, γ2, . . . , γn) is a real vector of activation thresholds

α is a real variable in [0, π
2
] that determines the two different neuron acti-

vation values {sinα, − cosα}

The dynamics of the network is described as follows:

1. At time 0 an initial value xi(0) ∈ {sinα, − cosα, 0} is given for each
neuron i

2. At time t+ 1 each neuron is updated asynchronously (up to a permu-
tation) by the following activation rule

xi(t+ 1) =

sinα if

i−1∑
j=1

wijxj(t+ 1) +
n∑

k=i+1

wikxk(t)− γi > 0

− cosα if
i−1∑
j=1

wijxj(t+ 1) +
n∑

k=i+1

wikxk(t)− γi ≤ 0

(1)

The state of the network at time t is x(t) = (x1(t), x2(t), · · · , xn(t)). The
main feature of a Hopfield network is that it admits a Lyapunov function of

6

the dynamics. In particular, consider the following quadratic state function
(energy function):

E(x) = −1

2
xTWx+ xTγ (2)

This is a non increasing function which guarantees that every dynamics of the
network converges to an equilibrium state x̂ = (x̂1, x̂2, . . . , x̂n), which corre-
sponds to a local minimum of the energy function. We extended the original
convergence proof to the more general case in which the neuron activations
values may assume values {− cosα, sinα}, for 0 ≤ α ≤ π

2
(see Appendix A

for the proof).
In Karaoz et al. (2004) Hopfield networks have been applied to GFP;

the corresponding algorithm for binary classification is named GAIN (Gene
Annotation using Integrated Networks). A brief outline of GAIN is given in
the following.

Given the set of genes V and their similarity matrix, we consider the
Hopfield network H = < W , 0, π

4
>; the activation thresholds are 0 and the

activation values are {
√
2
2
,−

√
2
2
} (that is {1,−1} up to a constant term).

Fixed a functional class c, let S+ be the set of vertices already classified
as positive, S− the set of vertices classified as negative, U the set of ver-
tices whose classification is unknown. In order to classify vertices in U , the
following initial state of H is considered:

xi(0) =

0 if i ∈ U√
2
2

if i ∈ S+

−
√
2
2

if i ∈ S−
(3)

The dynamics (1) of H is applied to this state until the equilibrium point x̂

is reached; a gene k ∈ U is classified as “positive” iff x̂k =
√
2
2
.

From a biological standpoint, this approach is motivated by the fact that
minimizing the overall energy (2) means maximizing the weighted sum of
edges connecting neurons with the same activation value. In other words,
genes “strongly” connected with other genes having a given function tend to
be labeled with that same function, while the opposite is true when “strong”
connections with negative neighbours prevail.

Nevertheless, this approach is characterized by a main drawback. By
assigning the same absolute activation value

√
2
2

to both positive and negative
neurons, and by setting to 0 the threshold of each neuron, when |S+| � |S−|
or |S+| � |S−|, the network is likely to converge to a trivial state made up

7

by all negative or all positive neurons. This is exactly the situation registered
in the taxonomies for gene functions, since only a small number of positive
examples is available for most of the functional categories. To address this
problem, we first exploit a simple property which holds for sub-networks
of a Hopfield network (Section 4), and then we show that, by learning the
parameters of the Hopfield network, our proposed algorithm is able to solve
unbalanced classification problems (Section 5).

4. Sub-network Property

According to the semi-supervised setting of Section 2, let be H = <
W ,γ, α > a network with neurons V = U ∪S = {1, 2, . . . , n}, where up to a
permutation, U = {1, 2, . . . , h} and S = {h + 1, h + 2, . . . , n}; each network
state x can be decomposed in x = (u, s), where u and s are respectively the
states of neurons in U and in S. The energy function of H can be written
by separating the contributions due to U and S:

E(u, s) = − 1

2

(
uTW uuu+ sTW sss+ uTW uss+ sTW T

usu
)
+ uTγu + sTγs

= − 1

2
uTW uuu+ uT (γu −W uss) + C

(4)

where W =

(
W uu W us

W T
us W ss

)
is the weight matrix W decomposed in its

submatrices W uu connecting nodes in U , W ss connecting nodes in S, W us

connecting each node in U with each node in S, and W T
us its transpose.

γ = (γu, γs) represents the vector of the thresholds for respectively unlabeled
(γu) and labeled (γs) nodes and C = −1

2
sTW sss+ sTγs is a term constant

w.r.t. u.
Suppose now that a state s̃ of neurons in S is given. To preserve the “a

priori” knowledge, we are interested in the dynamics obtained by allowing
the update just of neurons in U , without updating neurons in S. We denote
with HU |s̃ the Hopfield network with neurons U which realizes this dynamics;
from equation (4) it holds:

Fact 1. HU |s̃ = < W uu,γ
u −W uss̃, α >.

Given a state s̃ of neurons in S, we say that s̃ is part of global minimum
of the energy E of H if there is a state u of neurons in U s.t. (u, s̃) is a

8

global minimum of E. The introduction of the network HU |s̃ is motivated by
the following property:

Fact 2. (Sub-network property) If s̃ is part of a energy global minimum
of H, and ũ is a global minimum of the energy E|s̃(u) of HU |s̃, then (ũ, s̃)
is a energy global minimum of H.

Proof. From (4) it follows that

E(u, s) = −1

2
sTW sss+ sTγs + E|s(u) (5)

where E|s(u) = −1
2
uTW uuu+uT (γu−W uss). By hypothesis ũ is a global

minimum of E|s̃(u). By assuming that (ũ, s̃) is not a global minimum of E,
there exists another state û for neurons in U such that E(û, s̃) < E(ũ, s̃).
By (5) this implies that E|s̃(û) < E|s̃(ũ), which contradicts the hypothesis
that ũ is a global minimum of E|s̃(u).

In our setting, we associate the given bipartition (S+, S−) of S with the
state s̃ = x(S+, S−):

xi(S
+, S−) =

{
sinα if i ∈ S+

− cosα if i ∈ S−

for each i ∈ S. Suppose, for a suitable α, that s̃ = x(S+, S−) is part of a
energy global minimum of H =< W ,γ, α >. Fact 2 assures that (u, s̃) is a
global minimum when ũ is a global minimum of the energy of HU |s̃. In other
words the subnetwork property suggests that the optimization problem can
be factorized: we can minimize the energy of the subnetwork HU |s̃ instead of
the overall network H to predict the hidden part U of neurons.

5. The COSNet Algorithm

In this Section we introduce the algorithm COSNet (COst-Sensitive neu-
ral Network) for dealing with the learning issues presented in the previ-
ous sections. We consider Hopfield networks H =< W , γ · e, α >, where
e = (1, 1, . . . , 1), i.e. networks having the same real threshold γ for all the
neurons.

For a given W , the class of networks H =< W , γ ·e, α > is a family with
two real parameters γ, α (0 ≤ α ≤ π

2
). Given the“prior information” W ,

S+, S−, suppose that there is a couple (α̂, γ̂) such that:

9

1. The solution of the problem corresponds to an energy global minimum of
H =< W , γ̂ · e, α̂ >

2. x(S+, S−) is part of an energy global minimum of H

Then, by Fact 2, we can discover the hidden states û of the neurons by
minimizing the energy of the network HU |x(S+,S−). Unfortunately, Fact 2
holds only for global minima, and finding the global minimum of the energy
requires time/memory intensive procedures. Accordingly, we run Hopfield
networks on the subnetwork HU |x(S+,S−): our aim is to move toward the
factorization of the optimization problem suggested by the subnetwork prop-
erty by finding a minimum of the energy that, in the general case, is a local
minimum. This approach is also motivated by two main reasons: first, we
experimentally observed (Section 5.7) that in several cases with high prob-
ability the local minima achieved by the Hopfield network are very close to
energy global minima; second, in the context of GFP it has been shown that
in most cases global minima solutions do not significantly improves perfor-
mances w.r.t local minima solutions (Murali et al., 2006).

Accordingly, the procedure for solving the GFP problem can be factorized
into two main steps:

Step 1. Determine the parameters (α̂, γ̂) such that the state x(S+, S−) is
part of a global minimum (or at least of a point “near” to a global min-
imum) by finding the parameters (α, γ) for which the state x(S+, S−)
is “as close as possible” to a part of an equilibrium state of H.

Step 2. Minimize the energy function of the network HU |x(S+,S−) with the
estimated parameters (α̂, γ̂) by reaching an equilibrium state û in a
dynamics generated by a suitable initial state.

Finally, the solution (U+, U−) of GFP is:

U+ = {i ∈ U | ûi = sin α̂}
U− = {i ∈ U | ûi = − cos α̂}.

A possible realization of step 1 consists firstly in extending the state x(S+, S−)
to neurons in U by generating a random bipartition (UP , UN) of U , and then
in optimizing the parameters (α, γ). Below, we discuss in detail each step of
COSNet . More precisely, in Section 5.1 we describe the procedure adopted

10

for generating a temporary bipartition of U , then the parameter optimiza-
tion step is discussed in Section 5.2. The step 2 of COSNet is explained in
Section 5.3, followed by the analysis of the time complexity of the overall
algorithm (Section 5.4), and by the discussion of the strengths and limita-
tions of the supervised two-steps procedure to learn the parameters of the
network (Section 5.5). In Section 5.6 we introduce a regularized version of
COSNet , useful when we need to deal with extremely unbalanced classifica-
tion tasks. Finally in Section 5.7 we apply a statistical test to show that
COSNet leads to significantly lower values of the global network energy (2)
w.r.t. the “vanilla” version of the Hopfield network.

5.1. Generating a Temporary Solution

For generating the temporary bipartition of U , we adopt a procedure that
maintains in U about the same proportion of positive elements observed in
S:

- generate a random number m according to the binomial distribution

B(|U |, |S
+|

|S|)

- assign to UP m elements uniformly chosen in U

- assign to UN the set U \ UP .

This criterion is justified by the probabilistic model described below.
Suppose that V is divided in positive and negative elements. We ran-

domly draw a subset S ⊂ V , with |S| = n − h, and |U | = h. Moreover, we
denote with S+ the set of positive elements in S. Our aim is to infer the
most likely cardinality of positive elements in U = V \ S.

By setting P (z) = Prob {|U+| = z | S contains |S+| positives}, the fol-
lowing equality holds:

|S+|
|S|

· h = argmax
z

P (z). (6)

In fact, by setting n1 = |S+|, n2 = n− h− n1, and ps =
n1

n−h
, the probability

P (z) can be written as follows:

P (z) =

(
n1+z
z

)(
n2+y
y

)(
n
h

) ,

11

where y = h − z. The value of z which maximize P (z) is such that P (z) '
P (z + 1), that is(

n1 + z

z

)(
n2 + y

y

)
=

(
n1 + z + 1

z + 1

)(
n2 + y − 1

y − 1

)
,

from which it follows that n2+y
y

= n1+z+1
z+1

. By approximating z+1 with z we

obtain n2

y
= n1

z
; since n1 = ps(n−h) and n2 = (1− ps)(n−h), it follows that

z = ps · h.
Since the parameter learning step (Section 5.2) depends on the temporary

assignment of the labels, we studied whether our proposed initial random as-
signment may introduce noise or may degrade the prediction performance
of the neural network system. To this end we experimented two other pro-
cedures to initialize the unlabeled nodes. The first one simply avoids the
generation of the temporary bipartition of U and projects the nodes into
the plane only by considering nodes in S: in this way we achieved slightly
worse results (data not shown). The second version consists in iterating the
algorithm twice: generating a temporary bipartition of U according to the
probabilistic method described above, predicting U by running the Hopfield
network on the U subgraph, and then reusing the predicted labels of U as a
novel temporary bipartition for another round of the algorithm. This version
of the algorithm is computationally intensive, whereas the performance are
just slightly better (but usually the difference is not statistically significant
– data not shown). These experiments show that it is reasonable to adopt
the probabilistic model proposed in this section to initialize the labeling of U
when no a priori information about nodes in U is available. It is worth not-
ing that the initial labeling of U contributes only to the computation of the
point coordinates (7), while only the known labels associated to the nodes in
S are used in the supervised process to learn the parameters α and γ of the
network, as explained in the next section.

5.2. Finding the Optimal Parameters

The main goal of this step is to find the values of the parameters α and
γ such that the state x(S+, S−) is “as close as possible” to an equilibrium
state. To this end we project the nodes of the network into points of a plane
by translating their neighborhood connections to positive and negative nodes
into respectively the abscissa and the ordinate of the “projected” points (Fig-
ure 1 (a)). Then we learn from the data a line able to separate positive points

12

(those corresponding to S+) from the negative ones (those corresponding to
S−). More precisely, we embed the Hopfield network parameters into the
parametric representation of the line: α corresponds to the slope and − γ

cosα

to the intercept of the parametric line. In particular, we choose the line
that minimizes the Fscore(α, γ) to separate positive from negative labeled
projected points (Figure 1 (b)). Then we show that finding the paramet-

Figure 1: Graphical representation of the COSNet main steps. (a) Network to plane pro-
jections: (b) Learning of optimal network parameters and their usage for the subnetwork
dynamics

ric line (α̂, γ̂), which corresponds to the maximum Fscore (Fscore = 1), leads
to an equilibrium state (minimum energy) of the subnetwork HS, when its
activation states are set to sin α̂ and − cos α̂.

5.2.1. Network to Plane Projections

Let consider the sub-networkHS|x(UP ,UN) = < W ss,γ
s−W T

usx(U
P , UN), α >,

where γs
i = γ ∈ R for each i ∈ S, and (UP , UN) is the temporary biparti-

13

tion found in the previous step. We associate with each node k ∈ S a point
∆(k) ≡ (∆+(k),∆−(k)) in the plane, where

∆+(k) =
∑

j∈S+∪ UP

wkj, ∆−(k) =
∑

j∈S−∪ UN

wkj. (7)

The bipartition (S+, S−) of S induces in a natural way a bipartition (I+,
I−) of the points I = {∆(k) | k ∈ S}, where:

I+ = {∆(k) | k ∈ S+} I− = {∆(k) | k ∈ S−}.

5.2.2. Learning a Line to Separate Positive from Negative Examples

Consider now an arbitrary straight line in the plane of equation:

fα,γ(z, y) = cosα · y − sinα · z + γ = 0 (8)

where (z, y) correspond to the coordinates of point ((∆+(k),∆−(k)) projected
into the plane from node k, according to (7). This line separates the points
of I in I+α,γ and I−α,γ:

I+α,γ = {∆(k) | fα,γ(∆(k)) < 0} I−α,γ = {∆(k) | fα,γ(∆(k)) ≥ 0}.

Figure 2 provides a graphical representation of this separation. Fixed the
parameters (α, γ), we set:

- TP (α, γ) = |I+α,γ ∩ I+|, i.e. the number of positive examples correctly
classified by the line fα,γ(z, y).

- FN(α, γ) = |I−α,γ ∩I+|, i.e. the number of positive examples classified
as negative

- FP (α, γ) = |I+α,γ ∩ I−|, i.e. is the number of negative examples clas-
sified as positive

Fscore(α, γ) is the harmonic mean of precision(α, γ) = TP (α,γ)
TP (α,γ)+FP (α,γ)

and

recall(α, γ) = TP (α,γ)
TP (α,γ)+FN(α,γ)

.

Observe that 0 ≤ Fscore(α, γ) ≤ 1 and Fscore(α, γ) = 1 iff there are no
classification errors.

The parameters (α, γ) are optimized by adopting the Fscore maximization
criterion:

(α̂, γ̂) = argmax
α,γ

Fscore(α, γ). (9)

14

Figure 2: Graphical representation of the line separating positive and negative labeled
nodes.

To actually compute the optimal parameters (α̂, γ̂), although does exist
an exact algorithm for this problem working in time O(|S|2 ·log |S|), we adopt
a more efficient two-step approximation algorithm:

a) Compute α̂. The procedure computes the slopes of the lines crossing
the origin and each point ∆(k) ∈ I. Then it searches the line which
maximizes the Fscore criterion by scanning the computed lines according
to their slopes in an increasing order. Since all the points lie in the first
quadrant, this assures that the angle α̂ relative to the optimum line is
in the interval [0, π

2
].

b) Compute γ̂. Compute the intercepts of the lines whose slope is tan α̂ and
crossing each point belonging to I. The optimum line is identified by
scanning the computed lines according to their intercept in an increas-
ing order. Let q̂ be the intercept of the optimum line y = tan α̂ · z + q,
then we set γ̂ = −q̂ cos α̂.

Figure 3 shows the two steps of the proposed approximation procedure.
Both step a) and step b) can be computed in O(|S| log |S|) computational

time.

15

a) b)

Figure 3: Graphical view of the α (a) and γ (b) parameters estimation procedure.

5.2.3. Optimal Line Parameters Correspond to Optimal Network Parameters

The F-score maximization criterion to optimize the parameters (α, γ) is
justified by the following:

Fact 3. Fscore(α, γ) = 1 iff x(S+, S−) is an equilibrium state of the sub-
network HS|x(UP ,UN).

Proof. (⇒). To simplify the notation, by consideringHS|x(UP ,UN) = < W ss,γ
s−

W T
usx(U

P , UN), α >, we set the threshold γs − W T
usx(U

P , UN) ≡ θs. If
Fscore(α, γ) = 1 there are no misclassification errors, i.e I+ = I+α,γ and
I− = I−α,γ. This means that for each node k ∈ S+ it holds fα,γ(∆(k)) < 0
(i), and for each node k ∈ S− it holds fα,γ(∆(k)) ≥ 0 (ii). The condition (i)
from (1), (7) and (8) implies that

sinα ·
∑

j∈S+∪ UP

wkj − cosα ·
∑

j∈S−∪ UN

wkj − θsk > 0 (∗)

for each k ∈ S+, and the condition (ii) implies that

sinα ·
∑

j∈S+∪ UP

wkj − cosα ·
∑

j∈S−∪ UN

wkj − θsk ≤ 0 (∗∗)

for each k ∈ S−, where θsk is the kth component of the threshold vector θs.
Hence, x(S+, S−) is an equilibrium state for the network HS|x(UP ,UN), since

16

it is easy to see that, when both (*) and (**) conditions hold, the state of
the network does not change.

(⇐). Suppose x(S+, S−) is an equilibrium state of the sub-networkHS|x(UP ,UN).
This means that the condition (*) holds for each element k ∈ S+ and the
condition (**) holds for each element k ∈ S−. Accordingly, the conditions (i)
and (ii) hold and I+ = I+α,γ and I− = I−α,γ. So there are no misclassification
errors during the F-score optimization, and hence Fscore(α, γ) = 1.

5.3. Finding the unknown labels by Network Dynamics

After the computation of the optimal parameters (α̂, γ̂), we consider the
sub-network HU |x(S+,S−):

HU |x(S+,S−) = < W uu, γ̂
u −W T

sux(S
+, S−), α̂ > = < W uu,θ

u, α̂ > (10)

where γ̂u
i = γ̂ for each i ∈ {1, 2, . . . , h}, and θu ≡ γ̂u −W T

sux(S
+, S−).

Fixed an initial state ui = 0 for each i ∈ {1, 2, . . . , h}, we run the sub-
network HU |x(S+,S−) to learn the unknown labels of neurons U , preserving
the prior information coded in the labels of neurons in S. Note that the
resulting update rule is similar to (1), substituting γi with θui and restricting
the dynamics only to unlabeled neurons U :

ui(t+1) =

sinα if

i−1∑
j=1

wijuj(t+ 1) +
h∑

k=i+1

wikuk(t)− θui > 0

− cosα if
i−1∑
j=1

wijuj(t+ 1) +
h∑

k=i+1

wikuk(t)− θui ≤ 0

(11)

If û is the stable state reached by this dynamics, the final solution
(U+, U−) is:

U+ = {i ∈ U | ûi = sin α̂}
U− = {i ∈ U | ûi = − cos α̂} (12)

As explained in the previous sections, also the update rule (11) converges
to a local minimum of the energy for the network H, corresponding to the
the network state (ū,x(S+, S−)).

5.4. Analysis of COSNet

Figure 4 shows the pseudocode of the COSNet algorithm. The Lines

17

�

�

�

�

Figure 4: Pseudocode of the COSNet algorithm.

Input:
- neuron set V ;
- bipartition (U , S) of V ;
- bipartition (S+, S−) of S

- connection matrix W =

(
W uu W T

su

W su W ss

)
begin algorithm

01: Generate a random numberm drawn from the distributionB(| U |, |S
+|

|S|)

02: Randomly assign to UP m elements of U and set UN := U \ UP

03: for each k ∈ S do

04: ∆+
k :=

∑
j∈S+ ∪ UP wkj

05: ∆−
k :=

∑
j∈S− ∪ UN wkj

06: end for

07: [α̂, γ̂] := FindOptimalLine
(
S+, S−,∆+,∆−)

08: for each k in S do

09: if k in S+ then xk(S
+, S−) := sin α̂

10: else xk(S
+, S−) := − cos α̂

11: end for

12: θu := γ̂ · eu −W T
sux(S

+, S−)
13: [û] := RunSubNet

(
W , U, α̂,θu

)
end algorithm

Output: the equilibrium state û.

1− 2 generates a temporary bipartition of U (Section 5.1) and it takes time
O(|U |).

The lines 3 − 6 compute for each node in S the weighted sum of its
positive and negative neighbours, that is the coordinates of the projection of
the nodes into the plane, taking time O(|W su|+ |W ss|), where with |W | we
mean the number of non-null components of the matrix W .

The procedure FindOptimalLine at line 7 computes the optimal param-
eters (α̂, γ̂) with O(|S| log |S|) time complexity, by finding the straight line
which best separates the points in I+ from those in I− (Section 5.2.2).

The lines 8− 11 takes time O(|S|), whereas line 12, which computes the
thresholds for the sub-network HU |x(S+,S−), has a time complexity O(|W su|).

18

Finally, line 13 realizes the dynamics of the sub-network HU |x(S+,S−). The
complexity of this step depends on the number of iterations needed for con-
vergence, and each iteration takes time O(|W uu|). We empirically observed
that the network in average converges in few iterations, confirming the ob-
servations of Karaoz et al. (2004).

Overall, recalling that |S| < |V | = n, the COSNet algorithm takes time
O(|S| log |S| + |W |) which is almost linear in the number of neurons when
the connection matrix is sparse, that is when the number of non zero entries
in W is |W | = O(|V |).

5.5. Strengths and Drawbacks of the supervised two-step approximate algo-
rithm

Our proposed supervised algorithm described in the previous section can
correctly learn the near-optimal parameters of the Hopfield network in most
cases, as shown in the experimental section (Section 6), and its O(|S| log |S|)
computational complexity allows its application to large networks, for in-
stance complex biomolecular networks or very large social networks.

On the other hand in some special cases it fails, or may incur in poor
estimates of the network parameters. Consider for instance the first two
cases depicted in Fig. 5: in both cases it is easy to see that the first step of
the algorithm cannot find the right parameter α ' 0 (Fig. 5 (a)) or α ' π

2

(Fig. 5 (b)). By moving the intercept in the second step of the algorithm
we can only partially correct the error. Note that this happens when the
discrimination between positive and negative nodes depends respectively only
on the “negative” (Fig. 5 (a)) or “positive” (Fig. 5 (b)) neighborhoods of
each node. This means that the effect of the positive nodes in Fig. 5 (a) is
marginal and symmetrically that negative nodes are uninfluential in Fig. 5
(b). Regarding these cases, we point out two main aspects: first, in our GFP
experiments (Section 6) we never found similar cases; second, the optimum
values for parameter α in such cases would lead to poor solutions, since the
dynamics of the network with these parameters may likely converge to the
trivial all negative (when α = 0) or all positive (α = π

2
) states. Moreover, in

most problems (including GFP) it is unlikely that connections only towards
positive or only toward negative nodes play an exclusive role in the prediction
of node labels. Two other interesting cases are represented in Fig. 5 (c), (d).
In Fig. 5 (c) the large majority of points lie close to the abscissa, meaning
that the main contribution for each node comes from “positive” neighbours
∆(k+) (that is only positively labeled nodes are connected with relatively

19

(a) (b)

(c) (d)

Figure 5: Limit cases of the optimization algorithm. The optimum line is horizontal (a) or
vertical (b), or the large majority of points lie close to the abscissa (c) or to the ordinate
(d).

large weights to other nodes), while “negative” contributions ∆(k−) (see
Section 5.2) are close to 0. This may happen, for instance, when we have a
highly unbalanced data set with a large prevalence of positive nodes. The
symmetric situation is represented in Fig. 5 (d): the large majority of points
lie close to the ordinate, and the contribution of positive neighborhood is
negligible. This may happen when we have a high unbalance in favour of
negative examples. It is easy to see that both these extreme conditions may
lead to trivial solutions (i.e. to “all positive” or “all negative” labelings) when
we run the Hopfield network HU |x(S+,S−), since in the first case the algorithm
correctly estimates α values close to 0, leading to uninfluential activation
values for positives (sinα ' 0) and very strong activation values for negatives
(− cosα ' −1), while in the second case the algorithm correctly estimates

20

α ' π
2
, leading to a pair of activation values close to {1, 0} respectively

for positive and negative nodes. Unfortunately, while the estimation of α
is correct in both cases, this situation leads to poor results. In our GFP
experiments we observed for several functional classes a situation similar
to that depicted in Fig. 5 (d), since in several cases negative genes largely
outnumber positives. To effectively deal with these cases we introduced a
regularized version of COSNet, discussed in the next Section.

5.6. Model regularization

As shown in the previous section, when the optimal value α̂ of the param-
eter α is very close to π

2
(resp. 0), the network dynamics is characterized by

a too strong influence of positive neurons (resp. negative neurons), leading
to trivial solutions.

To prevent this behaviour, we add to the energy function E|s(u) of the
network H|U,x(S+,S−) the regularization term(

h∑
i=1

(aui + b)− νu

)2

, (13)

where a = 1
sin α̂+cos α̂

, b = cos α̂
sin α̂+cos α̂

and νu = ps · h, with ps =
|S+|
|S| .

Since
∑h

i=1(aui+ b) is the number of positive neurons in u, the term (13)
is minimized when the number of positive neurons in u is νu. The choice
of this regularization term is justified from the fact that, according to the
model described in Section 5.1, νu = argmax

z
P (z).

By adding the regularization term to E|s(u), we obtain a new energy
function E(u):

E(u) = −1

2

∑
i 6=j

wijuiuj +
h∑

i=1

uiθ
u
i + η

(
h∑

i=1

(aui + b)− νu

)2

, (14)

where η is a regularization parameter and θui = γ −
∑

j∈S wij (Section 5.3).
By few simplifications, we obtain up to a constant:

E(u) = −1

2

h∑
i=1

h∑
j=1
j 6=i

w̃ijuiuj +
h∑

i=1

uiθ̃
u
i (15)

21

where θ̃ui = θui + ηa [2b(h− 1) + (1− 2psh)] and w̃ij = (wij − 2ηa2).

In principle, η should be significantly different from 0 when α̂ ' π
2
or

α̂ ' 0. A possible choice of η which provides this behaviour is:

η = β| tan((α̂− π
4
) ∗ 2)| (16)

where β is a non negative real constant. By tuning β we can finely control
the influence of the new energy term on the network dynamics.

5.7. Validation of COSNet optimization

In this section we show that the optimal parameters computed in step
2 of COSNet put the known labeling closer to a global minimum of the
network energy with respect to the default parameters of a non cost-sensitive
Hopfield network. To this end, we consider a real data set of protein-protein
interactions (Von Mering et al., 2002) in which a labeling x ∈ {1,−1}|V | of
V is known. By applying COSNet we approximate the optimal parameters
(α̂, γ̂). Accordingly, we define the state x(α̂) by setting xk(α̂) = sin α̂ if
xk = 1 and xk(α̂) = − cos α̂ if xk = −1, for each k ∈ {1 . . . |V |}.

We show that the state x(α̂) is “closer” than x to a global minimum of
the energy function E(x). As measure of “closeness” of a given state z to a
global minimum of E(x), we consider the probability Pz that E(x) < E(z),
where x = (x1, x2, . . . , x|V |) is a random state generated according to the
binomial distribution B(|V |, ρz), where ρz is the rate of positive components
in z.

To estimate Pz, we independently generate t random states x(1), x(2), ...,
x(t) and we set Y =

∑t
i=1 β(E(z) − E(x(i)), where β(x) = 1 if x ≥ 0, 0

otherwise. The variable Y
t
is an estimator of Pz, and in our setting t = 1000.

Since many studies suggest that for determining a reliable confidence interval
of a binomial proportion we need tPz, t(1 − Pz) ≥ 5(or 10) (Brown et al.,
2001), in order to define the confidence interval of Pz at a 1 − δ confidence
level, we need to consider three cases:

1. Y = 0. We can directly compute the confidence interval [0, 1− δ
1
t].

2. 1 ≤ Y ≤ 5. Y is approximately distributed according to the Poisson
distribution with expected value λ = Y . Accordingly, the confidence

interval is
[

1
2n
χ2
2Y,1− δ

2

, 1
2n
χ2
2(Y+1), δ

2

]
, where χ2

k is a chi squared random

22

Table 1: Confidence interval estimation for the probabilities Px(α̂) and Px at a confidence
level 0.95.

Class Confidence interval Class Confidence interval

Px(α̂) Px Px(α̂) Px

min max min max min max min max
“01” 0 0.0030 0 0.0030 “02” 0 0.0030 0 0.0030

“01.01” 0 0.0030 0 0.0030 “02.01” 0 0.0030 0.0638 0.0975
“01.01.03” 0.0001 0.0056 0.0433 0.0722 “02.07” 0 0.0030 0.0011 0.0102
“01.01.06” 0.0001 0.0056 0.0442 0.0733 “02.10” 0 0.0030 0.0522 0.0833

“01.01.06.05” 0.0210 0.0427 0.0702 0.1051 “02.11” 0.0002 0.0072 0.0939 0.1332
“01.01.09” 0 0.0030 0.0045 0.0174 “02.13” 0.0312 0.0565 0.3622 0.4226
“01.02” 0.0001 0.0056 0.0067 0.0212 “02.13.03” 0.7139 0.7681 0.7740 0.8236
“01.03” 0 0.0030 0.0620 0.0953 “02.19” 0.0001 0.0056 0.0006 0.0088

“01.03.01” 0.1452 0.1915 0.2232 0.2768 “02.45” 0.1022 0.1428 0.1815 0.2312
“01.03.01.03” 0 0.0030 0.0145 0.0333 “11” 0 0.0030 0 0.0030
“01.03.04” 0.5020 0.5637 0.6280 0.6867 “11.02” 0 0.0030 0 0.0030
“01.03.16” 0.0025 0.0135 0.1189 0.1619 “11.02.01” 0 0.0030 0.7761 0.8255

“01.03.16.01” 0 0.0030 0.3025 0.3608 “11.02.02” 0.2184 0.2716 0.8519 0.8931

variable with k degrees of freedom.

3. Y > 5. The random variable Y is approximately distributed ac-
cording to a normal distribution with expected value Y and variance
Y (1−Y)

t
. We adopt the Agresti-Coull interval estimator (Agresti &

Coull, 1998), which is more stable for values of Y closer to the out-
liers (Brown et al., 2001). The resulting confidence interval is Y+2

t+4
±

1
t+4

√
(Y + 2)(t− Y − 2)z1− δ

2
, where z1−α is the 1− α percentile of the

standard normal distribution.

By setting δ = 0.05, we estimated the confidence interval for both Px(α̂)

and Px. In Table 1 we report the comparison of the confidence intervals of
Px(α̂) and Px for some functional classes. We distinguish two main cases: a)
both the confidence intervals coincide with the minimum interval [0, 0.0030],
meaning that the known labeling is a global minimum with high probability;
b) both lower and upper bounds of Px(α̂) are less than the corresponding
bounds of Px. It is worth noting that, in almost all cases, the probability
Px(α̂) has an upper bound smaller than the lower bound of Px. This is

23

particularly evident for classes “01.03.16.01”, “02.13” and “11.02.01”; in the
latter the lower bound of Px is 0.7761, while the corresponding upper bound
of Px(α̂) is w 0.

These results, reproduced with similar trends in other data sets (data
not shown), point out the effectiveness of our method in approaching the
problem of the incoherence of the prior knowledge coding.

6. Experiments

We applied COSNet to a typical unbalanced classification problem in
the domain of computational biology: the gene function prediction problem
(Sect. 2).

In our setting we decomposed the multi-label multi-class classification
problem in a set of two-class classification problems, i.e. one distinct di-
chotomic classification problem for each class of the ontology, according to a
widely adopted approach to this problem (Friedberg, 2006). For most classes
the set of negative genes largely outnumbers the set of positives, thus leading
to very unbalanced dichotomic classification problems.

We performed predictions of gene functions at genome-wide level in the
S.cerevisiae organism (yeast), using the whole FunCat ontology (Ruepp et al.,
2004) 2. FunCat (Functional Categories) is one of the most used biological
taxonomy to classify gene functions. The FunCat hierarchy is represented by
a forest of trees, in which the functional categories represent nodes of trees
and the edges represent hierarchical relationships between classes. It consists
of 28 main functional categories (or branches) that cover general fields like
cellular transport, metabolism and cellular communication/signal transduc-
tion. These main functional classes are divided into a set of subclasses with
up to six levels of increasing specificity, according to a tree-like structure that
accounts for different functional characteristics of genes and gene products.

6.1. Data sets

We predicted gene functions by means of six different biomolecular data
sets, using both each data set separately and the data sets all together by
integrating them through suitable data fusion techniques (Sect. 6.4.2).

2We used the funcat-2.1 scheme with the annotation data funcat-2.1 data 20070316,
available from: ftp://ftpmips.gsf.de/yeast/catalogues/funcat/funcat-2.1 data 20070316.

24

The main characteristics of the data can be summarized as follows (Ta-
ble 2):

- Pfam-1 data are represented as binary vectors: each feature registers
the presence or absence of 4,950 protein domains obtained from the
Pfam (Protein families) data base (Finn et al., 2010). This dataset
contains 3529 genes.

- Pfam-2 is an enriched representation of Pfam domains by replacing
the binary scoring with log E-values obtained with the HMMER soft-
ware toolkit (Eddy, 1998). This dataset contains 3528 genes and 5724
features.

- Expr data contains 250 gene expression measures of 4523 genes rela-
tive to two experiments described in (Spellman et al., 1998) and (Gasch
et al., 2000).

- PPI-BG data set contains protein-protein interaction data down-
loaded from the BioGRID database (Stark et al., 2006). Data are
binary: they represent the presence or absence of protein-protein inter-
actions for 4531 proteins.

- PPI-VM is another data set of protein-protein interactions that col-
lects binary protein-protein interaction data for 2338 proteins from
yeast two-hybrid assay, mass-spectrometry of purified complexes, cor-
related mRNA expression and genetic interactions (Von Mering et al.,
2002).

- SP-sim data set contains pairwise similarities between 3527 yeast
genes represented by Smith and Waterman log-E values between all
pairs of yeast sequences (Lanckriet et al., 2004).

In our experiments, we discarded classes with less than 20 positive exam-
ples, in order to avoid folds with no positives in the cross validation procedure
and to preserve the generalization capabilities of the resulting classifiers.

6.2. Preprocessing and Normalization

For protein-protein interaction data (PPI) we adopted the scoring func-
tion used by Chua et al. (2007), which assigns to genes i and j the similarity

25

Table 2: Data sets

Name n genes n features type Classes notes

Pfam-1 3529 4950 binary 211 sparse (7060 domains annotations)
Pfam-2 3528 5724 real 211 dense (20183019 scores > 0)
Expr 4532 250 real 230 fold change, dense (1076648 scores 6= 0)

PPI-BG 4531 5367 binary 232 sparse (149016 interactions)
PPI-VM 2338 2559 binary 176 sparse (22266 predicted interactions)
Sp-sim 3527 6349 real 211 dense (close to full coverage)

score

Sij =
2|Ni ∩Nj|

|Ni \Nj|+ 2|Ni ∩Nj|+ 1
× 2|Ni ∩Nj|

|Nj \Ni|+ 2|Ni ∩Nj|+ 1

where Nk is the set of the neighbors of gene k (k is included). In this way
the functional similarity between a pair of genes depends also on the their
common shared neighbours: i.e. two genes are similar if they are directly
connected or if they are connected through an intermediate node (that is a
common neighbour).

In the remaining data sets each gene is associated with a feature vector,
and the score for each gene pair is set to the Pearson’s correlation coefficient
of the corresponding feature vectors. We removed edges with negative values
of the correlation coefficient, except for gene expression data (Expr data),
for which we computed the squared correlation coefficient in order to take
into account relationships of “inverse regulation” between genes (i.e. genes
that are up-regulated when others are down-regulated). Then we adopted a
technique to sparsify the resulting network. More precisely, given the cor-
relation matrix W , for each gene i we set ti = maxj wij, and then we set a
general threshold t∗ = mini ti: elements wij such that wij < t∗ were set to 0.
In this way we can assure that there are no isolated “singleton” nodes/genes
in the network.

Finally, each obtained network W underwent a graph Laplacian normal-
ization (Smola & Kondor, 2003): each element wij of W has been divided
by the square root of the product of the the sum of the elements of row i and
the sum of elements in column j. In other words, if D is a n × n diagonal
matrix such that dii =

∑
j wij, then the normalized matrix Ŵ is:

Ŵ = D−1/2WD−1/2 (17)

26

6.3. Experimental setup

We compared COSNet with semi-supervised and supervised machine learn-
ing methods proposed in the literature for the gene function prediction prob-
lem in a “flat” setting, that is predicting each functional class separately,
without considering its hierarchical relationships with the other classes. We
considered the GAIN algorithm (Karaoz et al., 2004), based on Hopfield net-
works (Section 3), since our proposed method is a regularized cost-sensitive
generalization of an Hopfield network. We applied also Zhu-LP, a popu-
lar semi-supervised label propagation learning algorithm based on Gaussian
random fields over a continuous state space, and its class mass normalized
version Zhu-LP-CMN, that takes into account the unbalance between positive
and negative examples (Zhu et al., 2003). Finally we considered a supervised
learning algorithm, i.e. linear (SVM-l) and Gaussian (SVM-g) Support Vec-
tor Machines (SVMs), since it has been shown that SVMs are among the
best supervised algorithms for predicting gene function (Brown et al., 2000;
Pavlidis et al., 2002).

To estimate the generalization capabilities of the compared methods, we
adopted a stratified 10-fold cross validation procedure, by ensuring that each
fold includes at least one positive example for each classification task.

Considering the severe unbalance between positive and negative classes,
we adopted as the main performance measure the F-score, that is the har-
monic mean between precision and recall ; we did not consider the classi-
fication accuracy because with unbalanced classes a naive classifier which
predicts all the genes as negative obtains yet a high accuracy.

The selection of the β parameter for the regularized version of COS-
Net (Section 5.6) has been performed through a tuning procedure on model
data sets. Moreover, since the Zhu-LP algorithm provides just continuous
prediction scores, to obtain a classifier we set the threshold for the positive
class to 1

2
, as suggested by the authors (Zhu et al., 2003).

6.4. Results and discussion

In this Section we report and discuss the results of the compared methods
using both single and integrated data sources.

6.4.1. Classification using single data sets

Table 3 shows for each dataset the performances in terms of average
precision, recall and F-score across all the functional classes.

27

Table 3: Average precision, recall and F-score of the compared methods using single data
sets.

Pfam-1 Pfam-2
Method Prec Rec F Prec Rec F

Zhu-LP 0.407 0.067 0.104 0.614 0.151 0.226

Zhu-LP-CMN 0.286 0.545 0.336 0.210 0.524 0.273

GAIN 0.504 0.174 0.250 0.526 0.103 0.162

SVM-g 0.246 0.491 0.235 0.103 0.229 0.027

SVM-l 0.298 0.497 0.272 0.079 0.450 0.105

COSNet 0.322 0.399 0.347 0.445 0.371 0.375

R-COSNet 0.381 0.383 0.375 0.458 0.353 0.380

Expr PPI-BG
Method Prec Rec F Prec Rec F

Zhu-LP 0.015 0.0001 0.0002 0.575 0.104 0.158

Zhu-LP-CMN 0.098 0.215 0.074 0.209 0.518 0.273

GAIN 0 0 0 0.232 0.033 0.049

SVM-g 0.023 0.210 0.019 0.157 0.342 0.118

SVM-l 0.070 0.287 0.053 0.173 0.437 0.155

COSNet 0.057 0.808 0.085 0.359 0.412 0.358

R-COSNet 0.107 0.177 0.130 0.383 0.378 0.371

PPI-VM Sp-sim
Method Prec Rec F Prec Rec F

Zhu-LP 0.426 0.148 0.205 0.619 0.166 0.241

Zhu-LP-CMN 0.176 0.646 0.270 0.202 0.524 0.268

GAIN 0.342 0.064 0.097 0.502 0.104 0.161

SVM-g 0.243 0.518 0.235 0.449 0.347 0.190

SVM-l 0.196 0.477 0.189 0.070 0.588 0.110

COSNet 0.382 0.437 0.390 0.445 0.376 0.376

R-COSNet 0.392 0.425 0.396 0.458 0.351 0.383

28

COSNet and R-COSNet achieve the best average F-score w.r.t. all the
other compared methods, and the difference is always significant at 10−6

significance level, according to the Wilcoxon signed-ranks test (Wilcoxon,
1945). This is the result of a good balance between precision and recall, since
in terms of average precision Zhu-LP obtains quite always the best results
(but at the expense of a low recall), and SVMs (in particular linear SVMs)
achieves the best average recall results (but paying in terms of a relatively
low average precision). It is worth noting that the regularized version of
COSNet obtains slightly better results than its “vanilla” counterpart. On
the average R-COSNet achieves a better precision, while COSNet a better
recall. This is particularly noticeable with the least informative data sets
(i.e. the Expr data set), where the regularization plays a significant role to
“re-equilibrate” the wrong predictions of the unregularized version COSNet .

In order to analyze the behaviour of COSNet with functional classes at
different levels of specificity, we also computed the F-score performances
averaged per hierarchy level (Figure 6): level 1 refers to the root nodes of the
FunCat forest, level i to nodes at distance i− 1 from the root. Note that the
number of positive examples decreases at higher levels: level 1 contains 18
classes with about 862 positive examples per class on the average, whereas
level 5 includes 16 classes with about 39 positive examples per class. Level
3 is the level with the largest number of classes (92).

In Figure 6 we reported only the results of R-COSNet , since COSNet
achieves similar but slightly worse results.

R-COSNet exhibits a reduced decay in F-score w.r.t. the other meth-
ods when the level increases, that is when more specific classes that better
characterize the functions of a given gene are considered. Only the Zhu-LP-
CMN method has a similar behaviour, but with worse performances (note
that Zhu-LP-CMN is a cost-sensitive variant of Zhu-LP). These results show
that cost-sensitive strategies maintain a relatively high F-score also with the
most specific classes, reducing the decay in performance due to the lower
number of positive examples associated to the most specific classes, con-
firming recent findings achieved in the context of cost-sensitive hierarchical
ensemble methods (Cesa-Bianchi et al., 2012).

6.4.2. Classification using integrated data sets

We integrated the six biomolecular data sets (Section 6.1) using a dis-
junctive approach, i.e. we integrated all the data sets considering the union
of all genes included in the data sets. In this way we obtained a set of 4665

29

genes and 232 functional classes with at least 20 positive examples. More
precisely, we extended each of the six available adjacency matrices to the the
size 4665× 4665 of the integrated “consensus” network, by adding rows and
columns of zeros when a given gene is not included in the corresponding data
set. Then we integrated the resulting “extended” 4665×4665 adjacency ma-
trices of each data set by adopting three different strategies for unweighted
integration described below.

Unweighted sum (US). This is the simple sum of the individual adjacency
matrices (corresponding each one to a different data set) divided by the
number of the m available networks:

W ∗ =
1

m

m∑
d=1

W (d) (18)

Max fusion (MF). The consensus matrix W ∗ is obtained element by element

by taking the maximum edge weight (w
(d)
ij is the weight associated to the edge

(i, j) of the dth data set):

w∗
ij = max

d
w

(d)
ij (19)

Per edge unweighted sum (EUS). Each entry w∗
ij of the consensus matrix is

the average of the corresponding entries w
(d)
ij in the data sets for which both

genes i and j are present at the same time. Formally, if g(d) is the set of genes
of network W (d), then we define Nij = {d ∈ {1, 2, · · · ,m} | i, j ∈ g(d)}. The
“consensus weight” for each edge (i, j) is:

wij
∗ =

1

|Nij|
∑
d∈Nij

wij
(d) (20)

With SVMs we cannot directly apply the integration methods described
above, since the SVM algorithm needs a valid kernel to learn the functional
classes. To this end we first constructed the Gram matrices K(d) using the
linear kernel function for each single data set D(d), and then we applied
two different kernel fusion methods to integrate the sources of data, i.e.
unweighted kernel fusion (UKF) and Multiple kernel learning (MKL) (see
below).

30

Unweighted kernel fusion (UKF). The integrated kernel matrix K∗ is ob-
tained by averaging across the kernel matrices K(d) constructed from the m
sources of data:

K∗ =
1

m

m∑
d=1

K(d) (21)

Multiple kernel learning (MKL). MKL is an approach for integrating kernels
to learn concurrently both the parameters of the classifier and the weights as-
sociated to each kernel, by solving a semi-infinite programming problem (Son-
nenburg et al., 2006; Kloft et al., 2009). In this way we can obtain an inte-
grated kernel matrix K∗ through a weighted sum of the component kernels:

K∗ =
m∑
d=1

hdK(d) (22)

where the weights hd are automatically learned from the data (Sonnenburg
et al., 2006).

Table 4 shows the performances in terms of average precision, recall and
F-score across classes for the methods COSNet (both unregularized and reg-
ularized versions), Zhu-LP, Zhu-LP-CMN and GAIN for each unweighted
network integration method. The same table reports also the average pre-
cision, recall, and F-score for the SVM-UKF and SVM-MKL kernel fusion
methods.

Both the regularized and unregularized version of COSNet show the high-
est F-score w.r.t. to the other compared methods, independently of the net-
work integration technique. COSNet and R-COSNet average results are com-
parable between the different integration methods, and always significantly
better (as expected) w.r.t. to the best “single source” results (Table 3).
Moreover, according to the Wilcoxon rank-sums test, the average F-score is
higher in COSNet and R-COSNet w.r.t. to all the other semi-supervised
and supervised compared methods at 10−5 significance level. With the most
informative integrated networks the need of the regularization is less appar-
ent. Indeed, even if R-COSNet registers slightly better results than COSNet ,
the difference is not statistically significant. Also with the integrated data
R-COSNet attains a slightly larger precision and COSNet a slightly larger
recall. Analogously to the “single source” classification task (Section 6.4.1),
the best results of COSNet and R-COSNet are due to a nice balancing be-
tween precision and recall (Table 4),

31

Table 4: Average precision, recall and F-score using integrated data.

US integration

Method Prec Rec F

Zhu-LP 0.614 0.078 0.129

Zhu-LP-CMN 0.367 0.606 0.411

GAIN 0.147 0.003 0.005

COSNet 0.513 0.506 0.494

R-COSNet 0.519 0.494 0.499

MF integration

Method Prec Rec F

Zhu-LP 0.289 0.017 0.029

Zhu-LP-CMN 0.384 0.593 0.411

GAIN 0.012 0.0002 0.0004

COSNet 0.504 0.503 0.489

R-COSNet 0.512 0.498 0.498

EUS integration

Method Prec Rec F

Zhu-LP 0.537 0.048 0.083

Zhu-LP-CMN 0.365 0.600 0.406

GAIN 0.084 0.002 0.003

COSNet 0.497 0.515 0.488

R-COSNet 0.505 0.500 0.494

SVM-KF integration
Method Prec Rec F

SVM-UKF 0.307 0.607 0.393
SVM-MKL 0.628 0.294 0.385

32

Interestingly enough, the other Hopfield network considered in the exper-
iments (GAIN), achieves the worst results, worsening also its performances
w.r.t. to “single source” data (Table 3). This is likely due to the problem of
the trivial attractors described in Section 3, since in the integrated network
we have a larger number of nodes and relatively more unbalanced classes.
Also with integrated data the cost-sensitive version of Zhu-LP achieves sig-
nificantly better than its “vanilla” counterpart, showing that methods that
take into account the unbalance of the data are well-suited to GFP.

Figure 7 reports the F-score averaged by taxonomy level of the compared
semi-supervised methods for each network integration technique applied in
the experiments. R-COSNet obtains the highest F-score at each level and
for each network integration method. It is worth noting that the F-score is
relatively high also at the lowest levels of the hierarchy, where the classes are
more unbalanced and difficult to be predicted. In the context of GFP, these
results are particularly relevant, since functional classes belonging to the
lowest level of the hierarchy are the most specific and informative about the
functional characteristics of genes. The same behaviour is also maintained
by the other cost-sensitive method (Zhu-LP-CMN), while both Zhu-LP and
GAIN suffer of a relevant decay in performances when more specific classes
need to be predicted. These results, according to the results of the previ-
ous section, witness for unbalanced data-aware methods for gene function
prediction.

6.4.3. Comparison with the minimum cut algorithm

In order to further validate our method, in this section we compare COS-
Net with the minimum cut algorithm proposed in (Murali et al., 2006) to
predict gene functions. The problem of minimizing the overall energy (2)
can be optimally solved in O(nm log n) time using a min-cut/max-flow al-
gorithm (Goldberg & Tarjan, 1988), where n is the number of nodes and
m the number of edges in the network. We tested the min-cut algorithm
with the US integrated network (Section 6.4.2), one of the most informative
nets used in our experiments (Table 4). Due to its time complexity, we run
the min-cut algorithm on the subset of the 47 descendant categories of the
FunCat functional trees rooted in “01” (Metabolism) and “02” (Energy).

COSNet significantly outperforms the min-cut algorithm in terms of av-
erage precision, recall and F-score (Table 5). This is not surpising, since in
this task we need cost-sensitive algorithms to take into account the unbal-
ance between positive and negative examples. Indeed the min-cut algorithm

33

Table 5: Comparison of COSNet and min-cut algorithm in terms of precision, recall,
F-score and accuracy averaged across the FunCat trees rooted in “01” and “02”.

US integration

Method Prec Rec F Acc.

Min-cut 0.028 0.048 0.032 0.938

COSNet 0.529 0.467 0.488 0.978

performs similarly to the GAIN algorithm, confirming the results obtained
by Murali et al. (2006). Interestingly enough, the results in terms of the
overall accuracy (the ratio of correctly predicted examples) are quite com-
parable between COSNet and the min-cut algorithm (Table 5), achieving
both methods very high accuracy rates (but recall that in this unbalanced
context the F-score is a more appropriate performance measure). Moreover,
COSNet takes 413.3 seconds to compute the 10-folds CV over the 47 selected
classes, whereas for the same task the min-cut algorithm needs 25080.7 sec-
onds (Linux system with i7 processor and 8 Gb RAM). This is a relevant
aspect when we need to consider large-size data and a high number of classes.

34

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
SVM−g
SVM−l
R−COSNet

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
SVM−g
SVM−l
R−COSNet

(a) (b)

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
SVM−g
SVM−l
R−COSNet

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
SVM−g
SVM−l
R−COSNet

(c) (d)

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
SVM−g
SVM−l
R−COSNet

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
SVM−g
SVM−l
R−COSNet

e) (f)

Figure 6: Compared F-scores between methods, averaged by FunCat level for Pfam-1 (a),
Pfam-2 (b), Expr (c), PPI-BG (d), PPI-VM (e), Sp-sim (f) data sets.

35

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
R−COSNet

(a)

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
R−COSNet

(b)

1 2 3 4 5

LEVEL

F
−

S
C

O
R

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhu−LP
Zhu−LP−CMN
GAIN
R−COSNet

(c)

Figure 7: F-scores averaged by FunCat level, compared between different semi-supervised
methods. (a) US, (b) MF, (c) EUS network integration.

36

7. Conclusions

In this paper we introduced COSNet , an algorithm for learning node
labels in graphs with unbalanced labels. COSNet is based on a family of
parametrized Hopfield networks; it preserves the prior knowledge coded in
the partially known labeling of the graph by restricting the dynamics solely
to the unlabeled nodes, and adopts a cost sensitive strategy to manage the
unbalance between positive and negative labels. To address extremely un-
balanced classification problems, we presented also a regularized version of
the algorithm.

The restriction of the network dynamics to the unlabeled part of the
network makes the algorithm fast even on large input data. We validated
the algorithm on the problem of gene function prediction at genome-wide
level in yeast, considering more than two hundreds of functional classes. We
compared COSNet with other state-of-the-art methods, and the results show
that our proposed approach is able to automatically find neuron states and
thresholds that better fit the unbalanced labeling of the network.

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers
for their comments and suggestions, and gratefully acknowledge partial sup-
port by the PASCAL2 Network of Excellence under EC grant no. 216886.
This publication only reflects the authors’ views.

References

Agresti, A., & Coull, B. A. (1998). Approximate is better than exact for
interval estimation of binomial proportions. Statistical Science, 52 , 119–
126.

Azran, A. (2007). The rendezvous algorithm: multiclass semi-supervised
learning with markov random walks. In Proceedings of the 24th interna-
tional conference on Machine learning ICML ’07 (pp. 49–56). New York,
NY, USA: ACM.

Belkin, M., Matveeva, I., & Niyogi, P. (2004). Regularization and semi-
supervised learning on large graphs. In In COLT (pp. 624–638). Springer.

37

Belkin, M., & Niyogi, P. (2003). Using Manifold Structure for Partially La-
beled Classification. Advances in Neural Information Processing Systems ,
15 , 929–936.

Bengio, Y., Delalleau, O., & Le Roux, N. (2006). Label Propagation and
Quadratic Criterion. In O. Chapelle, B. Scholkopf, & A. Zien (Eds.),
Semi-Supervised Learning (pp. 193–216). MIT Press.

Bertoni, A., Frasca, M., & Valentini, G. (2011). COSNet: a cost sensi-
tive neural network for semi-supervised learning in graphs. In Machine
Learning and Knowledge Discovery in Databases - European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD) (pp. 219–234). Springer Berlin/Heidelberg.

Bogdanov, P., & Singh, A. K. (2010). Molecular function prediction using
neighborhood features. IEEE/ACM Trans. Comput. Biol. Bioinformatics ,
7 , 208–217.

Borgatti, S., Mehra, A., Brass, D., & Labianca, G. (2009). Network Analysis
in the Social Sciences. Science, 232 , 892–895.

Brown, L. D., Cai, T. T., & Dasgupta, A. (2001). Interval estimation for a
binomial proportion. Statistical Science, 16 , 101–133.

Brown, M. P. S. et al. (2000). Knowledge-based analysis of microarray gene
expression data by using support vector machines. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 97 , 267–276.

Cesa-Bianchi, N., Re, M., & Valentini, G. (2012). Synergy of multi-label
hierarchical ensembles, data fusion, and cost-sensitive methods for gene
functional inference. Machine Learning , 88 , 209–241.

Cesa-Bianchi, N., & Valentini, G. (2010). Hierarchical cost-sensitive algo-
rithms for genome-wide gene function prediction. Journal of Machine
Learning Research, W&C Proceedings, Machine Learning in Systems Bi-
ology , 8 , 14–29.

Chua, H., Sung, W., & Wong, L. (2007). An efficient strategy for exten-
sive integration of diverse biological data for protein function prediction.
Bioinformatics , 23 , 3364–3373.

38

Chua, H. N., Sung, W.-K., &Wong, L. (2006). Exploiting indirect neighbours
and topological weight to predict protein function from protein–protein
interactions. Bioinformatics , 22 , 1623–1630.

Delalleau, O., Bengio, Y., & Le Roux, N. (2005). Efficient non-parametric
function induction in semi-supervised learning. In R. G. Cowell, &
Z. Ghahramani (Eds.), Proceedings of the Tenth International Workshop
on Artificial Intelligence and Statistics, Jan 6-8, 2005, Savannah Hotel,
Barbados (pp. 96–103).

Deng, M., Chen, T., & Sun, F. (2004). An integrated probabilistic model for
functional prediction of proteins. J. Comput. Biol., 11 , 463–475.

Dorogovtsev, S., & Mendes, J. (2003). Evolution of networks: From biological
nets to the Internet and WWW . Oxford: Oxford University Press.

Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics , 14 ,
755–763.

Finn, R., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J., Gavin,
O., Gunesekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E.,
Eddy, S., & Bateman, A. (2010). The Pfam protein families database.
Nucleic Acids Research, Database Issue 38 , D211–222.

Friedberg, I. (2006). Automated protein function prediction-the genomic
challenge. Brief. Bioinformatics , 7 , 225–242.

Gasch, P. et al. (2000). Genomic expression programs in the response of
yeast cells to environmental changes. Mol. Biol. Cell , 11 , 4241–4257.

Goldberg, A., & Tarjan, R. (1988). A new approach to the maximum flow
problem. Journal of the ACM (JACM), 35 , 921–940.

Hopfield, J. (1982). Neural networks and physical systems with emergent
collective compatational abilities. Proc. Natl Acad. Sci. USA, 79 , 2554–
2558.

Karaoz, U. et al. (2004). Whole-genome annotation by using evidence inte-
gration in functional-linkage networks. Proc. Natl Acad. Sci. USA, 101 ,
2888–2893.

39

Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Müller, K.-R., & Zien,
A. (2009). Efficient and accurate lp-norm multiple kernel learning. In
Advances in Neural Information Processing Systems 22 (pp. 997–1005).

Lanckriet, G. R., Deng, M., Cristianini, N., Jordan, M. I., & Noble, W. S.
(2004). Kernel-based data fusion and its application to protein function
prediction in yeast. Pacific Symposium on Biocomputing. Pacific Sympo-
sium on Biocomputing , (pp. 300–311).

Li, X., Chen, H., Li, J., & Zhang, Z. (2010). Gene function prediction with
gene interaction networks: a context graph kernel approach. Trans. Info.
Tech. Biomed., 14 , 119–128.

Liu, H., & Hu, Y. (2009). An application of hopfield neural network in target
selection of mergers and acquisitions. Business Intelligence and Financial
Engineering, International Conference on, 0 , 34–37.

Marcotte, E., Pellegrini, M., Thompson, M., Yeates, T., & Eisenberg, D.
(1999). A combined algorithm for genome-wide prediction of protein func-
tion. Nature, 402 , 83–86.

Mostafavi, S., Ray, D., Farley, D. W., Grouios, C., & Morris, Q. (2008).
Genemania: a real-time multiple association network integration algorithm
for predicting gene function. Genome Biology , 9 , S4+.

Murali, T. M., Wu, C.-J., & Kasif, S. (2006). The art of gene function
prediction. Nature Biotechnology , 24 , 1474–1475.

Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., & Singh, M. (2005). Whole-
proteome prediction of protein function via graph-theoretic analysis of in-
teraction maps. Bioinformatics , 21 , 302–310.

Oliver, S. (2000). Guilt-by-association goes global. Nature, 403 , 601–603.

Pavlidis, P., Cai, J., Weston, J., & Noble, W. S. (2002). Learning gene func-
tional classifications from multiple data types. Journal of Computational
Biology , 9 , 401–411.

Pena-Castillo, L. et al. (2008). A critical assessment of Mus musculus gene
function prediction using integrated genomic evidence. Genome Biology ,
9 , S1.

40

Re, M., Mesiti, M., & Valentini, G. (2012). A fast ranking algorithm for pre-
dicting gene functions in biomolecular networks. IEEE/ACM Transactions
on Computational Biology and Bioinformatics , 9 , 1812–1818.

Re, M., & Valentini, G. (2012). Cancer module genes ranking using kernelized
score functions. BMC Bioinformatics , 13 , S14.

Rojas, R. (1996). Neural Networks - A Systematic Introduction. Berlin:
Springer-Verlag.

Ruepp, A. et al. (2004). The FunCat, a functional annotation scheme for
systematic classification of proteins from whole genomes. Nucleic Acids
Research, 32 , 5539–5545.

Sharan, R., Ulitsky, I., & Shamir, R. (2007). Network-based prediction of
protein function. Molecular Systems Biology , 3:88 .

Smola, A., & Kondor, I. (2003). Kernel and regularization on graphs. In
B. Scholkopf, & M. Warmuth (Eds.), Proc. of the Annual Conf. on Com-
putational Learning Theory Lecture Notes in Computer Science (pp. 144–
158). Springer.

Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large scale
multiple kernel learning. J. Mach. Learn. Res., 7 , 1531–1565.

Spellman, P. T. et al. (1998). Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae by microarray hy-
bridization. Molecular Biology of the Cell , 9 , 3273–3297.

Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A., &
Tyers, M. (2006). Biogrid: a general repository for interaction datasets.
Nucleic acids research, 34 , D535–D539.

Szummer, M., & Jaakkola, T. (2001). Partially labeled classification with
Markov random walks. In Advances in Neural Information Processing
Systems (NIPS) (pp. 945–952). MIT Press volume 14.

Tsirukis, A. G., Reklaitis, G. V., & Tenorio, M. F. (1989). Nonlinear opti-
mization using generalized hopfield networks. Neural Comput., 1 , 511–521.

Tsuda, K., Shin, H., & Scholkopf, B. (2005). Fast protein classification with
multiple networks. Bioinformatics , 21 , ii59–ii65.

41

Valentini, G. (2011). True path rule hierarchical ensembles for genome-wide
gene function prediction. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics , 8 , 832–847.

Vazquez, A., Flammini, A., Maritan, A., & Vespignani, A. (2003). Global
protein function prediction from protein-protein interaction networks. Na-
ture Biotechnology , 21 , 697–700.

Von Mering, C. et al. (2002). Comparative assessment of large-scale data
sets of protein-protein interactions. Nature, 417 , 399–403.

Wang, D. (2003). Temporal pattern processing. In The Handbook of Brain
Theory and Neural Networks (pp. 1163–1167).

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biomet-
rics , 1 , 80–83.

Wuchty, S., Ravasz, E., & Barabsi, A. L. (2003). The architecture of biological
networks. Complex Systems in Biomedicine, 5259 , 165–181.

Zhang, F., & Zhang, H. (2005). Applications of a neural network to water-
marking capacity of digital image. Neurocomputing , 67 , 345–349.

Zhou, D. et al. (2004). Learning with local and global consistency. In Adv.
Neural Inf. Process. Syst. (pp. 321–328). volume 16.

Zhu, W., Hou, J., & Chen, Y.-P. P. (2010). Semantic and layered protein
function prediction from ppi networks. J Theor Biol , 267 , 129–36.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning
using gaussian fields and harmonic functions. In In ICML (pp. 912–919).

42

Appendix A. Convergence proof

The following fact adapts the convergence proof for Hopfield networks
with neuron activation values {1,−1(0)} (Rojas, 1996; Hopfield, 1982) to
the more general case with activation values {sinα,− cosα}.

Fact 4. A parametric Hopfield network H = < W ,γ, α > with neurons
V = {1, 2, . . . , n} and asynchronous dynamics, which starts from any given
network state, eventually reaches a stable state at a local minimum of the
energy function.

Proof. First of all, we observe that the energy (2) is equivalent to the follow-
ing

E(x) = −1

2

n∑
i,j=1

wijxixj +
n∑

i=1

xiγi (A.1)

During the iteration t+1 a random unit k is selected and updated according
to the update rule (1). To simplify the proof we set x′

k = xk(t + 1) and
xk = xk(t). If the unit k does not change its state, then the energy of the
system does not change either. Otherwise, the network reaches a new global
state x′ = (x1, . . . , x′

k, . . . , xn) for which the new energy is E(x′). Since
by definition wii = 0, the difference between E(x′) and E(x) is given by all
terms in the summation (A.1) which contain x′

k and xk, that is

E(x′)− E(x) = −(x′
k − xk)(

n∑
j=1

wkjxj − γk) = −(x′
k − xk)Bk (A.2)

where Bk =
∑n

j=1 wkjxj −γk. The factor
1
2
disappears from the computation

because the terms wkjxkxj appear twice in the double sum of (A.1). If Bk >
0, it means that x′

k = sinα and xk = − cosα; since 0 ≤ α ≤ π
2
, (x′

k −xk) > 0
and E(x′)−E(x) < 0. If Bk < 0, it means that x′

k = − cosα and xk = sinα
and again E(x′)−E(x) < 0. If Bk = 0, the energy value does not change after
the update. Hence the energy (A.1) is a monotonically decreasing function.
Moreover, since the connections wij are non negative, the energy E is lower
bounded by the value − sinα(

∑n
i=1(
∑n

j=1 sinα · wij − γi), and the dynamics
is guaranteed to converge to a fixed point, corresponding to a local minimum
of the energy.

43

