HCGene package: Reference Manual

(v. 1.0 - October 2007)

Giorgio Valenting
D.S.I.

Dipartimento di Scienze dell’ Informazione
Universita degli Studi di Milano
e-mail : valentini@dsi.unimi.it

Index

hegene-packageo 4
AnalyzeFuncatDepth o 6
ATDESCRIPTION e s e e e e 7
ATFUNCAT . . o e s e e 8
ATGO . . . e e 8
Build.class.labels.from.selected.classes oL 9
Build.Funcat.graph.from.selected.nodes 10
Build.Funcat.Table.labels 11
Build.GO.class.abels L 12
Build.GO.graph.from.selected.nodes 13
Build.list.homology.data L 14
Build.universal.graph.ontology L 15
ClassNames 0 e 16
Code.decode.classes 17
Code.homology.org 18
Compute.depth.statistics.Funcat.labels 18
Compute.depth.statistics. GO.graph oL 19
Compute.distances.from.root oL 20
Compute.statistics.degree 21
Compute.statistics.functional.classes L. 22
Compute.statistics.genedabels Lo 23
Count.examples.per.class 24
Do.data.homology 24
Do.universal.tree.Funcat L 26
Extract.class L 27
Funcat.navigation L 27
Funcat.transitive.closure 29
Get.all.common.genes 29
Get.Funcat.all.classes L L 30
Get.Funcat.specific.classes L L 31
Get.GO.all.classes 32
Get.GO.specific.classes e e 33
Get.matrix.data.for.classid oo Lo 35
Get.matrix.data.for.two.selected.classeso oL L. 37
Get.matrix.data.from.parent.only L oL 38
Get.matrix.data.without.ancestors oL oL oL 40
Get.matrix.positive.data.for.classid 42
GO.transitive.closure L. e e 43
Graphics.cardinality.labelso oo 44
HUMANGO e 45
Map. FID2Term oo 46
Map.ORF e 46
MOUSEFUNCAT e e e e e e e 47
MOUSEGO e 48
Plot.distribution.gene.per.class L L 49
Plot.hist.Funcat.depth.labels oo 50
Plot.histogram.gene.per.class L e 50

Plot.ontology.graph L 51

Select.Funcat.classes.by.depth oo 52
Select.functional.classes.by.cardinality oL 53
Select.GO.classes.by.distance L L 54
Select.GO.rooted.classes 55
Select.ontology e 56
Subtree.nodes L Lo 57
Write.gene.classes.associations L oL 58
YEASTFUNCAT s e e 59

hcgene-package HCGene: a software tool to support the hierarchical classification
of genes

Description

The R package HCGene (Hierarchical Classification of Genes), built on top of Bioconductor
libraries, implements methods to process and analyze the directed acyclic graphs of the Gene
Ontology (GO) and the trees of the FunCat taxonomy of genes. HCGene has been designed
to support the hierarchical classification of genes, but in principle it can also be used for
other prediction or exploratory tasks that take into account the hierarchical structure of
gene ontologies. HCGene allows the extraction of subgraphs and subtrees related to specific
biological problems, the labelling of genes and gene products with multiple and hierarchical
functional classes, and the association of different types of bio-molecular data to genes for
learning to predict their functions.

Details

Package: hcgene

Type: Package
Version: 1.0
Date: 2007-10-15

License: GNU/GPL

Assigning functions to unannotated gene products using large-scale bio-molecular data is a
key issue in functional genomics and bioinformatics.

Most computational methods to predict the functions of genes have been based on a "flat”
multiclass setting of the classification problem, without taking into account the hierarchical
structure of gene classes.

Nevertheless, the structure of the Gene Ontology (GO) and FunCat taxonomies, requires
a new setting of the classical multi-class classification problem. Indeed these ontologies
assign multiple classes to gene/gene products, with annotations available at different degree
of resolution and reliability, and with hierarchical relationships between the classes. More
precisely the GO provides a taxonomy structured as a Directed Acyclic Graph (DAG),
while FunCat organizes functional categories of genes according to a tree.

In this context the problem of the gene function prediction must be restated in a multi-
label, hierarchical and partial-path setting of the classical statistical and machine learning
multi-class classification problem.

HCGene implements methods to process complex taxonomies structured as graphs (e.g.
DAG or trees) with thousands of nodes and edges, in order to extract subgraphs related
to the specific biological process under investigation, or to properly associates multiple
functional classes to gene and gene products according to the hierarchical structure of the
FunCat trees or GO DAGs, or to associate gene products to multiple data types (e.g. gene

expression data, phylogenetic or protein interaction data) used to infer the function of
unknown genes.

Schematically the main functionalities of the software library can be summarized as follows:

Graph processing: building of hierarchical structures covering the main ontologies (trees
and graphs); methods to analyze the structure and the relationships between functional
classes (e.g. distribution of node/classes with respect to their depth, in and out-degree,
cardinality of classes or labels, distribution of leaves at different levels); methods to extract
biologically meaningful structures from GO DAGs and FunCat trees.

Multi-label generation: extraction of the most specific annotations and building of the full
annotation of genes exploiting the transitive relationships between classes; building of the
multi-labeling for each gene using compact representations; mapping functions to associate
gene names or identifiers (e.g. ORF ID or EntrezGene IDs) to functional classes

Data building: methods to associate gene names to different types of data; methods to select
positive and negative examples for each class according to different strategies; methods to
build data relative to specific functional classes.

Moreover functions to graphically show the results of statistical analyses, as well as to draw
subgraphs of GO and FunCat ontologies are provided .

The software library is built on top of the Bioconductor packages graph, GO, GOstats,
and Rgraphviz to provide functionalities related to the GO ontology, while for the FunCat
taxonomies the software has been built from scratch using the hierarchical schemes and
functional annotations obtained from the MIPS website (http://mips.gsf.de).

HCGene has been designed to support the supervised hierarchical classification of genes,
but it can also be used to support the development of methods that incorporate a priori
biological knowledge into analysis, by exploiting the HCGene functions for the Funcat and
GO graph processing, and for the association of genes to the functional classes.

Author(s)

Giorgio Valentini <valentini@dsi.unimi.it>.

References

Barutcuoglu, Z., Schapire, R.E. and Troyanskaya, O.G., Hierarchical multi-label prediction
of gene function, Bioinformatics, 22(7), 830-836, 2006.

Dopazo, J., Functional Interpretation of Microarray Experiments, OMICS, 10(3), 2006.

Harris, M.A. and others, The Gene Ontology (GO) database and informatics resource,
Nucleic Acid Res., 32, D258-D261, 2004.

Lewis, D.P., Jebara, T. and Noble, W.S., Support vector machine learning from hetero-
geneous data: an empirical analysis using protein sequence and structure, Bioinformatics,
22(22), 2753-2760, 2006.

Pavlidis, P., Weston, J., Cai, J. and Noble, W.S., Learning gene functional classification
from multiple data, J. Comput. Biol., 9, 401-411, 2002.

Ruepp, A and others, The FunCat, a functional annotation scheme for systematic classifi-
cation of proteins from whole genomes, Nucleic Acid Res., 32, 5539-5545, 2004.

See Also
graph, GO, GOstats, Rgraphviz

AnalyzeFuncatDepth Functions to analyze the depth of FunCat nodes

Description

Functions to analyze the depth of FunCat nodes and the distribution of the leaves in FunCat
trees

Usage

Get.depth.Funcat.labels(nodes)
Get.leaf.distribution.by.depth.Funcat.labels(g)

Arguments
nodes a list(vector) of FunCat nodes
g a FunCat graph

Details

Get.depth.Funcat.labels is a function that provides the depths of FunCat classes.
Get.leaf.distribution.by.depth.Funcat.labels computes the distribution of the leaves
per depth of a FunCat tree. It returns how many leaves are present for each level (depth)
of the tree. Note that the level of the root nodes is set to 1.

Value

Get.depth.Funcat.labels returns a vector with the depth of Funcat classes supplied as
arguments.

Get.leaf.distribution.by.depth.Funcat.labels returns a list with 4 elements:

num.levels the number of levels (depth) of the FunCat tree. Note that the root is
considered of depth
num.leaves.per.level
a vector with the number of leaves for each depth
num.no.leaves.per.level
a vector with the number of nodes that are not leaves for each depth
ratio.leaves.per.level
the ratio of the leaves for each depth

See Also

GetFuncatDepth

Examples

doing universal graph of Funcat classes

g <- Do.universal.tree.Funcat();

Getting leaf distribution of the universal FunCat tree
Get.leaf.distribution.by.depth.Funcat.labels(g);

Getting the depths of all FunCat classes
Get.depth.Funcat.labels(nodes(g))

ATDESCRIPTION Description of A. thaliana AGI identifiers

Description
This is an R environment (hash table) mapping AGI identifiers to their corresponding
protein description.

Usage
data (ATDESCRIPTION)

Format

An environment with 29993 entries

Details

The environment provides protein descrition of the model higher plant Arabidopsis thaliana.
AGI identifiers are Keys and the corresponding protein description are Values. Values are
character vectors.

Source

Data have been downloaded from Arabidopsis Information Resource (TAIR):
http://www.arabidopsis.org

Examples

data (ATDESCRIPTION) ;
str (ATDESCRIPTION) ;
get("at1g01100",ATDESCRIPTION) ;

ATFUNCAT AGI identifiers to Functional Classification (FunCat) mapping

Description

This environment provides a mapping between A.thaliana genes and FunCat classes.

Usage
data (ATFUNCAT)

Format

An environment with 26639 entries

Detalils

The environment ATFUNCAT maps AGI IDs of the A.thaliana to the Funcat ID of the
classes (http://mips.gsf.de/projects/funcat). Each entry associates the AGI ID to
the the list of the Funcat ID. More precisely each Value is a list of lists. Each element of the
outer list correspond to an association to a Funcat class. The elements of the inner list are
: FuncatID the store the identifier of the Funcat class and Evidence that stores the Funcat
numeric identifier of the evidence of the annotation. No evidence code is available at the
moment (all the Evidence fields are empty). The annotation is conformed to the funcat-2.1
scheme.

Source

Data have been downloaded from the MIPS Arabidopsis thaliana Database:
ftp://ftpmips.gsf.de/plants/cress/funcatdump_v220306

Examples

data (ATFUNCAT)
get("at1g01100",ATFUNCAT) ;

ATGO AGI identifiers to Gene Ontology (GO) mapping

Description

This environment provides a mapping between A.thaliana genes and GO terms.

Usage
data(ATGO)

Format

An environment (hash table) with 28234 entries

Details

The environment provides GO annotations for the model plant Arabidopsis thaliana. AGI
identifiers are Keys and GO terms Values. More precisely each Value is a list of lists. Each
element of the outer list represent a mapping to a GO term. The elements of the inner list
are:

GOID : GO Identifier
Evidence : Evidence code

Ontology : "BP”, "MF” or "CC”

Source

Data have been downloaded from Arabidopsis Information Resource (TAIR):
http://www.arabidopsis.org.

The actual file used for the annotations has been downloaded from:
ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/ATH_GO_GOSLIM.20070929.txt

Examples

data(ATGO)
get("at1g01100",ATGO) ;

Build.class.labels.from.selected.classes
Ezxtraction of a subset of classes from a given functional table

Description

It extracts from a given table of genes—>classes (functional table) a subtable with the given
subset of classes. It may be used with both GO and Funcat ontologies If some of the selected
classes are not present in the Table the execution is aborted with an error message.

Usage

Build.class.labels.from.selected.classes(Table.classes, classes)

Arguments

Table.classes a data frame with rows corresponding to genes and columns to classes. If
a gene belongs to the GO/Funcat class the corresponding variable is set
to 1 otherwise to 0

classes list or character vector of the selected Funcat/GO classes

Value

a data frame extracted from Table.classes according to the selected classes

See Also
Build.GO.class.labels, Build.Funcat.Table.labels

Examples

building of a data frame with FunCat classes with more than 100 examples for the yeast
Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();

Yeast.Funcat.general <- Get.Funcat.all.classes(Yeast.Funcat.specific);

Yeast.Funcat.Table <- Build.Funcat.Table.labels(Yeast.Funcat.general);

nodes <- Select.functional.classes.by.cardinality(Yeast.Funcat.Table, 100);
Yeast.Funcat.Table.100 <- Build.class.labels.from.selected.classes(Yeast.Funcat.Table, nodes);

Build.Funcat.graph.from.selected.nodes
Construction of a subgraph of a given FunCat graph

Description

It builds a subgraph of a given FunCat graph from a list of Funcat classes (nodes).

Usage

Build.Funcat.graph.from.selected.nodes (g, nodes, transitive.closure = TRUE)

Arguments
g a FunCat graph
nodes list or character vector of the selected nodes

transitive.closure
if TRUE (default) the nodes used for building the graph are obtained by
transitive closure of nodes

10

Details

The subgraph can be obtained from a list of selected nodes or by transitive closure from a
list of selected nodes If some of the selected nodes are not present in the graph the execution
is aborted with an error message. Note that we always obtain trees, because all FunCat
graphs are trees.

Value

a subgraph of class graphNEL extracted from the graph g

See Also

Funcat.transitive.closure, Do.universal.tree.Funcat

Examples

building a subtree with yeast specific nodes

Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();

t <- Do.universal.tree.Funcat();

nodes <- Get.classes(Yeast.Funcat.specific);

st <- Build.Funcat.graph.from.selected.nodes(t, nodes, transitive.closure = TRUE)

Build.Funcat.Table.labels
Construction of a data frame that maps genes to multiple FunCat
functional classes

Description

It builds a boolean data.frame with genes (rows) and class codes (columns/variables). If
gene i belongs to class j the data.frame d[i,j] = 1, otherwise it is set to 0.

Usage
Build.Funcat.Table.labels(NamesToFuncat, store = FALSE,
file = "Table.gene.Funcat.classes.rda")

Arguments

NamesToFuncat mnamed list of vectors. Each element of the list corresponds to a named
gene and the elements of the vector are the corresponding Funcat classes

ID.
store boolean: if TRUE the result is stored in a binary file
file name of the file where the data.frame is stored (if store == TRUE)

11

Value

a data.frame with columns corresponding to Funcat classes and rows to a given gene. If a
gene belongs to the Funcat class the corresponding column is set to 1 otherwise to 0.

See Also

Get.Funcat.specific.classes, Get.Funcat.all.classes

Examples

building of a data frame with multiple FunCat functional labels for the yeast
Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();
Yeast.Funcat.general <- Get.yeast.Funcat.all.classes(Yeast.Funcat.specific);
Yeast.Funcat.Table <- Build.Funcat.Table.labels(Yeast.Funcat.general);

Build.GO.class.labels
Construction of a data frame that maps genes to multiple GO
classes

Description

It builds from the list of gene->GOID a boolean data frame with genes (rows) and class
codes (columns). If gene i belongs to class j the data frame d[i,j] = 1, otherwise it is set to
0.

Usage
Build.GO.class.labels(NamesToGO, store = FALSE, file = "Table.gene.GO.classes.rda")

Arguments
NamesToGO named list of vectors. Each element of the list corresponds to a named
gene and the elements of the vector are the corresponding GO classes ID
store if TRUE the result is stored in a binary file
file name of the file where the data frame is stored (if store == TRUE)
Value

a data frame (functional table) with variables corresponding to GO classes and rows to a
given gene. If a gene belongs to the GO class the corresponding variable is set to 1 otherwise
to 0.

See Also

Get.GO.specific.classes, Get.G0O.all.classes

12

Examples

building of a data frame with multiple GO functional labels for the yeast
Yeast.specific <- Get.yeast.GO.specific.classes();

Yeast.general <- Get.yeast.G0.all.classes(Yeast.specific);
Yeast.general.classes <- Build.class.labels(Yeast.general);

Build.GO.graph.from.selected.nodes
Construction of a subgraph of a given GO graph

Description

It builds a subgraph of a given GO graph form a list of GO classes (nodes)

Usage

Build.GO.graph.from.selected.nodes(g, nodes, transitive.closure = TRUE,
ontology="BP")

Arguments
g a GO graph
nodes list or character vector of the selected nodes

transitive.closure
if TRUE (default) the nodes used for building the graph are obtained by
transitive closure of nodes

ontology a character vector denoting the ontology : BP (default), MF, CC

Details

The subgraph can be obtained from a list of selected nodes or by transitive closure from a
list of selected nodes If some of the selected nodes are not present in the graph the execution
is aborted with an error message.

Value

a subgraph extracted from the graph g

See Also

GO.transitive.closure, Build.universal.graph.ontology.down

13

Examples

building a subgraph with yeast specific nodes

g <- Build.universal.graph.ontology.down();

Yeast.specific <- Get.yeast.GO.specific.classes();

selected.classes <- Get.classes(Yeast.specific);

sg <- Build.GO.graph.from.selected.nodes(g, selected.classes,
transitive.closure = TRUE);

Build.list.homology.data
Construction of the list of lists of homology data for different
species

Description

Functions to build the list of lists of homology data for different species.

Usage

Build.list.arabidopsis.homology.data(list.HGID = NULL)
Build.list.human.homology.data(list.EntrezGeneID = NULL)
Build.list.yeast.homology.data(list.ORFID = NULL)
Build.list.mouse.homology.data(list.EntrezGeneID = NULL)

Arguments

list.HGID a vector of HomoloGeneID for the Arabidopsis species. If NULL (default)
the list of HomoloGenelD is obtained from the the vector athhomology-
HGID of the package athhomology

list.EntrezGenelD

list.ORFID

a vector of ORF ID for the yeast species. If NULL (default) the list of ORFID is obtained
from the the environment YEASTGO of the package YEAST

Detalils

Each element of the list corresponds to a specific gene; each gene has a list of homology
data (one for each species and type of homology). Data are obtained from Bioconductor
packages athhomology, hsahomology, scehomology, mmuhomology version 1.16.0.

14

Value

a list of lists of homology data: for each gene ID a list of homology data is given. The
element of the inner list are:

homoORG organism for which there is a homologous gene. This will be an abbrevia-
tion of the first letter of the genus and the first two letters of the species.

homoType type of similarity measurement. This can be either B, indicating a recip-
rocal best best match between three or more organisms, b, indicating a
reciprocal best match between two organisms, or ¢, indicating a curated
homology relationship between two organisms.

homoPS percentage of identical base pair alignments between the homologous
genes
homoHGID the internal HomoloGeneld.
homoURL url to the source for a curated homology
Examples

1.human <- Build.list.human.homology.data();
1.Ath <- Build.list.arabidopsis.homology.data();

Build.universal.graph.ontology
Construction of the graph of an overall GO ontology

Description

It builds the DAG of an given GO ontology; both the BP (Biological Process), the MF
(Molecular Function) and CC (Cellular Component) ontologies may be represented.

Usage
Build.universal.graph.ontology.down(ontology = "BP")
Build.universal.graph.ontology.up(ontology = "BP")
Arguments

ontology it may be one of the following character vectors: BP (default), MF, CC

Details

The direction of the edges are from parent to child (from the less to the more specific GO
term) for the function Build.universal.graph.ontology.down.

The function Build.universal.graph.ontology.up builds a DAG with the edges from
children to parents.

15

Value
a graph of class graphNEL of the corresponding ontology

Examples

bulding of the Cellular component GO ontology
g.CC <- Build.universal.graph.ontology.down("CC");

ClassNames Getting names or information about GO and FunCat classes

Description

These are a set of functions to obtain information or class names from the FunCat taxonomy
and Gene Ontology.

Usage

Get.Term.Definition(goid)
Get.classes(NamesToGO)
Get.all.Funcat.classes()
Get.all.GO.classes(ontology = "BP")

Arguments
goid GO ID of a GO class (character)
NamesToGO named list of vectors. Each element of the list corresponds to a named
yeast gene and the elements of the vector are the corresponding GO /FunCat
classes ID.
ontology a char vector denoting the ontology: BP (default), MF, CC
Details

Get.Term.Definition returns the GO term and definition for a given GO ID. The func-
tion Get.classes obtains the GO or Funcat classes from the named list of genes. More
precisely It performs of a union of all the classes associated to the named list of genes.
Get.all.Funcat.classes returns the FunCat ID of all the FunCat classes. The function
Get.all.GO.classes gets all the GO classes from a given ontology

Value

Get.Term.Definition returns the GO term and definition for a given GO ID. Get.classes
returns a vector of GOID or FunCat ID. Get.all.Funcat.classes returns a character
vector of all the Funcat classes. Get.all.G0.classes returns a character vector of the GO
classes.

16

Examples

Get.Term.Definition("G0:0008150") ;

Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();
Get.classes(Yeast.Funcat.specific);

Get.all.Funcat.classes();

Get.all.GO.classes(ontology = "MF");

Code.decode.classes Coding GO/FunCat classes to integers

Description

Function that codes GO/FunCat classes to integers It provides a vector of class ID: the
index of the vector is the corresponding integer code of the class. The function return also
an hash table to obtain the integer code of the class from the GO/FunCat ID. This function
is primarily intended for internal usage. It is used by Build.Funcat.Table.labels and
Build.GO.class.labels.

Usage

Code.decode.classes(NamesToClasses)

Arguments
NamesToClasses
named list of vectors. Each element of the list corresponds to a named
gene and the elements of the vector are the corresponding GO/FunCat
classes ID.
Value

A list with two elements:

Code.to.ClassID

A vector of GOID. The indices of the vector correspond to the integer

codes of the classes. It maps Class integer codes —> GOID
ClassID.to.Code

an environment (hash table) that associates ClassIDs to integer codes of

the classes. It maps GO/FunCat ID —> Class integer codes

See Also

Build.Funcat.Table.labels, Build.GO.class.labels

Examples

17

Code.homology.org Coding species names to integer

Description

It finds all the homologous species from the list of lists of homology data and code the
organism names to integers. The list of lists of homology data may be obtained from e.g.
Build.list.human.homology.data or other similar functions for the species A. thaliana,
yeast and mouse. It returns an evironment that associates the species name with an integer

Usage
Code.homology.org(1l)

Arguments

1 a list of lists of homology data

Value

An environment that associates a three character identifier of a species with an integer

See Also

Build.list.human.homology.data, Build.list.mouse.homology.data

Examples

1<-Build.list.arabidopsis.homology.data();
sp2code <- Code.homology.org(l);

Compute.depth.statistics.Funcat.labels
Statistics about the distribution of the depth of FunCat classes

Description

Function that provides statistics about the distribution of the depth of FunCat classes.
It computes the average median, standard deviation and main quantiles of the depths of
FunCat nodes.

Usage

Compute.depth.statistics.Funcat.labels(nodes)

18

Arguments

nodes a list(vector) of FunCat nodes

Value

A list with four elements:

avg mean value of the depth of FunCat classes

median median value of the depth of FunCat classes

sd standard deviation of the depth of FunCat classes

quant 0%, 25%, 50%, 75%, 100% quantile of the the depth of FunCat classes
See Also

Compute.depth.statistics.GO.graph

Examples

Computing depth statistics of the FunCat nodes related to S. cerevisiae
Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();
Yeast.Funcat.general <- Get.Funcat.all.classes(Yeast.Funcat.specific);
classes<-Get.classes(Yeast.Funcat.general);
Compute.depth.statistics.Funcat.labels(classes);

Compute.depth.statistics.GO.graph
Statistics about the “depth” of the nodes in a given GO graph

Description

Function that provides statistics about the "depth” of the nodes in a given GO graph. It can
be used also with Funcat trees (represented as graphs) to provide basic statistics about the
depth of the tree. The distances (shortest paths) from the root of the DAG are computed
for all nodes and basic statistic are returned. This function can be used also with graphs
relative to Funcat hierarchical trees. It computes the average median, standard deviation
and main quantiles of the distances from the root.

Usage
Compute.depth.statistics.G0.graph(g, ontology = "BP")

Arguments
g a graph of a GO/FunCat ontology: it must be rooted to the root note of
the ontology
ontology BP (default), MF, CC, 00 (FunCat)

19

Value

A list with four elements:

avg mean value of the distances from the root

median median value of the distances from the root

sd standard deviation of the distances from the root

quant 0%, 25%, 50%, 75%, 100% quantile of the distances from the root
See Also

Compute.depth.statistics.Funcat.labels

Examples

Computing depth statistics of the GO terms related to "universal" BP GO graph
gBP.universal.ontology <- Build.universal.graph.ontology.down();
Compute.depth.statistics.GO.graph(gBP.universal.ontology) ;

Compute.distances.from.root
Computing all the distances from the root of a given ontology

Description

Function to compute all the distances from the root of a given ontology The Dijkstra
algorithm is used to compute the shortest paths (distances) from the root of the ontology
to all the other nodes of the graph. It may be used also to compute the path length from
the root of the FunCat ontology to all the other nodes of the tree.

Usage

Compute.distances.from.root(g, ontology = "BP")

Arguments
g a graph of a GO or Funcat ontology: it must be rooted to the root note
of the ontology
ontology BP (default), MF, CC, 00 (Funcat)
Value

a named vector with the distance from the root of the GO DAG or FunCat tree

See Also

Compute.depth.statistics.GO.graph

20

Examples

Computing the distances from the root of the GO terms related to "universal" BP GO graph
gBP.universal.ontology <- Build.universal.graph.ontology.down();
d <- Compute.distances.from.root(gBP.universal.ontology, ontology="BP");

Compute.statistics.degree
Statistics about the distribution of the in and out degree of GO
and FunCat nodes

Description

The functions provide basic statistics about the distribution of the in and out degree of GO
nodes and the out degree of FunCat nodes.

Usage

Compute.statistics.Funcat.degree(g)
Compute.statistics.G0.degree(g)

Arguments

g a GO or FunCat graph

Details

The function Compute.statistics.Funcat.degree provides statistics about the out de-
gree of FunCat nodes: the average, median, standard deviation and main quantiles of the
nodes degrees are computed, as well as the degree of each individaul node. The func-
tion Compute.statistics.GO.degree is similar, but provides both the in and out degree
statistics for GO nodes (GO is a DAG indeed).

Value

For Compute.statistics.Funcat.degree, a list with two elements:

outDegree a list of 4 elements: avg : mean value of the out degree per Funcat class;
median : median value of the out degree per Funcat class sd : standard
deviation of the out degree per Funcat class quant : 0%, 25%, 50%, 75%,
100% quantile of the out degree per Funcat class

degree a list with the out degree for each Funcat class

outDegree a list of 4 elements: avg : mean value of the out degree per GO class;
median : median value of the out degree per GO class sd : standard
deviation of the out degree per GO class quant : 0%, 25%, 50%, 75%,
100% quantile of the out degree per GO class

21

inDegree a list of 4 elements: avg : mean value of the in degree per GO class; median
: median value of the in degree per GO class sd : standard deviation of
the in degree per GO class quant : 0%, 25%, 50%, 75%, 100% quantile of
the in degree per GO class

degree a list with the in and out degree for each GO class

Examples

Computing the distances from the root of the GO terms related to "universal" CC GO graph
gBP.universal.ontology <- Build.universal.graph.ontology.down("CC");
1 <- Compute.statistics.G0.degree(gBP.universal.ontology) ;

Compute.statistics.functional.classes
Statistics about the distribution of the functional classes

Description

Function that provides statistics about the distribution of GO or FunCat functional classes.
It may be used with both GO and Funcat ontologies. It computes the average, median,
standard deviation and main quantiles of the cardinality of the functional gene classes.

Usage

Compute.statistics.functional.classes(Table.gene.class)

Arguments

Table.gene.class

a data frame with variables corresponding to functional classes and rows
to a given gene. If a gene belongs to the functional class the corresponding
variable is set to 1 otherwise to 0

Value

A list with four elements:

avg mean value of the number of genes per functional class

median median value of the numberof genes per functional class

sd standard deviation of the number of genes per functional class

quant 0%, 256%, 50%, 75%, 100% quantile of the number of genes per functional
class

22

Examples

computing statistics about yeast FunCat classes

Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();

Yeast.Funcat.general <- Get.Funcat.all.classes(Yeast.Funcat.specific);
Yeast.Funcat.Table <- Build.Funcat.Table.labels(Yeast.Funcat.general);

the first variable refers to the dummy "O00" class
Compute.statistics.functional.classes(Yeast.Funcat.Table[,2:ncol(Yeast.Funcat.Table)]);

Compute.statistics.gene.labels
Statistics about the distribution of the gene labels

Description

Function that provides statistics about the distribution of the gene labels. It may be used

with both GO and Funcat ontologies. It provides the mean, median, standard deviation

and main quantiles of the number of labels for each gene in GO or FunCat ontologies.
Usage

Compute.statistics.gene.labels(NamesToGO)

Arguments
NamesToGO named list of vectors. Each element of the list corresponds to a yeast gene
and the elements of the vector are the corresponding GO/Funcat classes
ID.
Value

A list with four elements:

avg mean value of the number of labels per gene

median median value of the number of labels per gene

sd standard deviation of the number of labels per gene

quant 0%, 25%, 50%, 75%, 100% quantile of the number of labels per gene
Examples

computing statistics about FunCat labels per gene in the yeast
Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();
Yeast.Funcat.general <- Get.Funcat.all.classes(Yeast.Funcat.specific);
Compute.statistics.gene.labels(Yeast.Funcat.general);

23

Count.examples.per.class
Counting the number of examples for each class

Description
Function to compute the number of examples per class. It may be used with both GO and
Funcat ontologies

Usage

Count.examples.per.class(Table.gene.class)

Arguments

Table.gene.class
a data frame with variables corresponding to GO/Funcat classes and rows
to a given gene. If a gene belongs to the GO/Funcat class the correspond-
ing variable is set to 1 otherwise to 0

Value

A list with two elements:

counts a vector with the number of examples for each class
counts.freq a table with the frequencies of the classes with respect to the number of
gene/examples
Examples

counting the number of examples for each class in yeast (FunCat)
data(YEASTFUNCAT) ;

Yeast.Funcat.specific <- Get.Funcat.specific.classes(YEASTFUNCAT) ;
Yeast.Funcat.general <- Get.Funcat.all.classes(Yeast.Funcat.specific);
Yeast.Funcat.Table <- Build.Funcat.Table.labels(Yeast.Funcat.general);
1 <- Count.examples.per.class(Yeast.Funcat.Table);

Do.data.homology Function to build homology (phylogenetic) data.

24

Description

These functions build homology data matrices for different species. The homology data can
be in binary format (1 homology), (0 no homology) or real values between 0 and 1 corre-
sponding to the percentage of identical base pair alignments between the homologous genes.
Data matrices are built using lists obtained by Build.list.arabidopsis.homology.data,
Build.list.mouse.homology.data, Build.list.human.homology.data,
Build.list.yeast.homology.data.

Usage

Do.binary.data.homology (1)
Do.float.data.homology (1)

Arguments
1 a list of lists of homology data. Note that this must be a named list having
name of the genes as names
Details

Each element of the list represent a list of four elements of the same types as described
in Build.list.homology.data. The function Do.binary.data.homology returns binary
homology data: each column of the matrix corresponds to a given genome and it is set to
1 if there is a homology, 0 otherwise. The function Do.float.data.homology returns real
valued homology data: each column of the matrix corresponds to a given genome and it is
set with a value from 0 to 1 depending on the percentage of identical base pair alignments
between the homologous genes.

Value

a matrix : rows are genes and columns correspond to homologies with other species.
Each column corresponds to a species: a 1 entry corresponds to a homology, 0 otherwise
(Do.binary.data.homology), or values are between 0 and 1 (Do.float.data.homology)

See Also
Build.list.arabidopsis.homology.data, Build.list.mouse.homology.data,

Build.list.human.homology.data, Build.list.yeast.homology.data

Examples

Building the matrix m of binary homology data for the yeast
1<-Build.list.yeast.homology.data();
m <- Do.binary.data.homology(1);

25

Do.universal.tree.Funcat
Generation of the universal tree of the FunCat taxonomy

Description

Functions to build the universal tree of the FunCat ontology.

The function Do.universal.tree.Funcat builds a tree with edges from the root to the
leaves (from top to bottom). The function Do.universal.tree.Funcat.up builds a tree
with edges from the children to the parent (from bottom to up).

Usage
Do.universal.tree.Funcat ()
Do.universal.tree.Funcat.up()
Detalils

The "universal” tree of the FunCat ontology (http://mips.gsf.de/projects/funcat) is
built and represented as a graph of class graphNEL (see package graph). It collects all
the available FunCat classes according to the FunCat scheme 2.1. Actually 1363 nodes are
available.

Value
the tree of the Funcat classes stored as a graph of class graphNEL.

Note

A dummy root node with Funcat ID 00 is added in order to obtain a single tree from the
FunCat forest. In the scheme 2.1 the node 40.02 is missed (but its child 40.02.03 is present
instead), hence to avoid inconsistencies we added the node 40.02.

Examples

Building the universal tree of FunCat
t <- Do.universal.tree.Funcat();
t

26

Extract.class Function to extract the examples belonging to a given GO/Funcat
class

Description

Function to extract the examples belonging to a given GO/Funcat class. It may be used
with both GO and Funcat ontologies

Usage

Extract.class(Table.gene.class, class)

Arguments

Table.gene.class
a data frame with variables corresponding to GO /Funcat classes and rows
to a given gene. If a gene belongs to the GO/Funcat class the correspond-
ing variable is set to 1 otherwise to 0

class a GO/Funcat class. It may be the integer code of the class or a string of
the corresponding GO /FunCat ID

Value

a data frame: Each row corresponds to a gene belonging to class. The variables are:
gene.names : strings with the name of the gene indices : the integer index of the gene

See Also

Get.matrix.data.without.ancestors, Get.matrix.data.from.parent.only

Examples
Funcat.navigation Navigation in FunCat trees: getting children, parent and ances-
tors
Description

Functions to navigate inside FunCat trees and to obtain children, parent and ancestors of
a given node. Also functions giving the depth of each node and to know if a node is a leaf
or an internal node are given. Two types of functions to navigate the trees: the first set
is based on a given FunCat tree, the second set exploits the name of the FunCat nodes to
obtain children, parent and ancestors.

27

Usage

Funcat.child(g, node)
Funcat.parent (gup, node)
Funcat.ancestors(gup, node)
GetFuncatParent (funcatID)
GetFuncatAncestors (funcatID)
GetFuncatDepth(funcatID)
Is.leaf(x, g)

Arguments
g graph of the Funcat tree. It must have edges from parent to children
gup graph of the Funcat tree. It must have edges from children to parent
node vector of the nodes (FuncatID)
funcatID Funcat 1D
X Funcat ID

Details

The function Funcat . child provides the children of a given node. The functions Funcat .parent
and GetFuncatParent provide the parent of a given node. The functions Funcat .ancestors
and GetFuncatAncestors provide the ancestors of a given node. GetFuncatDepth provides

the depth of a given node and Is.leaf reveals if a given node is a leaf. The main difference
between the navigation functions are related the structure of a given tree and on the name

of the FunCat class. In the first case results depends on the structure of the tree given as
argument to the function. In the second case results depends only on the overall "universal”
FunCat tree. The second type of functions are faster.

Value

A vector of the children (Funcat.child), parent (Funcat.parent, GetFuncatParent), an-
cestors (Funcat.ancestors,GetFuncatAncestors) of funcatID. The function Is.leaf re-
turns TRUE if x is a leaf, otherwise FALSE. The function GetFuncatDepth returns the
depth of the node.

Examples

t <- Do.universal.tree.Funcat();

t.up <- Do.universal.tree.Funcat.up();
Funcat.child(t, "01");
Funcat.ancestors(t.up,"01.03.01.01");
GetFuncatAncestors("01.03.01.01");
Funcat.parent(t.up, "01.03.01.01");
Is.leaf("01", t);
GetFuncatDepth("01.03.01.01");

28

Funcat.transitive.closure

Function to compute the transitive closure of a given list of Fun-
Cat classes

Description

This function deduces all the FunCat classes of a given set of classes, using the transitive
property of the relationships between FunCat classes. It obtains all the ancestors of a given
list of FunCat classes. This fuction can by used with lapply to obtain all the Funcat classes
from a list of named vectors of specific Funcat classes

Usage

Funcat.transitive.closure(x)

Arguments

X a vector of Funcat classes

Value

A vector of Funcat classes obtained by transitive closure from the x Funcat classes

See Also

Get.Funcat.all.classes, Build.Funcat.graph.from.selected.nodes

Examples

Funcat.transitive.closure("12.01.01");
Funcat.transitive.closure(c("12.01.01","42.16"));

Obtaining the list of all the ancestors of all the classes
with some annotated genes in the yeast
Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();
1 <- lapply(Yeast.Funcat.specific, Funcat.transitive.closure);

Get.all.common.genes Getting genes common to different data sets

Description

Function that returns the names of genes common to different data sets and a given ontology
It may be used with both GO and Funcat ontologies and with any species. An arbitrary
number of data sets in matrix format may be passed as arguments (but at least 1 is needed)

29

Usage

Get.all.common.genes(Table.gene.class, datal, ...)

Arguments

Table.gene.class

a data frame with columns corresponding to Funcat or GO classes and
rows to a given gene. If a gene belongs to the Funcat/GO class the
corresponding column is set to 1 otherwise to 0

datal the first data set (mandatory)

other possible data sets

Value

a vector of common gene names among the different data sets

See Also

Get.matrix.data.for.classid, Get.matrix.data.without.ancestors,
Get.matrix.data.from.parent.only

Examples

Selection of yeast genes with TAS annotation common to the gene expression

data spYCCES and to the phylogenetic data obtained from the package scehomology
Yeast.specific.TAS <- Get.yeast.GO.specific.classes(evidence="TAS");
Yeast.general.TAS <- Get.yeast.GO.all.classes(Yeast.specific.TAS);

Yeast.GO.Table.TAS <- Build.GO.class.labels(Yeast.general.TAS);

library(yeastCC) ;

data.expression <- exprs(spYCCES);

1<-Build.list.yeast.homology.data();

data.phylo<-Do.binary.data.homology (1) ;

common.genes <- Get.all.common.genes(Yeast.G0.Table.TAS, data.expression, data.phylo);

Get.Funcat.all.classes
Function that provides all the FunCat classes for a list of genes

Description
Function that provides all the FunCat classes for a list of genes. The classes are obtained
by transitive closure.

Usage

Get.Funcat.all.classes(NamesToFuncat)
Get.yeast.Funcat.all.classes(NamesToFuncat)

30

Arguments

NamesToFuncat named list of vectors. Each element of the list corresponds to a named
gene and the elements of the vector are the corresponding Funcat classes
ID.

Details

For each gene and its associated more specific FunCat class annotation, the correspond-
ing ancestor FunCat classes are obtained. More precisely a list whose elements are vec-
tors of FunCat ID associated to each gene is returned. The argument of the function is
a list of named vectors, as returned by Get.Funcat.specific.classes. From the list
of the most specific annotated genes, all the FunCat annotations, by transitive closure,
are returned. Note that a dummy ”00” class (corresponding to the overall root node) is
added to all the annotated genes: in this way we obtain a unique tree form the FunCat
forest. Get.yeast.Funcat.all.classes is equal to Get.Funcat.all.classes and it is
maintained only for back-compatibility. Its use is deprecated.

Value

A list : each element of the list corresponds to a named vector (the name corresponds to
the name of a gene) and the elements of the vector are the corresponding Funcat classes ID
obtained by transitive closure from NamesToFuncat.

See Also

Funcat.transitive.closure, Get.Funcat.specific.classes

Examples

Obtaining all the available FunCat annotations for the genes of A. thaliana
data (ATFUNCAT) ;

AT .specific <- Get.Funcat.specific.classes (ATFUNCAT, evidence="");
AT.general <- Get.Funcat.all.classes(AT.specific);

Get.Funcat.specific.classes
Function to get all the most specific FunCat classes for each gene
of a given species

Description

Function to get all the most specific FunCat classes for each gene of a given species, for a
given evidence. It obtains, from the environment mapping gene IDs of a given species to the
most specific FunCat annotation, a corresponding list of named vectors. Each elemnent of
the list corresponds to a named gene, and the vector to the FunCat IDs of the most specific
annotated classes.

31

Usage

Get.Funcat.specific.classes(GeneID2Funcat, evidence = "")
Get.yeast.Funcat.specific.classes(evidence = "")
Arguments

GeneID2Funcat an environment mapping gene IDs to Funcat classes

evidence evidence code. It may be a vector with 1 or more Funcat evidence code
entries entries. if an empty string is provided,all the evidence codes are
accepted (default)

Detalils

The semantic of Get.yeast.Funcat.specific.classes is the same of
Get.Funcat.specific.classes, but restricted to species yeast. For this reason no envi-
ronment need to be supplied to the function Get.yeast.Funcat.specific.classes

Value
A named list of vectors. Each element of the list corresponds to a named gene and the
elements of the vector are the corresponding Funcat classes ID

See Also

Get.Funcat.all.classes

Examples

Obtaining the most specific FunCat annotations for the genes of A. thaliana
data (ATFUNCAT) ;
Ath.specific <- Get.Funcat.specific.classes (ATFUNCAT, evidence="");

Get.G0.all.classes Function that provides all the GO classes for a list of genes

Description
Function that provides all the FunCat classes for a list of genes. The classes are obtained
by transitive closure.

Usage

Get.GO.all.classes(NamesToGO, ontology="BP")
Get.yeast.GO0.all.classes(NamesToGO, ontology="BP")

32

Arguments

NamesToGO named list of vectors. Each element of the list corresponds to a named
gene and the elements of the vector are the corresponding GO classes ID.
ontology a character vector denoting the ontology : BP (default), MF, CC
Details

For each gene and its associated more specific GO class annotation, the corresponding
ancestor GO classes are obtained. More precisely a list whose elements are vectors of GO
ID associated to each gene is returned. The argument of the function is a list of named
vectors, as returned by Get.GO.specific.classes. From the list of the most specific
annotated genes, all the GO annotations, by transitive closure, are returned. The function
Get.yeast.GO0.all.classes is equal to Get.GO.all.classes, and it is maintained only
for back-compatibility. In any case its use is deprecated.

Value
A list : each element of the list corresponds to a named gene and the elements of the vector
are the corresponding GO classes ID obtained by transitive closure from NamesToGQO.

See Also

GO.transitive.closure, Get.GO.specific.classes

Examples

Obtaining all the available GO annotations for the Cellular

Component ontology for the genes of Mus musculus

data(MOUSEGO)

Mouse.specific <- Get.GO.specific.classes (ontology="CC", gene2G0=MOUSEGO, evidence="");
Mouse.general <- Get.GO.all.classes(Mouse.specific,ontology="CC");

Get.GO.specific.classes
Function to get all the most specific GO classes for each gene

Description

This function gets all the most specific classes for each gene, for a given species, GO ontology
and evidence. It obtains, from the environment mapping gene IDs of a given species to the
most specific GO annotation, a corresponding list of named vectors. Each elemnent of
the list corresponds to a named gene, and the vector to the GO IDs of the most specific
annotated classes.

33

Usage

Get.GO.specific.classes(ontology = "BP", gene2G0 = YEASTGO, evidence = "")
Get.yeast.GO.specific.classes(ontology = "BP", evidence = "")

Arguments
ontology the ontology to be selected: it needs to be: "BP” (def.), "MF” or "CC”
gene2GO an environment that maps genes for a given species to GO classes.
evidence evidence code. It may be a vector with 1 or more of the following entries:

IMP: inferred from mutant phenotype
IGI: inferred from genetic interaction
IPI: inferred from physical interaction
ISS: inferred from sequence similarity
IDA: inferred from direct assay

IEP: inferred from expression pattern
IEA: inferred from electronic annotation
TAS: traceable author statement
NAS: non-traceable author statement
ND: no biological data available

IC: inferred by curator

999,

: no entry: all the evidence codes are accepted (default)

Details
The function Get .yeast.G0.specific.classes it is equivalent to Get.GO.specific.classes,
but restricted to the yeast.

Value
It returns a named list of vectors. Each element of the list corresponds to a named gene
and the elements of the vector are the corresponding GO classes ID.

See Also

Get.GO.all.classes

Examples

Obtaining the most specific GO annotations for the Cellular

Component ontology for the genes of Mus musculus

data(MOUSEGO) ;

Mouse.specific <- Get.GO.specific.classes (ontology="CC", gene2G0=MOUSEGO, evidence="");

34

Get.matrix.data.for.classid
Data matriz construction for a binary classification problem:
negatives as not positive

Description

This function builds a data set for a specific class within the FunCat taxonomy or GO. The
positive classes are assigned according the specified GO/Funcat class, while the negative
examples are all the others not labelled as positive.

Usage

Get.matrix.data.for.Classid(Table.gene.class, classid, data.matrix,
ontology = "Funcat", ratio.negative = 0, common.genes = NULL,
seed = 1, include.unknown = FALSE)

Arguments

Table.gene.class
a data frame with columns corresponding to Funcat or GO classes and
rows to a given gene. If a gene belongs to the Funcat/GO class the
corresponding column is set to 1 otherwise to 0.

classid GO/FunCat ID of the the class to be extracted from Table.gene.class

data.matrix matrix of the data from which genes of the positive and negative classes
are extracted. Rows correspond to genes and columns to the features
associated to each gene

ontology a character vector corresponding to the selected ontology: Funcat (de-
fault), BP, MF, CC

ratio.negative
the proportion of negative examples w.r.t the positives. If 0 (def.) all the
available negative examples are used

common.genes character vector: if it set to NULL (default) only the genes common to
the given ontology and data set are considered; otherwise only the genes
of the common.genes are considered

seed seed for the random generator

include.unknown
boolean. If FALSE (def) classes labeled as unknown are not included as
possible negative examples

Details

For a gene and its associate data x with multilabel y € 0,1" where N is the number of
nodes classes, we have that the positive examples for node i are

D(i)" = {ly; =1}

35

while the negatives are
D(i)” = {zly; = 0}

. The data set given as input must be in matrix format, with genes on the rows and variables
associated to genes as columns; the rows of the data matrix needs to be named with the gene
names (e.g. ORF ID for yeast or Entrez Gene IDs for human or mouse). Possible data could
be, e.g., gene expression or phylogenetic data It may be used with both GO and Funcat
ontologies and with any species. The positive classes are assigned according the specified
GO/Funcat class, while the negative examples are all the others not labelled as positive.
It is possible to select a random subset of the negatives of a specified size. The data are
associated to the selected genes and are returned together with the labels of the classes. The
function considers only gene names that are common to the ontologies and the available
data. N.B. : gene names of the data matrix need to be of the same type of the gene names
stored in the rows of Table.gene.class. For instance they must be both systematic names
of the genes for the yeast or Locus Link identifiers for human gene names. The argument
common. genes is a character vector with the names of genes common to multiple data sets.
If it set to NULL (default) only the genes common to the given ontology and data set
are considered; otherwise only the genes of the common.genes are considered: this may be
useful only if you want to use multiple data sets and the function Get.all.common.genes
has been previously called to select the genes common to multiple data sets.

Value

A list with four elements:

X matrix of the data values (rows are genes, columns variables)
labels a factor with the labels of the classes: 1 for classid (positives), 2 for
negatives (not belonging to classid).
n.pos number of positive examples
n.neg number of negaive examples
See Also

Get.matrix.data.from.parent.only, Get.matrix.data.without.ancestors

Examples

building a data set of gene expression data for the yeast

(considering only TAS annotations) for the class "G0:0000902",

with a number of negative examples equal to the number of positive ones

Yeast.specific.TAS <- Get.yeast.GO.specific.classes(evidence="TAS");

Yeast.general.TAS <- Get.yeast.G0.all.classes(Yeast.specific.TAS);

Yeast.GO.Table.TAS <- Build.GO.class.labels(Yeast.general.TAS);

library(yeastCC) ;

data.expression <- exprs(spYCCES);

data.expression.specific.class <- Get.matrix.data.for.classid(Yeast.GO0.Table.TAS,
classid="G0:0000902", data.expression, ontology = "BP", ratio.negative = 1);

setting a number of negative examples equal to the three times the number of positive ones

data.expression.specific.class.3 <- Get.matrix.data.for.classid(Yeast.GO.Table.TAS,
classid="G0:0000902", data.expression, ontology = "BP", ratio.negative = 3);

36

Get.matrix.data.for.two.selected.classes
Data matriz construction for a binary classification problem:
negatives as belonging to a specific class

Description

This function builds a data set for a specific class within the FunCat taxonomy or GO. The
positive classes are assigned according the specified GO/Funcat class, while the negative
examples belongs to another specific GO/Funcat class.

Usage

Get.matrix.data.for.two.selected.classes(Table.gene.class, classidl,
classid2, data.matrix)

Arguments

Table.gene.class
a data frame with columns corresponding to Funcat or GO classes and
rows to a given gene. If a gene belongs to the Funcat/GO class the
corresponding column is set to 1 otherwise to 0.

classidl GO/FunCat ID of the the positive class to be extracted from Table.gene.class
classid2 GO/FunCat ID of the the negative class to be extracted from Table.gene.class

data.matrix matrix of the data from which genes of the positive and negative classes
are extracted. Rows correspond to genes and columns to the features
associated to each gene

Details

This function returns a dataset for dichotomic classification of GO/Funcat classes of genes
where the two classes are two distinct GO/Funcat classes. It may be used with both GO
and Funcat ontologies and with any species. N.B. : gene names of the data (rownames)
need to be of the same type of the gene names stored in the Table.gene.class. For instance
they must be both systematic names of the genes for the yeast or Locus Link identifiers for
human gene names.

Value

A list with four elements:

X data frame of the data values (rows are genes, columns variables)
labels a factor with the labels of the classes: 1 for classidl, 2 for classid2
n.pos number of positive examples (classidl)

n.neg number of negaive examples (classid?2)

37

See Also

Get.matrix.data.for.classid

Examples

building a data set of gene expression data for the yeast

(considering only TAS annotations) for the classes "G0:0000902" and "GO:0048015",

Yeast.specific.TAS <- Get.yeast.GO.specific.classes(evidence="TAS");

Yeast.general.TAS <- Get.yeast.GO.all.classes(Yeast.specific.TAS);

Yeast.GO.Table.TAS <- Build.GO.class.labels(Yeast.general.TAS);

library(yeastCC) ;

data.expression <- exprs(spYCCES);

data.expression.spec.classes <- Get.matrix.data.for.two.selected.classes
(Yeast.GO.Table.TAS, classid1="G0:0000902", classid2="G0:0048015", data.expression);

Get.matrix.data.from.parent.only
Data matriz construction for a binary classification problem:
negatives from parents only

Description

This function builds a data set for a specific class within the FunCat taxonomy or GO. The
positive classes are assigned according the specified GO/Funcat class. A negative example
for a node is any example whose multilabel does not include that node and includes at least
one of its parents.

Usage
Get.matrix.data.from.parent.only(Table.gene.class, classid, data.matrix,
ontology = "Funcat", ratio.negative = O, common.genes = NULL, seed = 1)
Arguments

Table.gene.class
a data frame with columns corresponding to Funcat or GO classes and
rows to a given gene. If a gene belongs to the Funcat/GO class the
corresponding column is set to 1 otherwise to 0.

classid GO/funcat ID of the the class to be extracted from Table.gene.class

data.matrix matrix of the data from which genes of the positive and negative classes
are extracted. Rows correspond to genes and columns to the features
associated to each gene

ontology a character vector corresponding to the selected ontology: Funcat (de-
fault), BP, MF, CC

ratio.negative
the proportion of negative examples w.r.t the positives. If 0 (def.) all the
available negative examples are used

38

common.genes character vector: if it set to NULL (default) only the genes common to
the given ontology and data set are considered; otherwise only the genes
of the common.genes are considered

seed seed for the random generator

Details

For a gene and its associate data x with multilabel y € 0,1" where N is the number of
nodes classes, with PAR(4) parent nodes of ¢, we have that the data set D(i) associate to
node will be:

D(i) = {z|yparu = 1}

. The positive examples are

D(i)* ={z|lyparu) =1, yi =1}

while the negatives are
D(i)” ={zlyparu) = 1,y = 0}

The data set given as input must be in matrix format, with genes on the rows and variables
associated to genes as columns; the rows of the data matrix needs to be named with the
gene names (e.g. ORF ID for yeast or Entrez Gene IDs for human or mouse). Possible
data could be, e.g., gene expression or phylogenetic data. It may be used with both GO
and Funcat ontologies and with any species. It is possible to select a random subset of the
negatives of a specified size. The data are associated to the selected genes and are returned
together with the labels of the classes: 1 for positive examples and 2 for negatives. The
function considers only gene names that are common to the ontologies and the available
data. N.B. : gene names of the data matrix need to be of the same type of the gene names
stored in the Table.gene.class. For instance they must be both systematic names of the
genes for the yeast or Locus Link identifiers for human gene names.

Value

A list with four elements:

X matrix of the data values (rows are genes, columns variables)
labels a factor with the labels of the classes: 1 for classid (positives), 2 for
negatives (not belonging to classid).
n.pos number of positive examples
n.neg number of negaive examples
See Also

Get.matrix.data.for.classid, Get.matrix.data.without.ancestors

39

Examples

building a data set of gene expression data for the yeast for the class "G0:0000902",

with a number of negative examples equal to the number of positive omes

Yeast.specific <- Get.yeast.GO.specific.classes(evidence="");

Yeast.general <- Get.yeast.G0.all.classes(Yeast.specific);

Yeast.GO.Table <- Build.GO.class.labels(Yeast.general);

library(yeastCC) ;

data.expression <- exprs(spYCCES);

data.expression.specific.class <-Get.matrix.data.from.parent.only(Yeast.GO.Table,
classid="G0:0000902", data.expression, ontology = "BP", ratio.negative = 1);

Get.matrix.data.without.ancestors
Data matriz construction for a binary classification problem:
negatives not from ancestors

Description

This function builds a data set for a specific class within the FunCat taxonomy or GO. The
positive classes are assigned according the specified GO /Funcat class. A negative example
for a node is any example whose multilabel does not include that node and any of its
ancestors.

Usage

Get.matrix.data.without.ancestors(Table .gene.class, classid, data.matrix,
ontology = "Funcat", ratio.negative = 0, common.genes = NULL,
seed = 1, include.unknown = FALSE)

Arguments

Table.gene.class
a data frame with columns corresponding to Funcat or GO classes and
rows to a given gene. If a gene belongs to the Funcat/GO class the
corresponding column is set to 1 otherwise to 0.

classid GO/FunCat ID of the the class to be extracted from Table.gene.class

data.matrix matrix of the data from which genes of the positive and negative classes
are extracted. Rows correspond to genes and columns to the features
associated to each gene

ontology a character vector corresponding to the selected ontology: Funcat (de-
fault), BP, MF, CC

ratio.negative
the proportion of negative examples w.r.t the positives. If 0 (def.) all the
available negative examples are used

40

common.genes character vector: if it set to NULL (default) only the genes common to
the given ontology and data set are considered; otherwise only the genes
of the common.genes are considered

seed seed for the random generator

include.unknown
boolean. If FALSE (def) classes labeled as unknown are not included as
possible negative examples

Details

For a gene and its associate data x with multilabel y € 0,1" where N is the number of
nodes classes, with PAR(¢) parent nodes of ¢, and ANC/(4) the ancestors of ¢, we have that
the data set D(i)™ of the positive examples is:

D(i)" = {aly; =1}

while the negatives are
D(1)” = {z|yancu) = 0,y = 0}

The data set given as input must be in matrix format, with genes on the rows and variables
associated to genes as columns; the rows of the data matrix needs to be named with the
gene names (e.g. ORF ID for yeast or Entrez Gene IDs for human or mouse). Possible data
could be, e.g., gene expression or phylogenetic data. This function can be used with both
GO and Funcat ontologies and with any species. It is possible to select a random subset of
the negatives of a specified size. Note the by default examples labeled as unknown (that is
genes of classes 98 and 99 with FunCat, and genes with only 1 label with GO ontologies) are
not included as possible negative examples, but it is possible to include them as negatives
by setting to TRUE the boolean argument include.unknown. The data are associated to
the selected genes and are returned together with the labels of the classes: 1 for positive
examples and 2 for negatives. The function considers only gene names that are common to
the ontologies and the available data. N.B. : gene names of the data matrix need to be of
the same type of the gene names stored in the Table.gene.class. For instance they must
be both systematic names of the genes for the yeast or Locus Link identifiers for human
gene names.

Value

A list with four elements:

X matrix of the data values (rows are genes, columns variables)
labels a factor with the labels of the classes: 1 for classid (positives), 2 for
negatives (not belonging to classid).
n.pos number of positive examples
n.neg number of negaive examples
See Also

Get.matrix.data.from.parent.only, Get.matrix.data.for.classid

41

Examples

building a data set of gene expression data for the yeast for the class "G0:0000902",

Yeast.specific <- Get.yeast.GO.specific.classes(evidence="");

Yeast.general <- Get.yeast.G0.all.classes(Yeast.specific);

Yeast.GO.Table <- Build.GO.class.labels(Yeast.general);

library(yeastCC) ;

data.expression <- exprs(spYCCES);

data.expression.specific.class2 <-Get.matrix.data.without.ancestors(Yeast.GO0.Table,
classid="G0:0000902", data.expression, ontology = "BP");

Get.matrix.positive.data.for.classid
Data matriz construction for a binary classification problem:
positives only

Description

This function builds a data set for a specific class within the FunCat taxonomy or GO using
positive examples only, that is only examples beloning to the selected functional class. No
negative examples are added.

Usage

Get.matrix.positive.data.for.classid(Table.gene.class, classid, data.matrix)

Arguments

Table.gene.class
a data frame with columns corresponding to Funcat or GO classes and
rows to a given gene. If a gene belongs to the Funcat/GO class the
corresponding column is set to 1 otherwise to 0.

classid GO/FunCat ID of the the class to be extracted from Table.gene.class

data.matrix matrix of the data from which genes of selected class are extracted. Rows
correspond to genes and columns to the features associated to each gene

Value

a matrix of the data values (rows are genes, columns variables)

See Also

Get.matrix.data.for.classid, Get.matrix.data.from.parent.only,
Get.matrix.data.without.ancestors

42

Examples

building a data set of gene expression data for the yeast

(considering only TAS annotations) for the class "G0:0000902"

Yeast.specific.TAS <- Get.yeast.GO.specific.classes(evidence="TAS");

Yeast.general.TAS <- Get.yeast.GO.all.classes(Yeast.specific.TAS);

Yeast.GO.Table.TAS <- Build.GO.class.labels(Yeast.general.TAS);

library(yeastCC) ;

data.expression <- exprs(spYCCES);

data.expression.specific.class <- Get.matrix.positive.data.for.classid(Yeast.GO.Table.TAS,
classid="G0:0000902", data.expression);

GO.transitive.closure
Function to compute the transitive closure of a given list of GO
classes

Description

This function deduces all the GO classes of a given set of classes, using the transitive
property of the relationships between GO classes. It obtains all the ancestors of a given
list of GO classes, using the environments GOXXANCESTOR of the GO package. This
fuction should by used with lapply to obtain all the GO classes from a list of named vectors
of specific GO classes

Usage

GO.transitive.closure(x, ontology="BP")

Arguments

X a vector of GO classes

ontology a character vector denoting the ontology : BP (default), MF, CC
Value

A vector of GO classes obtained by transitive closure of the x GO classes

Note

If in the argument x are supplied non existing GO IDs, then the GOID of the root of the
selected ontology is returned. This could be useful if you supply new GO IDs that are no
registered in the current version of the GO library.

See Also

Build.GO.graph.from.selected.nodes, Get.G0.all.classes

43

Examples

GO.transitive.closure("G0:0000723")
GO.transitive.closure(c("G0:0000723","G0:0005977","G0:0030437"));

Graphics.cardinality.labels

Graphic functions to represent the distribution of the cardinality
of gene labels

Description

These functions plot the distribution of the cardinality of the labels associated to each
gene. It may be used with both GO and Funcat ontologies. The functions plot the em-
pirical cumulative distribution (Do.ecdf.cardinality.labels), and the histograms of the
cardinality of the labels associated to each gene (Do.table.hist.cardinality.labels).

Usage
Do.table.hist.cardinality.labels(NamesToGO, title = "")
Do.ecdf.cardinality.labels(NamesToGO, title = "")
Arguments
NamesToGO named list of vectors. Each element of the list corresponds to a named
gene and the elements of the vector are the corresponding functional
classes ID.
title character vector for the title of the ecdf
Value

summary table of the frequencies of the cardinality of the labels per gene is returned by the
function Do.table.hist.cardinality.labels

Examples

Plot of the histogram and ecdf of the cardinality of gene labels in yeast

Yeast.specific <- Get.yeast.GO.specific.classes();

Do.table.hist.cardinality.labels (Yeast.specific,

title="Distribution of the numbers of labels per gene (more specific classes only) in S.cerevisiae");
x11() ;Do.ecdf.cardinality.labels(Yeast.specific);

44

HUMANGO Human Entrez Gene ID identifiers to Gene Ontology (GO) map-
ping

Description

This environment provides a mapping between human genes and GO terms.

Usage
data (HUMANGO)

Format

An environment (hash table) with 17281 entries

Details

The environment provides GO annotations for human genes. EntrezGene identifiers are
Keys and GO terms Values. More precisely each Value is a list of lists. Each element of
the outer list represent a mapping to a GO term. The elements of the inner list are:

GOID : GO Identifier
Evidence : Evidence code

Ontology : "BP”, "MF” or "CC”

Source
The environment is built using the Bioconductor environments humanLLMappingsLL2G0 and

GOENTREZID2GO

Examples

data (HUMANGO) ;
get ("23" ,HUMANGO) ;

45

Map.FID2Term Environments mapping Funcat class ID to the corresponding
Funcat functional term and viceversa

Description
The environments realize a mapping between Funcat class ID and the description of the
corresponding Funcat functional terms

Usage
data (FID2TERM)
data (TERM2FID)

Format
Environments (hash table) mapping Funcat ID (character vector) to their description (char-
acter vector) and viceverca

Note

A dummy root node with Funcat ID 00 is added. The node 40.02.03 (child of 40.02) is
present, while its parent 40.02 not; to avoid inconsistencies a new entry 40.02 has been
added to the funcat-2.1_scheme

Source

These environments are based on scheme 2.1 of FunCat (http://mips.gsf.de/projects/funcat).

Examples

data(FID2TERM) ;
date (TERM2FID) ;

Map .ORF Yeast ORF mappings

Description

Environments mapping yeast ORFs to RefSeq and to HomoloGene IDs and viceversa.

46

Usage

data(ORF2HGID)
data (HGID20RF)
data(ORF2RefSeq)
data(RefSeq20RF)

Format

ORF2HGID is an environment (hash table) with 4739 entries HGID20RF is an environment
(hash table) with 4739 entries ORF2RefSeq is an environment (hash table) with 5877 entries
RefSeq20RF is an environment (hash table) with 5873 entries

Details

ORF2HGID and HGID20RF realize a mapping between yeast ORF ID and Homologene ID and
viceversa. ORF2RefSeq and RefSeq20RF realize a mapping between yeast ORF ID to Refseq
ID and viceversa.

Source

Data for ORF2HGID and HGID20RF have been obtained from the ensembl web site
(http://www.ensembl.org) and from the Bioconductor package scehomology. Data for
ORF2RefSeq and RefSeq20RF have been obtained from the ensembl web site (http://www.ensembl.org).

Examples

data(ORF2HGID) ;

get ("YPR104C",0RF2HGID) ;
data(RefSeq20RF) ;
get("NP_878148", RefSeq20RF);

MOUSEFUNCAT Mouse Mfun MIPS ID identifiers to FunCat mapping

Description

This environment provides a mapping between Mus musculus genes and FunCat classes

Usage
data (MOUSEFUNCAT)

Format

An environment (hash table) with 18850 entries

47

Details

The environment provides FunCat annotations for mouse genes
(http://mips.gsf.de/projects/funcat). Mfun identifiers are Keys and GO FunCat Val-
ues. More precisely each Value is a list of lists. Each element of the outer list represent a
mapping to a GO term. The elements of the inner list are:

FuncatID : FunCat Identifier

Evidence : Evidence code: either "automatic” or "manually reviewed”
Mgi : Mgi identifier

Gene.Name : Name of the gene

Prot.Descr : Description of the gene product

Source

It is conformed to the Funcat funcat-2.1 scheme with the Mfungd Annotation.xml annotation
file available from MIPS: ftp://ftpmips.gsf.de/MfunGD/MfungdAnnotation.xml.gz.

Examples

data (MOUSEFUNCAT)
mget (c("mcx001628", "mcx001636") , MOUSEFUNCAT)

MOUSEGO Mouse Entrez Gene ID identifiers to Gene Ontology (GO) map-
ping

Description

This environment provides a mapping between Mus musculus genes and GO terms.

Usage
data (MOUSEGO)

Format

An environment (hash table) with 19354 entries

48

Details

The environment provides GO annotations for mouse genes. EntrezGene identifiers are
Keys and GO terms Values. More precisely each Value is a list of lists. Each element of
the outer list represent a mapping to a GO term. The elements of the inner list are:

GOID :GO Identifier
Evidence : Evidence code

Ontology : "BP”, "MF” or "CC”

Source

The environment is built using the Bioconductor environments mouseLLMappingsLL2G0 and
GOENTREZID2GO.

Examples

data (MOUSEGO)
get ("53970" ,MOUSEGO) ;

Plot.distribution.gene.per.class
Plot of the distribution of the number of examples per class

Description

The function plots the number of classes with more than a given number of examples. It
may be used with both GO and Funcat ontologies.

Usage

Plot.distribution.gene.per.class(counts, card = 5:6000)

Arguments

counts vector with the number of examples for each class

card vector with the considered number of examples per class
Details

Abscissa represents the number of examples; the ordinate the number of classes with equal
or more examples than the corresponding abscissa.

Value

A graph representing the number of classes with equal or more examples than a given value
represented in abscissa. Abscissa is represented in logarithmic scale.

49

See Also

Plot.histogram.gene.per.class

Examples

Yeast.specific <- Get.yeast.GO.specific.classes();
Yeast.specific.classes <- Build.GO.class.labels(Yeast.specific);
1 <- Count.examples.per.class(Yeast.specific.classes);
Plot.distribution.gene.per.class(1[[1]], card=1:5813)

Plot.hist.Funcat.depth.labels
Histogram of the depth of FunCat classes

Description

Graphic function to plot the histograms of the depth of FunCat clasees

Usage

Plot.hist.Funcat.depth.labels(nodes)

Arguments

nodes a list(vector) of FunCat nodes

See Also

Plot.histogram.gene.per.class

Examples

Plot.histogram.gene.per.class
Plot of the histograms of the number of genes per class

Description

Function to plot the histogram of the number of genes per functional class. It may be used
with both GO and Funcat ontologies.

50

Usage

Plot.histogram.gene.per.class(Table.gene.class, title = "")

Arguments

Table.gene.class
a data frame with columns corresponding to Funcat or GO classes and
rows to a given gene. If a gene belongs to the Funcat/GO class the
corresponding column is set to 1 otherwise to 0.

title title of the plot

Value

The histogram of the number of genes per functional class is plot.

See Also

Plot.distribution.gene.per.class

Examples

plot of the histogram of the number of genes per class in the yeast,
considering only the most specific annotations

Yeast.specific <- Get.yeast.GO.specific.classes();
Yeast.specific.classes <- Build.GO.class.labels(Yeast.specific);
Plot.histogram.gene.per.class(Yeast.specific.classes);

Plot.ontology.graph Plotting graphs of the GO and FunCat

Description

Functions to plot in compact way complex graphs of the GO or FunCat

Usage

Plot.ontology.graph(g, node.label = "x", fcolor = "black")
Pretty.plot.graph(g, fontsize = 12, fillcolor = "lightgreen", height = 0.6,
width = 0.9, color = "black", fontcolor = "black")

51

Arguments

g a GO or FunCat graph
node.label a label plotted for each node
fcolor color of the node label
fontsize size of the fonts
fillcolor color to fill the nodes
height height of the nodes
width width of the nodes
color color of the edges
fontcolor color of the font

Details

The functions use the plotting graph facilities provided by the package Rgraphviz.
Plot.ontology.graph plot in compact way complex graphs. Pretty.plot.graph to "pretty”
plot not too complex graphs.

Examples

Plotting Yeast FunCat classes with more than 100 examples and with TAS evidence:
Yeast.specific.TAS <- Get.yeast.GO.specific.classes(evidence="TAS");
Yeast.general.TAS <- Get.yeast.GO.all.classes(Yeast.specific.TAS);
Yeast.general.classes.TAS <- Build.GO.class.labels(Yeast.general.TAS);
GO.classes.TAS.100 <-
Select.functional.classes.by.cardinality(Yeast.general.classes.TAS, 100);
gBP.universal.ontology <- Build.universal.graph.ontology.down();
gYeast.TAS.card.100 <- subGraph(GO.classes.TAS.100, gBP.universal.ontology) ;
Pretty.plot.graph(gYeast.TAS.card.100,fontsize=12,fillcolor="1ightgreen",
height=0.9,width=1.2,color="black", fontcolor="black");

Select.Funcat.classes.by.depth
Selection of nodes at a given depth in the FunCat trees

Description

It selects a set of nodes at a given distance from the root of the Funcat tree In particular
it selects all the nodes at a distance equal or less or equal than a given depth.

Usage

Select.Funcat.classes.by.depth(g, distance = 1, only.equal = FALSE)

52

Arguments

g a graph of the FunCat tree

distance distance from the root: all the nodes at a distance equal or less or equal
(default) than distance are chosen

only.equal if TRUE only the nodes at a given distance are selected, otherwise all the
nodes at a distance equal or less (default).
Value

a vector of the Funcat ID of the selected nodes

See Also

Select.functional.classes.by.cardinality

Examples

selection at the nodes up to 2 depth in the universal FunCat tree:
gUniversalFuncat <- Do.universal.tree.Funcat();
nodes<-Select.Funcat.classes.by.depth(gUniversalFuncat,2);

Select.functional.classes.by.cardinality
Selection of functional classes on the basis of their cardinality

Description

The function selects functional classes (GO or FunCat classes) on the basis of their cardi-
nality. By this function we can select only the classes with a number of positive examples
larger than a given quantity.

Usage

Select.functional.classes.by.cardinality(Table.gene.class, min.cardinality = 20)

Arguments

Table.gene.class
a data frame with variables corresponding to GO /Funcat classes and rows
to a given gene. If a gene belongs to the GO/Funcat class the correspond-
ing variable is set to 1 otherwise to 0

min.cardinality
a GO/Funcat class is selected if its cardinality is equal or larger than
min.cardinality

53

Value
a character vector with the GO/FunCat ID of the selected classes

See Also

Select.GO.classes.by.distance, Select.Funcat.classes.by.depth

Examples

Yeast.Funcat.specific <- Get.yeast.Funcat.specific.classes();
Yeast.Funcat.general <- Get.yeast.Funcat.all.classes(Yeast.Funcat.specific);
Yeast.Funcat.Table <- Build.Funcat.Table.labels(Yeast.Funcat.general);

Selection of yeast classes with more than 50 genes

nodes <- Select.functional.classes.by.cardinality(Yeast.Funcat.Table, 50);

Select.GO0.classes.by.distance
Selection of nodes at a given distance from the root of a GO
ontology

Description

It selects a set of GO nodes at a given distance from the root of a given ontology In particular
it selects all the nodes at a distance less or equal than the argument distance. The distance
is computed according to the shortest path from the root: all the nodes at a distance less
or equal than a given distance are selected.

Usage

Select.GO.classes.by.distance(g, distance = 1, ontology = "BP")

Arguments
g a GO graph
distance distance (shortest path) from the root: all the nodes at a distance less or
equal than distance are chosen
ontology BP (default), MF, CC
Value

a vector of the GOID of the selected nodes

See Also

Select.Funcat.classes.by.depth, Select.functional.classes.by.cardinality

54

Examples

Selection of the nodes at distance equal or less than 3

in the GO BP ontology of the yeast.

gBP.universal.ontology2 <- Build.universal.graph.ontology.down();
Yeast.specific <- Get.yeast.GO.specific.classes();

Yeast.general <- Get.yeast.G0.all.classes(Yeast.specific);
BP.Yeast.classes <- Get.classes(Yeast.general);

gYeast.BP.2 <- subGraph(BP.Yeast.classes, gBP.universal.ontology2);
nodes<-Select.G0.classes.by.distance(gYeast.BP.2,3);

Select.GO.rooted.classes

Selection of nodes rooted on a set of given nodes in a given GO
graph

Description

It selects from a GO graph nodes rooted in a set of given nodes From a given GO graph a
subset of nodes rooted on a set of given nodes is selected. Only nodes that belong to the
graph are selected: nodes rooted on the given nodes in th ontology but that do not belong
to the given Go graph are discarded.

Usage

Select.GO.rooted.classes(g, root.nodes, ontology="BP")

Arguments
g a GO graph
root.nodes character vector of the root nodes
ontology BP (default), MF, CC

Value

a vector of the GOID of the selected nodes

See Also

Select.GO.classes.by.distance, Select.functional.classes.by.cardinality, Subtree.nodes

Examples

Selection of the nodes rooted in the node GO0:0006605 (protein targeting)
g <- Build.universal.graph.ontology.down() ;
Select.GO.rooted.classes(g, "G0:0006605", ontology="BP")

55

Select.ontology Selection of functional classes associated to genes

Description

These functions select GO or FunCat classes associated to gene names according to a given
ontology and evidence

Usage
Select.ontology(x, ontology = "BP")
Select.ontology.evidence(x, ontology = "BP", evidence = "")
Select.Funcat.evidence(x, evidence = "")

Arguments
X a generic entry of an environment representing an assay or platform spe-

cific annotation

ontology the GO ontology to be selected: it needs to be: "BP” (def.), "MF” or "CC”
evidence evidence code. For FunCat (Select.Funcat.evidence) it can be a vector

with one ore more FunCat numeric evidence codes. For GO it may be a
vector with 1 or more of the following entries:

IMP: inferred from mutant phenotype
IGI: inferred from genetic interaction
IPI: inferred from physical interaction
ISS: inferred from sequence similarity
IDA: inferred from direct assay

IEP: inferred from expression pattern
IEA: inferred from electronic annotation
TAS: traceable author statement
NAS: non-traceable author statement
ND: no biological data available

IC: inferred by curator

999,

: no entry: all the evidence codes are accepted (default)

Detalils

Select.ontology selects a GO class, while Select.ontology.evidence selects genes with
respect to an ontology and evidence code of the annotations. It can be used with eapply,
to extract from the environment that associates a gene/gene product to its gene ontol-
ogy classes (e.g. YEASTGO) the entries that match a specific ontology and evidence.
Select.Funcat.evidence select a FunCat class with respect to the evidence code of the

56

annotation. It can be used with eapply, to extract from the environment that associates a
gene/gene product to its FunCat classes (e.g. YEASTFUNCAT) the entries that match a
specific ontology and evidence.

Value

Select.ontology returns the GOID of the GO class if it matches the ontology, otherwise
the string "NOCLASS”. Select.ontology.evidence returns a vector with the GO ID
of the ontology classes associated to the entry x, for the selected ontology and evidence
codes. Duplicated classes are removed. Select.Funcat.evidence returns a vector with
the Funcat ID of the classes associated to the entry x, for the selected evidence codes.
Duplicated classes are removed.

See Also

Get.all.GO.classes, Get.GO.specific.classes

Examples

Selection of genes annotated with TAS evidence in the MF GO ontology in A. thaliana;
data(ATGO) ;
A.th.names.to.G0 <- eapply(ATGO, Select.ontology.evidence,

ontology="MF", evidence="TAS");

Subtree.nodes Selection of subtree nodes in FunCat trees

Description

It returns the nodes of the subtree(s) associated to given node(s) in FunCat trees.

Usage

Subtree.nodes (g, nodes)

Arguments

g a graph representing the tree

nodes a set of nodes from which the subtrees are obtained
Value

a vector of the nodes belonging to the subtree

See Also

Select.Funcat.classes.by.depth, Select.functional.classes.by.cardinality

o7

Examples

Selection of the nodes of the FunCat subtree rooted in the node "01" (Metabolism)
gUniversalFuncat <- Do.universal.tree.Funcat();
s01.nodes <- Subtree.nodes(gUniversalFuncat, "01");

Write.gene.classes.associations
Writing to a file gene - functional class relationships

Description
Function to write to a file the associations gene —> ontology classes. It may be used with
both GO and Funcat ontologies.

Usage

Write.gene.classes.associations(NamesToGO, filename)

Arguments
NamesToGO named list of vectors. Each element of the list corresponds to a named
yeast gene and the elements of the vector are the corresponding functional
classes classes ID.
filename name of the file where the gene->GO/Funcat associations are written.
Value

a file where the gene - GO/Funcat associations are written. Each row represents a gene
(entrez gene ID) and a list of associated GO classes (GO/Funcat ID), separated by blanks.

See Also

Get.GO.specific.classes, Get.Funcat.specific.classes,
Get.GO0.all.classes, Get.Funcat.all.classes

Examples

58

YEASTFUNCAT Yeast ORF identifiers to FunCat mapping

Description

This environment provides a mapping between S. cerevisiae genes and FunCat classes

Usage
data (YEASTFUNCAT)

Format

An environment (hash table) with 6167 entries

Details

Each entry associates the ORF ID to the the list of the Funcat ID and the associated
evidence code:

FuncatID : FunCat Identifier

Evidence : FunCat evidence code

Source

It is conformed to the Funcat funcat-2.1 scheme with the funcat-2.1_data_20070316, avail-
able from: ftp://ftpmips.gsf.de/yeast/catalogues/funcat/funcat-2.1_data_20070316

Examples

data(YEASTFUNCAT)
get ("YGRO36C" ,YEASTFUNCAT)

59

