Irredundant PDNF for Positive Boolean functions

As it is known, every Boolean function $ f$ can be represented as a logical sum of logical products

$\displaystyle f(x_1, \dots, x_n)=\bigvee_{i=1}^{m} \left( \bigwedge_{j \in J_i} x_j \bigwedge_{k \in K_i} \overline{x}_k \right)$ (1)

where $ J_i$ and $ K_i$ are subsets of $ I_n=\{1, \dots, n\}$ with $ J_i \cap K_i = \emptyset $ for $ i=1,\dots ,m$ and $ \bigwedge_{j \in J_i} x_j=1$ if $ J=\emptyset$.

The expression (1) is called Disjunctive Normal Form (DNF) of the function $ f$.

Furthermore, if the Boolean function $ f$ is positive, we have that $ K_i= \emptyset$ for every index $ i$ and, consequently, (1) reduces to

$\displaystyle f(x_1, \dots, x_n)=\bigvee_{J \in \mathcal{J}}^{m} \bigwedge_{j \in J} x_j$ (2)

where $ \mathcal{J}$ is a collection of subsets of $ I_n$, i.e.  $ \mathcal{J} \subset 2^{I_n}$. The expression (2) is called Positive Disjunctive Normal Form (PDNF) of the function $ f$.

An irredundant Positive Disjunctive Normal Form (irredundant PDNF) is an expression (2) where $ \mathcal{J}$ doesn't contain pairs of sets $ J$, $ J'$ with $ J \subset J'$.

It can be shown that the irredundant PDNF is unique for any positive Boolean function $ f$ and that the terms $ x_j$ inside it refer to all and only the relevant variables.