3 The GOSIM system
GOSIM is a web tool to evaluate the semantic similarities among the Gene Ontology functional terms. GOSIM is a client-server system whose base components are:
1. the Java application sim_calc, which implements the algorithms to compute the similarity measures of Resnik, Lin, Jiang (host measures) and the similarity measures obtained combining the downward random walk with the host measures: RW+Resnik, RW+Lin, RW+Jiang.
2. The web interface, which allows, through the web service REST, to access to the services provided by the Java application sim_calc.
The sim_calc application main functionalities are the following:
1. OBO and annotations files parsing
2. computation of the similarity measures
a) Resnik
b) Lin
c) Jiang
d) RW+Resnik
e) RW+Lin
f) RW+Jiang
The GOSIM web interface allows the user to select the parameters values needed by the measures computation through a user-friendly interface in which the user can choose the GO term list, the organism, the GO domain (Aspect), the annotation evidence codes to be ignored, the similarity measure to be computed among the selected GO terms.
Morever, GOSIM provides and admin interface which allows to add new version of the GO ontology (OBO file), to import annotation files for 6 of the most studied organisms, to add new similarity measures.
The chapter is organized as follows: in Sec. 3.1 the application sim_calc is described, whereas the Sec. 3.2 is dedicated to the description of the web interface provided by GOSIM.

3.1 The sim_calc application
The application sim_calc is dedicated to the computation of the similarity measures among GO terms. This service is made available by the web service RESTful. The web service receives the user calls, and then return to the user the results of the selected operation. The input parameter to the service are :
a) OBO file version, file in which is stored the GO ontology relative to the requested release
b) GO domain, chosen among Biological Process, Cellular Component o Molecular Function
c) GO terms list, set of GO terms belonging to the specified domain for which the similarity must be computed
d) Organism (or corpus), this options determines the annotation file to be used by the procedure. The organism may be Fly, Saccharomyces, Mouse, Arabidopsis o Elegans.
e) Evidence_code, the annotation evidence codes to be ignored during the annotation file scanning. By default the evidence codes IEA, NR, ND, IC are ignored.
f) Similarity measures, one or more similarity measures among Resnik, Lin, Jiang, RandomWalk+Resnik, RandomWalk+Lin, RandomWalk+Jiang.

3.1.1 Parsing of the OBO and of the annotations files
The first phase in the sim_calc work flow is the parsing of the OBO file. The Java Object related to this operation is OBOReader, which provides the method buildHier() to scan the OBO file and building the corresponding GO hierarchy.
OBOReader receives as input the name of the OBO file, and it generates the following Java objects:
· OBOTerms: array of object of type TermInfo. Terminfo objects have the following fields:
· termname
· id
· synonums
· children
· parents
· definition
· isObsolete
· namespace
For the methods provided by the Terminfo class, see the class definition in Figure 3.2, while Figure 3.3 shows an example of the object Terminfo relative to the GO term GO:0032501.
· id_OBOTerms: hashtable which stores the associations between the GO terms id and the corresponding Terminfo object. The keys are the GO term IDs.
For each record in the OBO file a TermInfo object is created.
[image: A description...]
Figure 3.2 Java class TermInfo
[image: A description...]
 Figur3 3.3 TermInfo object relative to the GO term GO:0032501.
The OBOReader class also provides the following methods:
· getTermsWithParents(): returns the list of GO terms with at list one parent
· getTerm(id): returns the TermInfo object corresponding to GO term “id”
· getList(TermInfo, lista): get the descendant of the GO term relative to “Terminfo” object and puts the in the string list “lista”.
· getAncestorList(TermInfo, lista): get the ancestors of the GO term relative to “Terminfo” object and puts the in the string list “lista”.
After the OBO file parsing, the terms are divided by domain, Cellular Component (CC), Molecular Function (MF) e Biological Process (BP). By the storeOBO() method of the Java object ParsingOBO. It generates the following data structures:
· TreeCC, TreeBP, TreeMF. Array of objects of type Tupla_Tabella_GO. An object Tupla_Tabella_GO contains the following information: id, name, aspect, children, parents.
Specifically, the object TreeXX contains the info relative to the GO terms belonging to the domain XX.
· UpCC, UpBP, UpMF. Hashtable to store for each GO term the list of the term parents. UpXX stores the information for the GO terms of the domain XX.
· DownCC, DownBP, DownMF. Hashtable to store for each GO term the list of the term children. DownXX stores the information for the GO terms of the domain XX.
· go_ontology. Object of type OBOReader obtained by the OBO file parsing
These objects are then stored through the method StoreFile(nome file, Java object) provided by class ParsingOBO.
The next step is the annotation file parsing. The method build_table_mod(Aspect(Domain), Evidence_Code) of the class Annotation_parser_reduced compute the parsing. The method produce the following output:
· Annotation_Table_reduced: Java array of objects of type Annotation_record_reduced. Annotation_record_reduced stores the following information:
· c2_DB_Object_ID: gene ID
· c5_GO_ID: GO ID
· c7_Evidence_code: annotation evidence code
· c9_Aspect: GO domain
· Geni: list of all the found genes.
The output objects are then stored through the method StoreFile(nome file, Java objects) of the ParsingAnnotationFile class.
Figure 3.4 shows the sim_calc flow for OBO and annotation files parsing.
[image: A description...]
Figura 3.4. Parsing phase of sim_calc.

3.1.2 Calcolo delle misure di similarità
To compute the similarity measure matrices, the hashtables GO_GENE e GO_GENE_NoBranch are generated by the method get_tree_p(Aspect) of the class Get_TREE_P. The next procedure is reported below:
a. Load Annotation_Table_reduced;
b. Load TreeXX, UpXX e DownXX relative to the selected Aspect.
c. Inizialize the hashtable GO_GENE.
For each GO term in TreeXX, a string array geni_distinti of the genes annotated with it is created. This array is then added to the hashtable GO_GENE in the entry corresponding to the considered GO term.
d. For the GO terms with no annotations, the value 0 is inserted in the corresponding entry.
e. Compute the hashtables GO_Updegree e GO_Downdegree.
For each key (GO term ID) in UpXX, the number of parents is computed and inserted in the corresponding entry of GO_Updegree. Analogously in GO_Downdegree is inserted the number of children taken by DownXX object.
f. A similar approach is considered to compute another hashtable: GO_GENE_NoBranch. Each entry of this table contains the number of genes annotated with the corresponding GO Term divided by the updegree of the term.
The produced objects are stored through the method StoreFile(nome file, Java objects) of the class Get_TREE_P.
Then the matrix TREE_LCA is computed by means of the get_tree_lca() method of the class Get_TREE_LCA. It first computes the array terms_for_LCA, list of GO terms whose entry in GO_GENE_NoBranch is greater than 0. The GO IDs in terms_for_LCA are used to build the matrix TREE_LCA, which for each GO term ID couple (i,j) contains the index of the minimum subsumer, i.e. the common ancestor with the highest probability.
Again, th output objects are stored on local disk. Now the application is ready to compute the similarity matrices. The Resnik similarity matrix is computed by the method get_resnik() of the class Get_RESNIK. Analogously, the method get_lin() of the class Get_LIN computes the Lin similarity matrix, the method get_jiang() of the class Get_JIANG computes the Jiang similarity matrix.

3.1.3 Random Walk application
After generated the host similarity matrices, resnik, Lin and Jiang, , the random walk procedure on the GO DAG is applied to compute the refined similarity matrices RW+Resnik, RW+Lin e RW+Jiang.
The Random Walk procedure is applied by the getDistri() method of the Java class Get_RandomWalk. Whereas, the host measure and the random walk measures are combined by the method get_rw(Aspect,measure_host) provided by the same class.

3.1.4 The Web Service
The Web Service REST through the web interface provides the following services:
1. Computation of the semantic similarity among a list of GO terms;
2. Comparison of the similarity results obtained by two different similarity computations of the same set of GO terms. What differs among the two computations is the chosen organisms and/or the evidence codes and/or the similarity measures chosen by the user.
3. Downloading a new OBO file from the gene ontology web site.
The services 1 and 2 are implemented by the Java class GO. The method post(input parameters of the web interface) analyzes the parameters in input to the web service and chacks whether in the system are already present the structures needed by the computation, to avoid computing again the same structures. The checking is computed by the method run() of a thread instantiated by the class ThreadCalcola. If the check is positive, the needed structures are loaded. If the check is negative, the needed structures are generated. The run() method then calls the methods for generating the similarity matrices as described in Sec. 3.1.1 and 3.1.2. The similarity matrices relative to the user query are considered and the similarity values are returned back in a string object.
The service 3 allows to download a version of the OBO file still not present in the system and to add it to the gosim database. This service is available just for the administrator user. The Java class DownOnto realizes this service through the method download(mese, anno), which download from the Gene Ontology web site the GO ontology release relative to year “anno” and month “mese”.

3.2 The web interface
The web interface communicates with the RESTful[REST] to realize the services described in the previos section. Figure 3.6 shows the GOSIM web architecture.
[image: A description...]
Figura 3.6. GOSIM we architecture
The GOSIM homepage includes a Login section for two kind of users: standard user and administrator. According to the user type, the web interface changes, as described below.
3.2.1 Administrator interface
The administrator interface is shown in figures 3.7 (a, b). The administrator can access to the current OBO file version in the system (3.7 (a)) and download a new one (3.7 (b)).

[image: A description...]
Figura 3.7 (a). List of the OBO file in the system.

[image: A description...]
Figura 3.7 (b). Adding a new version of the OBO file.
The administrator specifies year and month of the desired GO release, and if it is not present in the gosim database, the interface sends a request to the web service to donwload it. The administrator interface also allows to manage the annotation files and the similarity measure already present in the system.
3.2.2 User Interface
This interface is dedicated to standard users. This interface guides the user in selecting all the parameters needed to compute a similarity measure. The preliminary step is choosing the kind of comparison, as shown in figure 3.8 (a). The first choice corresponds to the service 1 described in section 3.1.4, the second choice to the service 2. The first step is then selecting the GO release and domain, as shown in figure 3.8. (b). the second step is now to select the GO terms of which we want the similarities (figure 3.8 c). This selection can be done in different ways:
1. ID List. The user directly inserts the list of GO terms
2. Centered on a term. The users specifies a GO term and selects one or both the fields “descendants” and “ancestors”. The GO term list is made up by the GO term and its descendants and/or its ancestors in the ontology.
3. Based on the annotation number. The user specifies an annotation range and the GO term list is made up by those terms with a number of annotation in the specified range.
The selection mechanisms can also be combined. The next step is to choose the organism and the evidence codes to be ignored, as shown in figure 3.8 d). The last step consist of choosing the similarity measures to be computed (Figure 3.8 e)).
Finally, in Figure 3.8. f) an example of result display: similarities among the chosen terms are represented in matrix form.
[image: A description...]
Figura 3.8 (a). Preliminary step user-side. Choosing the kind of service.
[image: A description...]
Figura 3.8 (b). Step 1. Choosing the ontology. The steps in red on the left are those to be still computed to define the similarity request.

[image: A description...]
Figura 3.8 (c). Step 2. Selecting the GO terms. In green the parameters already set.

[image: A description...]
Figura 3.8 (d). Step 3. The chosen GO term list is visible on the left in the “your selection” field. Now the user can choose the organism and the evidence codes to be ingored.

[image: A description...]
Figura 3.8 (e). Step 4. Selecting similarity measures. The organism and the evidence codes are shown in the list on the left.

[image: A description...]
Figura 3.8 (f). Results are shown in the user interface. On the left the user can see the chosen parameters.

3.2.3 The gosim database
The gosim database contains all the information relative to the history of the web service and of the user queries. The database is built using the MySQL RDBMS. The OBO file versions currently available are stored in this database, as well as the annotation files information and the computed similarity measures. For example, when the administrator imports a new version of the OBO file, a new tuple is added in the corresponding table of the gosim database.
There are four relational tables in the gosim database: utenti, ontologie, annotazioni, misure. Below we report the definition of each table:
· UTENTI(id, username, password, mail, tipo);
· ONTOLOGIE(id, nome_file, path, mese, anno);
· ANNOTAZIONI(id, nome_organismo, path, id_ontologia*);
· MISURE(id, nome);
The table UTENTI stores the credentials of the user registered to the system. For each user the corresponding e-mail, username and password are stored. The field tipo specifies if the user is a standard user (u) or administator (a).
The table ONTOLOGIE contains the info related to the OBO file versions available in the system. For each file are stored the name (nome_file), the path on the local disk (path), the month (mese) and the year (anno).
The table ANNOTAZIONI stores the annotation file version actually present in the system. For each annotation file are stored the organism (nome_organismo), the path on the disk (path), the corresponding ontology (id_ontologia).
The table MISURE contains the list of the similarity measures that the system provides for the user.
[bookmark: __DdeLink__4223_1508365880]
image9.png

image10.png

image11.png

image12.png

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

