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1 Mono-dimensional unonstrained optimizationApproximate the loal minimum of f(x) = 4x3 + x2− 10x+1 whih falls in therange [0..2]. A preision ∆ = 0.1 is required.To failitate the omputations, assume the resolution is ǫ = 0 until the very lastiteration.Fibonai numbers method. We look for a Fibonai number at least equalto I0
∆ , that is suh that F (n + 2) ≥ 20: F (8) = 21 satisfy this ondition.Therefore we perform n = 6 iterations to obtain a �nal range of width I6 =

I0/F (8) = 2
21 .Then we start with

I0 = F (8)I6 = 21
2

21
= 2

I1 = F (7)I6 = 13
2

21
=

26

21and then
I2 = F (6)I6 = 8

2

21
=

16

21

I3 = F (5)I6 = 5
2

21
=

10

21

I4 = F (4)I6 = 3
2

21
=

6

21

I5 = F (3)I6 = 2
2

21
=

4

21and �nally
I6 =

2

21At the extreme points of the initial range [0..2] we have f(0) = 1.
f(2) = 17.The �rst two internal evaluation points provide the values
f(2621 ) = − 20899

9261 ≈ −2.25667.
f(1621 ) = − 39539

9261 ≈ −4.26941.Therefore we disard the sub-range [ 2621 ..2].We are left with the range [0.. 2621 ] with width I1 = 26
21 , inluding an evaluatedpoint at x = 16

21 .The point symmetri of x = 16
21 in the range [0.. 2621 ] is the point x = 10

21 .The evaluation of f(x) in x = 10
21 provides the value

f(1021 ) = − 28739
9261 ≈ −3.10323.Therefore we disard the sub-range [0.. 1021 ].We are left with the range [ 1021 ..

26
21 ] with width I2 = 16

21 , inluding an evaluatedpoint at x = 16
21 . 2



The point symmetri of x = 16
21 in the range [ 1021 ..

26
21 ] is the point x = 20

21 .The evaluation of f(x) in x = 20
21 provides the value

f(2021 ) = − 38539
9261 ≈ −4.16143.Therefore we disard the sub-range [ 2021 ..

26
21 ].We are left with the range [ 1021 ..

20
21 ] with width I3 = 10

21 , inluding an evaluatedpoint at x = 16
21 .The point symmetri of x = 16

21 in the range [ 1021 ..
20
21 ] is the point x = 14

21 .The evaluation of f(x) in x = 14
21 provides the value

f(1421 ) = − 109
27 ≈ −4.03704.Therefore we disard the sub-range [ 1021 ..

14
21 ].We are left with the range [ 1421 ..

20
21 ] with width I4 = 6

21 , inluding an evaluatedpoint at x = 16
21 .The point symmetri of x = 16

21 in the range [ 1421 ..
20
21 ] is the point x = 18

21 .The evaluation of f(x) in x = 18
21 provides the value

f(1821 ) = − 1481
343 ≈ −4.31778.Therefore we disard the sub-range [ 1421 ..

16
21 ].We are left with the range [ 1621 ..

20
21 ] with width I5 = 4

21 , inluding an evaluatedpoint at x = 18
21 .The point symmetri of x = 18

21 in the range [ 1621 ..
20
21 ] is the point itself. Underthe assumption ǫ = 0, we annot disard an interval at the last iteration. Henelet assume that ǫ > 0.The evaluation of f(x) in x = 18

21 + ǫ provides the value
f(1821 + ǫ) = − 1491

343 + 26ǫ+79ǫ2+4ǫ3

343 > − 1491
343 .Therefore we disard the sub-range [ 1821 ..

20
21 ].We are left with the range [ 1621 ..

18
21 ] with width I6 = 2

21 . This �nal range doesnot inlude any already evaluated internal point and its width meets the re-quirement (it is not larger than ∆).The �nal unertainty range is [ 1621 .. 1821 ] ≈ [0.76190..0.85714].The minimum value found for f(x) is f(1821 ) ≈ −4.31778.Bisetion method. Assume we know the �rst derivative f ′(x) = 12x2+2x−
10. We verify that f ′(0) = −10 is negative and f ′(2) = 42 is positive. So, theremust be a minimum between these two extreme points.The initial unertainty is 2. To redue it to no more than ∆ = 0.1 we needto halve it at least n = ⌈log2 2

0.1⌉ = 5. Hene we need 5 iterations.We evaluate f ′(x) in the midpoint of the urrent range [0..2]: f ′(1) = 4 ispositive. Therefore we disard the range [1..2] and we keep the range [0..1].We evaluate f ′(x) in the midpoint of the urrent range [0..1]: f ′(12 ) = −6 is3



negative. Therefore we disard the range [0.. 12 ] and we keep the range [ 12 ..1].We evaluate f ′(x) in the midpoint of the urrent range [ 12 ..1]: f ′(34 ) = − 7
4is negative. Therefore we disard the range [ 12 ..

3
4 ] and we keep the range [ 34 ..1].We evaluate f ′(x) in the midpoint of the urrent range [ 34 ..1]: f ′(78 ) =

15
16 ispositive. Therefore we disard the range [ 78 ..1] and we keep the range [ 34 ..
7
8 ].We evaluate f ′(x) in the midpoint of the urrent range [ 34 ..

7
8 ]: f ′(1316 ) =

547
64is positive. Therefore we disard the range [ 1316 .. 78 ] and we keep the range [ 34 .. 1316 ].The �nal unertainty range is [ 34 .. 1316 ], i.e. [0.7500..0.8125].The evaluated point with the smallest value of the �rst derivative is x = 13
16 ,where the value of f(x) is f(1316 ) = − 17692

4096 ≈ −4.31934.Newton method. To apply Newton method we must know the �rst and theseond derivative of f(x):
f ′(x) = 12x2 + 2x− 10.
f ′′(x) = 24x+ 2.We must also verify that f ′′(x) is always positive in the range of interest, thatis [0..2]. The ondition holds.Let start from the midpoint x(0) = 1.We evaluate the derivatives in x(0): f ′(1) = 4; f ′′(1) = 26.The next point is x(1) = x(0) − f ′(x(0))

f ′′(x(0))
= 1− 4

26 = 11
13 ≈ 0.84615.We evaluate the derivatives in x(1): f ′(1113 ) =

48
169 ; f ′′(1113 ) =

290
13 .The next point is x(2) = x(1) − f ′(x(1))

f ′′(x(1))
= 11

13 − 48 13
169 290 = 1571

1885 ≈ 0.83342.We evaluate the derivatives in x(2): f ′(15711885 ) =
6912

3553225 ; f ′′(15711885 ) =
41474
1885 .The next point is x(3) = x(2) − f ′(x(2))

f ′′(x(2))
= 1571

1885 − 6912 1885
3553225 41474 ≈ 0.83351.The step is very small (muh smaller than ∆); so we an stop. The �nalapproximated minimum is x(3) ≈ 0.83351 and the orresponding value of thefuntion is f(x(3)) ≈ −4.32407.
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2 Multi-dimensional unonstrained optimizationFind the minimum of the funtion f(x) = 3x2
1+2x1x2+3x2

2− 14x1− 10x2 withthe gradient method, starting from x(0) =

[

3
−2

].The gradient vetor has the following general expression:
∇f(x) =

[

6x1 + 2x2 − 14
2x1 + 6x2 − 10

]

.Iteration 1. The gradient evaluated in x(0) =

[

3
−2

] is
∇f(x(0)) =

[

0
−16

]

.Choosing the diretion opposite to it and normalizing the omponents to haveunit norm, we obtain
d(1) =

[

0
1

]

.Depending on the step α1, the next point is
x(1) = x(0) + α1d

(1) =

[

3
−2

]

+ α1

[

0
1

]

=

[

3
−2 + α1

]

.To ompute the optimal step, we must �nd the minimum of the funtion
f(α1) = 27 + 6(−2 + α1) + 3(−2 + α1)

2 − 42− 10(−2 + α1) = 3α2
1 − 16α1 + 5.To �nd the minimum, we ompute its �rst derivative with respet to α1:

∂f

∂α1
= 6α1 − 16whih is null for α1 = 8

3 . This is a minimum beause the seond derivative isequal to 6, whih is positive. Therefore the optimal step is
α1 =

8

3
.Hene we have

x(1) =

[

3
−2 + 8

3

]

=

[

3
2
3

]

.Iteration 2. The gradient evaluated in x(1) =

[

3
2
3

] is
∇f(x(1)) =

[

16
3
0

]
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Choosing the diretion opposite to it and normalizing the omponents to haveunit norm, we obtain
d(2) =

[

−1
0

]

.Depending on the step α2, the next point is
x(2) = x(1) + α2d

(2) =

[

3
2
3

]

+ α2

[

−1
0

]

=

[

3− α2
2
3

]

.To ompute the optimal step, we must �nd the minimum of the funtion
f(α2) = 3(3− α2)

2 +
4

3
(3− α2) +

4

3
− 14(3− α2)−

20

3
= 3α2

2 −
16

3
α2 −

49

3
.To �nd the minimum, we ompute its �rst derivative with respet to α2:

∂f

∂α2
= 6α2 −

16

3whih is null for α2 = 8
9 . This is a minimum beause the seond derivative isequal to 6, whih is positive. Therefore the optimal step is

α2 =
8

9
.Hene we have

x(2) =

[

3− 8
9

2
3

]

=

[

19
9
2
3

]

.Iteration 3. The gradient evaluated in x(2) =

[

19
9
2
3

] is
∇f(x(2)) =

[

0
− 16

9

]

.Choosing the diretion opposite to it and normalizing the omponents to haveunit norm, we obtain
d(3) =

[

0
1

]

.Depending on the step α3, the next point is
x(3) = x(2) + α3d

(3) =

[

19
9
2
3

]

+ α3

[

0
1

]

=

[

19
9

2
3 + α3

]

.To ompute the optimal step, we must �nd the minimum of the funtion
f(α3) = 3(

19

9
)2+

38

9
(
2

3
+α3)+3(

2

3
+α3)

2−14
19

9
−10(

2

3
+α3) = 3α2

3−
16

9
α3+. . . .To �nd the minimum, we ompute its �rst derivative with respet to α3:

∂f

∂α3
= 6α3 −

16

96



whih is null for α3 = 8
27 . This is a minimum beause the seond derivative isequal to 6, whih is positive. Therefore the optimal step is

α3 =
8

27
.Hene we have

x(3) =

[

19
9

2
3 + 8

27

]

=

[

19
9
26
27

]

.The algorithm asymptotially onverges towards the minimum at x∗ =
[

2
1

].
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3 Multi-dimensional onstrained optimizationFind the minimum of the funtion f(x) = −(x1 − 4)2 − (x2 − 3)2 subjet to theonstraints






x1 + x2 − 6 ≤ 0
−x1 ≤ 0
−x2 ≤ 0with the feasible diretions method, starting from x(0) =

[

3
2

].The gradient of f(x) has the following form:
∇f(x) =

[

−2x1 + 8
−2x2 + 6

]

.Iteration 1. In x(0) =

[

3
2

] we have
∇f(x(0)) =

[

2
2

]and an empty set of ative onstraints
Ω(x(0)) = ∅.Sine we want to minimize f(x), the best diretion is the one that minimizesthe salar produt with the gradient vetor ∇f(x) at the urrent point. Alldiretions are feasible beause no onstraints are ative. So, we solve the sub-problem minimize ∇f(x(0))d(1) =2d

(1)
1 + 2d

(1)
2s.t. (d(1)1 )2 + (d
(1)
2 )2 = 1The optimal solution is obviously

d(1) =

[

−
√
2
2

−
√
2
2

]

.The next point x(1) is a funtion of the step α1 to be taken along diretion d(1):
x(1) = x(0) + α1d

(1) =

[

3
2

]

+ α1

[

−
√
2
2

−
√
2
2

]

=

[

3−
√
2
2 α1

2−
√
2
2 α1

]

.The value of f(x) in the new point x(1) is a funtion of α1:
f(x(1)) = −(−1−

√
2

2
α1)

2 − (−1−
√
2

2
α1)

2 = −α2
1 − 2

√
2α1 − 28



and the following onstraints must be satis�ed










(3−
√
2
2 α1) + (2−

√
2
2 α1)− 6 ≤ 0

−3 +
√
2
2 α1 ≤ 0

−2 +
√
2
2 α1 ≤ 0To �nd the optimal step α1 ≥ 0 we have to solve the sub-problem:minimize f(α1) =− α2

1 − 2
√
2α1 − 2s.t. α1 ≥ −

√
2

2
(redundant)

α1 ≤ 3
√
2

α1 ≤ 2
√
2

α1 ≥ 0The �rst derivative of f(α1) is
∂f

∂α1
= −2α1 − 2

√
2whih is never null for α1 ≥ 0. Therefore no minimum is reahed by movingalong d(1); the step is only limited by the onstraints. The �rst onstraint thatbeomes ative is the third one: α1 ≤ 2

√
2. This is the binding onstraint.Therefore we have

α1 = 2
√
2.The new point is

x(1) = x(0) + α1d
(1) =

[

1
0

]and Ω(x(1)) = {3}.Iteration 2. In x(1) =

[

1
0

] we have
∇f(x(1)) =

[

6
6

]and a set of ative onstraints
Ω(x(1)) = {3}.Sine we want to minimize f(x), the best diretion is the one that minimizes thesalar produt with the gradient vetor ∇f(x) at the urrent point. Howeverthe diretion must be feasible with respet to the ative onstraint, i.e. its salarprodut with the gradient of the ative onstraint must be non-negative. Thegradient of onstraint x2 ≥ 0 is
∇g3(x) =

[

0
1

]9



everywhere. So, we solve the sub-problemminimize ∇f(x(1))d(2) = 6d
(2)
1 + 6d

(2)
2s.t. d(2)2 ≥ 0

(d
(2)
1 )2 + (d

(2)
2 )2 = 1The optimal solution is

d(2) =

[

−1
0

]

.The next point x(2) is a funtion of the step α2 to be taken along diretion d(2):
x(2) = x(1) + α2d

(2) =

[

1
0

]

+ α2

[

−1
0

]

=

[

1− α2

0

]

.The value of f(x) in the new point x(2) is a funtion of α2:
f(x(2)) = −(−3− α2)

2 − 9and the following onstraints must be satis�ed
{

(1− α2) + 0− 6 ≤ 0
−1 + α2 ≤ 0To �nd the optimal step α2 ≥ 0 we have to solve the sub-problem:minimize f(α2) =− (−3− α2)

2 − 9s.t. α2 ≥ −5 (redundant)
α2 ≤ 1

α2 ≥ 0The �rst derivative of f(α2) is
∂f

∂α2
= −2α2 − 6whih is never null for α2 ≥ 0. Therefore no minimum is reahed by movingalong d(2); the step is only limited by the onstraints. The �rst onstraintthat beomes ative is the seond one: α2 ≤ 1. This is the binding onstraint.Therefore we have
α2 = 1.The new point is

x(2) = x(1) + α2d
(2) =

[

0
0

]and Ω(x(2)) = {2, 3}. 10



Iteration 3. In x(2) =

[

0
0

] we have
∇f(x(2)) =

[

8
6

]and a set of ative onstraints
Ω(x(1)) = {2, 3}.Sine we want to minimize f(x), the best diretion is the one that minimizes thesalar produt with the gradient vetor ∇f(x) at the urrent point. Howeverthe diretion must be feasible with respet to the ative onstraints, i.e. itssalar produt with the gradient of the ative onstraints must be non-negative.So, we solve the sub-problemminimize ∇f(x(2))d(3) = 8d

(3)
1 + 6d

(3)
2s.t. d(3)1 ≥ 0

d
(3)
2 ≥ 0

(d
(3)
1 )2 + (d

(3)
2 )2 = 1Disregarding the normalization onstraint, the optimal solution is

d(3) =

[

0
0

]

,whih means that no improving diretion exists at the urrent point. Thereforethe algorithm stops at the loal minimum x(2).
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