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1 Mono-dimensional unconstrained optimization

Approximate the local minimum of f(z) = 42® + 22 — 10z + 1 which falls in the
range [0..2]. A precision A = 0.1 is required.

To facilitate the computations, assume the resolution is € = 0 until the very last
iteration.

Fibonacci numbers method. We look for a Fibonacci number at least equal
to L, that is such that F(n + 2) > 20: F(8) = 21 satisfy this condition.
Therefore we perform n = 6 iterations to obtain a final range of width Is =
Io/F(8) = 5.
Then we start with 5
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At the extreme points of the initial range [0..2] we have f(0) = 1.
F(2) =17.

The first two internal evaluation points provide the values
f(%i) = _% ~ —2.25667.
FL8) = — 3595 426941
Therefore we discard the sub-range [22..2].
26

We are left with the range [0..22] with width I; = 2%, including an evaluated

point at z = 35.
10

The point symmetric of z = 3% in the range [0%] is the point z = 57.

The evaluation of f(z) in z = 10 provides the value

f(%) - ,29822319 ~ —3.10323.

Therefore we discard the sub-range [0..19].

We are left wigh the range [32..28] with width I; = 1%, including an evaluated

point at x = 57.




The point symmetric of z = 2 in the range [22..28] is the point = =

20
21"

The evaluation of f(z) in z = 22 provides the value

20 38539
~ —4.16143.
F(31) = — 521 2 )

Therefore we discard the sub-range [57..57].
We are left with the range [£2..2%] with width I3 =

including an evaluated

1o 3t

point at xz = 57~
The point symmetric of x = ;—6 in the range [2—0 %] is the point z = %_411_

The evaluation of f(z) in x = 17 provides the value
f(3) = —12 ~ —4.03704.
Therefore We discard the sub-range [42..14].
We are left with the range [33..20] w1th width I, = 2, including an evaluated
point at z = 5(15
The point symmetric of z = 2—6 in the range [2—4 %] is the point x = %.

The evaluation of f(z) in 2 = 18 provides the value
f(38) =18 ~ —4.31778.
Therefore we discard the sub-range [12..19].
We are left with the range [E @] with width I5 = %, including an evaluated
point at z = éf
The point symmetric of z = 38 in the range [2..29] is the point itself. Under

the assumption € = 0, we cannot discard an interval at the last iteration. Hence
let assume that € > 0.

The evaluation of f(z) in z = 1% + € provides the value

18 1491 | 264792 +4€3 1491
f(21 + 6) 343 + - >

343 157430
Therefore we discard the sub-range [57..57]
We are left with the range [18..1%] w1th width Is = Z. This final range does
not include any already evaluated internal point and its width meets the re-

quirement (it is not larger than A).

28] ~ [0.76190..0.85714].
is f 2—8 ~ —4.31778.

The final uncertainty range is [
The minimum value found for f(x)

= Blm

Bisection method. Assume we know the first derivative f’(z) = 1222 + 2z —
10. We verify that f'(0) = —10 is negative and f’(2) = 42 is positive. So, there
must be a minimum between these two extreme points.

The initial uncertainty is 2. To reduce it to no more than A = 0.1 we need
to halve it at least n = [log, ¢ | = 5. Hence we need 5 iterations.

We evaluate f’(z) in the midpoint of the current range [0..2]: f'(1) =4 is
positive. Therefore we discard the range [1..2] and we keep the range [0..1].

We evaluate f’(z) in the midpoint of the current range [0..1]: f/(3) = —6 is



negative. Therefore we discard the range [0..3] and we keep the range [3..1].

We evaluate f’(z) in the midpoint of the current range [3..1]: f/(2)
is negative. Therefore we discard the range [— —] and we keep the range [

N[V
L

We evaluate f'(z) in the midpoint of the current range [2..1]: f/(%)

positive. Therefore we discard the range [Z..1] and we keep the range [

:1—615
3
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We evaluate f’(x) in the midpoint of the current range [2..Z]: f/(12) = 3L

43 ~ 64

is positive. Therefore we discard the range [13..Z] and we keep the range [3. —%]
The final uncertainty range is [2..12] i.e. [0.7500..0.8125].

The evaluated point with the smallest value of the first derivative is x = %,

where the value of f(z) is f({2) = — 322 ~ —4.31934.

Newton method. To apply Newton method we must know the first and the
second derivative of f(x):

f'(z) = 1222 + 22 — 10.

f(z) = 24z + 2.

We must also verify that f”(x) is always positive in the range of interest, that
is [0..2]. The condition holds.

Let start from the midpoint z(®) = 1.

We evaluate the derivatives in z(9): /(1) = 4; f”(1) = 26.

© )=
The next point is (! = () — % 1— 5 = 1+ ~ 0.84615.

We evaluate the derivatives in z(1): f/(1) = 28, p7(1l) — 290,

@) 11 4818 1571 o, 83349,

. . 2) 1
The next point is z(2) = z(1) — FzM) — 13 ~ 169290 1885

We evaluate the derivatives in z(2): f’ (35) = 32592 f/(pD) = 428

s (3) (2 FE®) 11 6912 1885 .
The next point is $( ) = $( ) — f”(x(2>) 1885 — 3553295 41474 > 0.83351.

The step is very small (much smaller than A); so we can stop. The final
approximated minimum is 3 ~ 0.83351 and the corresponding value of the
function is f(z®)) ~ —4.32407.



2 Multi-dimensional unconstrained optimization
Find the minimum of the function f(z) = 3:5% + 22129 + 3:5% — 1421 — 1029 with

0) 3

the gradient method, starting from 2(®) = _9

The gradient vector has the following general expression:

| 6zy + 220 —14
Vi) = [ 2x1+6x210]'

Iteration 1. The gradient evaluated in z(9) = [ 32 ] is

Vi®) = { Ry }

Choosing the direction opposite to it and normalizing the components to have
unit norm, we obtain
m_|0
d [ 0 ] .

Depending on the step a1, the next point is

1) _ (0 w_| 3 0 _ 3
v =% 4+ ard {_2]+a1{1][_2+a1 .

To compute the optimal step, we must find the minimum of the function
flan) =27 +6(—2+ 1) +3(—2+a1)? —42 — 10(—2 + a;) = 3a? — 16a; + 5.

To find the minimum, we compute its first derivative with respect to aq:

of
—— = 6a1 — 16
80&1 !
which is null for o; = &. This is a minimum because the second derivative is

3
equal to 6, which is positive. Therefore the optimal step is

o] = —.

3

x(l){_;:_%}{ }

Iteration 2. The gradient evaluated in (1) = {

Hence we have
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Choosing the direction opposite to it and normalizing the components to have
unit norm, we obtain

@ _ | —1
d _[ . ]

Depending on the step as, the next point is

3 -1 3 —
e[ 3]-[57]
3

3
To compute the optimal step, we must find the minimum of the function

flaz) =33 —a2)? + é(3

20 16 49
7042)+—714(37a2)f§ —3a§f§agf§.
To find the minimum, we compute its first derivative with respect to as:
Of _ 6o, 18
80&2 2 3

which is null for ag = %. This is a minimum because the second derivative is
equal to 6, which is positive. Therefore the optimal step is

9
Hence we have

o)1)

19
Iteration 3. The gradient evaluated in @ = { 2 ] is
3

_16
9

Vf(:c@)){ 0 }

Choosing the direction opposite to it and normalizing the components to have
unit norm, we obtain

@_|0
d [1]

Depending on the step as, the next point is

19

19
3) _ 4 @ _| 7 Ol_| . 9
oot = [ [ [ 1] =[5 7, |
To compute the optimal step, we must find the minimum of the function
19 38 2
flaz) =3(5)°

2 19 2 16
—(z 3(5 -14—-10(3 =3a3——az+....
9 + 9 (3+a3)—|— (3—|—a3) 9 (3—|—a3) a3 9 as+
To find the minimum, we compute its first derivative with respect to as:
Of _ 4o, 16
80&3 a 3 9



which is null for g = 2. This is a minimum because the second derivative is

27"
equal to 6, which is positive. Therefore the optimal step is

_8
27

3) 5 5
= 7s =12
{§+% 5

Qa3

Hence we have

The algorithm asymptotically converges towards the minimum at z*

1]



3 Multi-dimensional constrained optimization
Find the minimum of the function f(x) = —(z; —4)? — (22 — 3)? subject to the
constraints

x1+x9—6<0

—X1 S 0

—X2 S 0

with the feasible directions method, starting from z(9) = { g } .

The gradient of f(z) has the following form:

viw=| nth .

Iteration 1. In z(®) = [ 3 } we have

and an empty set of active constraints
Qz0) = 9.

Since we want to minimize f(z), the best direction is the one that minimizes
the scalar product with the gradient vector V f(z) at the current point. All
directions are feasible because no constraints are active. So, we solve the sub-
problem

minimize V f(z(®)d® =24{" + 24"

st. (d")? + (@) =1
The optimal solution is obviously

w-[ 4]

The next point (1) is a function of the step a; to be taken along direction d(!):

V2 9 _ V2 :
2

fel

2V — 2O 4 g g — { ; } fa

- 2 Y

The value of f(x) in the new point z(!) is a function of ay:

Fa®) = ~(-1- L - (-1 - Lt = -0 - 2v8m -2



and the following constraints must be satisfied

(3— %a1) + (2~ L2ay) —6<0
3+ %20, <0
24 %20, <0

To find the optimal step «; > 0 we have to solve the sub-problem:
minimize f(a;) = — a2 — 2v20; — 2
2
s.t. g > 7% (redundant)

a1 < 3v2
a < 2v2
05120

The first derivative of f(ay) is

of _ —20; — 22
8051

which is never null for «; > 0. Therefore no minimum is reached by moving
along dV; the step is only limited by the constraints. The first constraint that
becomes active is the third one: «; < 2v/2. This is the binding constraint.
Therefore we have

a1 = 2\/5.

The new point is
2D — 2O 4 g g — [ (1) ]
and Q(z(M) = {3}.

Iteration 2. In z(1) = (1) we have

6
and a set of active constraints
Q(zM) = {3}.

Since we want to minimize f(x), the best direction is the one that minimizes the
scalar product with the gradient vector V f(x) at the current point. However
the direction must be feasible with respect to the active constraint, i.e. its scalar
product with the gradient of the active constraint must be non-negative. The
gradient of constraint zo > 0 is

Vys(z) = { (1) ]



everywhere. So, we solve the sub-problem

minimize V f(zM)d? = 6d§2) + 6d52)
S.t. dg) >0
(@) + (d57)* =1

@ _ | —1
d [ . ]

The next point (?) is a function of the step as to be taken along direction d(?):

1 -1 1-
(3 om [ ]3]

The value of f(x) in the new point x(?) is a function of axy:

The optimal solution is

f®) = ~(-3- a2~ 9
and the following constraints must be satisfied

(1—@2)+0—6§0
—14+a9 <0

To find the optimal step as > 0 we have to solve the sub-problem:

minimize f(ag) = — (=3 — az)? — 9
8.t. ag > —5 (redundant)
as <1
as >0

The first derivative of f(aw) is

af

= 205 — 6
80&2 az

which is never null for g > 0. Therefore no minimum is reached by moving
along d®); the step is only limited by the constraints. The first constraint
that becomes active is the second one: as < 1. This is the binding constraint.
Therefore we have

Qg = 1.

The new point is
2@ — 20 4 qud® — [ 8 ]

and Q(z?)) = {2,3}.
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Iteration 3. In z(? = [ 8 } we have

6
and a set of active constraints
QW) = {2,3}.

Since we want to minimize f(x), the best direction is the one that minimizes the
scalar product with the gradient vector V f(x) at the current point. However
the direction must be feasible with respect to the active constraints, i.e. its
scalar product with the gradient of the active constraints must be non-negative.
So, we solve the sub-problem

minimize V f(z*)d® = 8d{* + 64{”
s.t. d® >0
d¥ >0
(d§3))2 + (d(23))2 -1

Disregarding the normalization constraint, the optimal solution is

@_10
@ =[7];

which means that no improving direction exists at the current point. Therefore
the algorithm stops at the local minimum z(?).
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