Non-linear optimization
Exercises

Giovanni Righini

1 Mono-dimensional unconstrained optimization

Approximate the local minimum of $f(x)=4 x^{3}+x^{2}-10 x+1$ which falls in the range [0..2]. A precision $\Delta=0.1$ is required.
To facilitate the computations, assume the resolution is $\epsilon=0$ until the very last iteration.

Fibonacci numbers method. We look for a Fibonacci number at least equal to $\frac{I_{0}}{\Delta}$, that is such that $F(n+2) \geq 20: F(8)=21$ satisfy this condition. Therefore we perform $n=6$ iterations to obtain a final range of width $I_{6}=$ $I_{0} / F(8)=\frac{2}{21}$.

Then we start with

$$
\begin{gathered}
I_{0}=F(8) I_{6}=21 \frac{2}{21}=2 \\
I_{1}=F(7) I_{6}=13 \frac{2}{21}=\frac{26}{21}
\end{gathered}
$$

and then

$$
\begin{aligned}
& I_{2}=F(6) I_{6}=8 \frac{2}{21}=\frac{16}{21} \\
& I_{3}=F(5) I_{6}=5 \frac{2}{21}=\frac{10}{21} \\
& I_{4}=F(4) I_{6}=3 \frac{2}{21}=\frac{6}{21} \\
& I_{5}=F(3) I_{6}=2 \frac{2}{21}=\frac{4}{21}
\end{aligned}
$$

and finally

$$
I_{6}=\frac{2}{21}
$$

At the extreme points of the initial range $[0 . .2]$ we have $f(0)=1$. $f(2)=17$.

The first two internal evaluation points provide the values
$f\left(\frac{26}{21}\right)=-\frac{20899}{9261} \approx-2.25667$.
$f\left(\frac{16}{21}\right)=-\frac{39539}{9261} \approx-4.26941$.
Therefore we discard the sub-range $\left[\frac{26}{21} . .2\right]$.
We are left with the range $\left[0 . . \frac{26}{21}\right]$ with width $I_{1}=\frac{26}{21}$, including an evaluated point at $x=\frac{16}{21}$.
The point symmetric of $x=\frac{16}{21}$ in the range $\left[0 . . \frac{26}{21}\right]$ is the point $x=\frac{10}{21}$.
The evaluation of $f(x)$ in $x=\frac{10}{21}$ provides the value
$f\left(\frac{10}{21}\right)=-\frac{28739}{9261} \approx-3.10323$.
Therefore we discard the sub-range $\left[0 . \frac{10}{21}\right]$.
We are left with the range $\left[\frac{10}{21} . \frac{26}{21}\right]$ with width $I_{2}=\frac{16}{21}$, including an evaluated point at $x=\frac{16}{21}$.

The point symmetric of $x=\frac{16}{21}$ in the range $\left[\frac{10}{21} . \cdot \frac{26}{21}\right]$ is the point $x=\frac{20}{21}$.
The evaluation of $f(x)$ in $x=\frac{20}{21}$ provides the value
$f\left(\frac{20}{21}\right)=-\frac{38539}{9261} \approx-4.16143$.
Therefore we discard the sub-range $\left[\frac{20}{21} . . \frac{26}{21}\right]$.
We are left with the range $\left[\frac{10}{21} \ldots \frac{20}{21}\right]$ with width $I_{3}=\frac{10}{21}$, including an evaluated point at $x=\frac{16}{21}$.
The point symmetric of $x=\frac{16}{21}$ in the range $\left[\frac{10}{21} \cdot \frac{20}{21}\right]$ is the point $x=\frac{14}{21}$.
The evaluation of $f(x)$ in $x=\frac{14}{21}$ provides the value $f\left(\frac{14}{21}\right)=-\frac{109}{27} \approx-4.03704$.
Therefore we discard the sub-range $\left[\frac{10}{21} . \cdot \frac{14}{21}\right]$.
We are left with the range $\left[\frac{14}{21} \cdot \frac{20}{21}\right]$ with width $I_{4}=\frac{6}{21}$, including an evaluated point at $x=\frac{16}{21}$.
The point symmetric of $x=\frac{16}{21}$ in the range $\left[\frac{14}{21} \cdot \frac{20}{21}\right]$ is the point $x=\frac{18}{21}$.
The evaluation of $f(x)$ in $x=\frac{18}{21}$ provides the value
$f\left(\frac{18}{21}\right)=-\frac{1481}{343} \approx-4.31778$.
Therefore we discard the sub-range $\left[\frac{14}{21} \cdot \frac{16}{21}\right]$.
We are left with the range $\left[\frac{16}{21} \cdot \frac{20}{21}\right]$ with width $I_{5}=\frac{4}{21}$, including an evaluated point at $x=\frac{18}{21}$.
The point symmetric of $x=\frac{18}{21}$ in the range $\left[\frac{16}{21} . \frac{20}{21}\right]$ is the point itself. Under the assumption $\epsilon=0$, we cannot discard an interval at the last iteration. Hence let assume that $\epsilon>0$.

The evaluation of $f(x)$ in $x=\frac{18}{21}+\epsilon$ provides the value
$f\left(\frac{18}{21}+\epsilon\right)=-\frac{1491}{343}+\frac{26 \epsilon+79 \epsilon^{2}+4 \epsilon^{3}}{343}>-\frac{1491}{343}$.
Therefore we discard the sub-range $\left[\frac{18}{21} \cdot \cdot \frac{20}{21}\right]$.
We are left with the range $\left[\frac{16}{21} . \frac{18}{21}\right]$ with width $I_{6}=\frac{2}{21}$. This final range does not include any already evaluated internal point and its width meets the requirement (it is not larger than Δ).

The final uncertainty range is $\left[\frac{16}{21} . . \frac{18}{21}\right] \approx[0.76190 . .0 .85714]$.
The minimum value found for $f(x)$ is $f\left(\frac{18}{21}\right) \approx-4.31778$.
Bisection method. Assume we know the first derivative $f^{\prime}(x)=12 x^{2}+2 x-$ 10 . We verify that $f^{\prime}(0)=-10$ is negative and $f^{\prime}(2)=42$ is positive. So, there must be a minimum between these two extreme points.

The initial uncertainty is 2 . To reduce it to no more than $\Delta=0.1$ we need to halve it at least $n=\left\lceil\log _{2} \frac{2}{0.1}\right\rceil=5$. Hence we need 5 iterations.

We evaluate $f^{\prime}(x)$ in the midpoint of the current range [0..2]: $f^{\prime}(1)=4$ is positive. Therefore we discard the range [1..2] and we keep the range [0..1].

We evaluate $f^{\prime}(x)$ in the midpoint of the current range [0..1]: $f^{\prime}\left(\frac{1}{2}\right)=-6$ is
negative. Therefore we discard the range $\left[0 . . \frac{1}{2}\right]$ and we keep the range $\left[\frac{1}{2} . .1\right]$.
We evaluate $f^{\prime}(x)$ in the midpoint of the current range $\left[\frac{1}{2} . .1\right]: f^{\prime}\left(\frac{3}{4}\right)=-\frac{7}{4}$ is negative. Therefore we discard the range $\left[\frac{1}{2} . \cdot \frac{3}{4}\right]$ and we keep the range $\left[\frac{3}{4} . .1\right]$.

We evaluate $f^{\prime}(x)$ in the midpoint of the current range $\left[\frac{3}{4} . .1\right]: f^{\prime}\left(\frac{7}{8}\right)=\frac{15}{16}$ is positive. Therefore we discard the range $\left[\frac{7}{8} . .1\right]$ and we keep the range $\left[\frac{3}{4} . \cdot \frac{7}{8}\right]$.

We evaluate $f^{\prime}(x)$ in the midpoint of the current range $\left[\frac{3}{4} \cdot \frac{7}{8}\right]: f^{\prime}\left(\frac{13}{16}\right)=\frac{547}{64}$ is positive. Therefore we discard the range $\left[\frac{13}{16} . . \frac{7}{8}\right]$ and we keep the range $\left[\frac{3}{4} . . \frac{13}{16}\right]$.

The final uncertainty range is $\left[\frac{3}{4} . . \frac{13}{16}\right]$, i.e. [0.7500..0.8125].
The evaluated point with the smallest value of the first derivative is $x=\frac{13}{16}$, where the value of $f(x)$ is $f\left(\frac{13}{16}\right)=-\frac{17692}{4096} \approx-4.31934$.

Newton method. To apply Newton method we must know the first and the second derivative of $f(x)$:
$f^{\prime}(x)=12 x^{2}+2 x-10$.
$f^{\prime \prime}(x)=24 x+2$.
We must also verify that $f^{\prime \prime}(x)$ is always positive in the range of interest, that is [0..2]. The condition holds.

Let start from the midpoint $x^{(0)}=1$.
We evaluate the derivatives in $x^{(0)}: f^{\prime}(1)=4 ; f^{\prime \prime}(1)=26$.
The next point is $x^{(1)}=x^{(0)}-\frac{f^{\prime}\left(x^{(0)}\right)}{f^{\prime \prime}\left(x^{(0)}\right)}=1-\frac{4}{26}=\frac{11}{13} \approx 0.84615$.
We evaluate the derivatives in $x^{(1)}: f^{\prime}\left(\frac{11}{13}\right)=\frac{48}{169} ; f^{\prime \prime}\left(\frac{11}{13}\right)=\frac{290}{13}$.
The next point is $x^{(2)}=x^{(1)}-\frac{f^{\prime}\left(x^{(1)}\right)}{f^{\prime \prime}\left(x^{(1)}\right)}=\frac{11}{13}-\frac{4813}{169290}=\frac{1571}{1885} \approx 0.83342$.
We evaluate the derivatives in $x^{(2)}: f^{\prime}\left(\frac{1571}{1885}\right)=\frac{6912}{3553225} ; f^{\prime \prime}\left(\frac{1571}{1885}\right)=\frac{41474}{1885}$.
The next point is $x^{(3)}=x^{(2)}-\frac{f^{\prime}\left(x^{(2)}\right)}{f^{\prime \prime}\left(x^{(2)}\right)}=\frac{1571}{1885}-\frac{69121885}{355322541474} \approx 0.83351$.
The step is very small (much smaller than Δ); so we can stop. The final approximated minimum is $x^{(3)} \approx 0.83351$ and the corresponding value of the function is $f\left(x^{(3)}\right) \approx-4.32407$.

2 Multi-dimensional unconstrained optimization

Find the minimum of the function $f(x)=3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}-14 x_{1}-10 x_{2}$ with the gradient method, starting from $x^{(0)}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$.

The gradient vector has the following general expression:

$$
\nabla f(x)=\left[\begin{array}{l}
6 x_{1}+2 x_{2}-14 \\
2 x_{1}+6 x_{2}-10
\end{array}\right]
$$

Iteration 1. The gradient evaluated in $x^{(0)}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$ is

$$
\nabla f\left(x^{(0)}\right)=\left[\begin{array}{c}
0 \\
-16
\end{array}\right]
$$

Choosing the direction opposite to it and normalizing the components to have unit norm, we obtain

$$
d^{(1)}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Depending on the step α_{1}, the next point is

$$
x^{(1)}=x^{(0)}+\alpha_{1} d^{(1)}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right]+\alpha_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2+\alpha_{1}
\end{array}\right] .
$$

To compute the optimal step, we must find the minimum of the function
$f\left(\alpha_{1}\right)=27+6\left(-2+\alpha_{1}\right)+3\left(-2+\alpha_{1}\right)^{2}-42-10\left(-2+\alpha_{1}\right)=3 \alpha_{1}^{2}-16 \alpha_{1}+5$.
To find the minimum, we compute its first derivative with respect to α_{1} :

$$
\frac{\partial f}{\partial \alpha_{1}}=6 \alpha_{1}-16
$$

which is null for $\alpha_{1}=\frac{8}{3}$. This is a minimum because the second derivative is equal to 6 , which is positive. Therefore the optimal step is

$$
\alpha_{1}=\frac{8}{3} .
$$

Hence we have

$$
x^{(1)}=\left[\begin{array}{c}
3 \\
-2+\frac{8}{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
\frac{2}{3}
\end{array}\right] .
$$

Iteration 2. The gradient evaluated in $x^{(1)}=\left[\begin{array}{c}3 \\ \frac{2}{3}\end{array}\right]$ is

$$
\nabla f\left(x^{(1)}\right)=\left[\begin{array}{c}
\frac{16}{3} \\
0
\end{array}\right]
$$

Choosing the direction opposite to it and normalizing the components to have unit norm, we obtain

$$
d^{(2)}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] .
$$

Depending on the step α_{2}, the next point is

$$
x^{(2)}=x^{(1)}+\alpha_{2} d^{(2)}=\left[\begin{array}{l}
3 \\
\frac{2}{3}
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
3-\alpha_{2} \\
\frac{2}{3}
\end{array}\right] .
$$

To compute the optimal step, we must find the minimum of the function

$$
f\left(\alpha_{2}\right)=3\left(3-\alpha_{2}\right)^{2}+\frac{4}{3}\left(3-\alpha_{2}\right)+\frac{4}{3}-14\left(3-\alpha_{2}\right)-\frac{20}{3}=3 \alpha_{2}^{2}-\frac{16}{3} \alpha_{2}-\frac{49}{3} .
$$

To find the minimum, we compute its first derivative with respect to α_{2} :

$$
\frac{\partial f}{\partial \alpha_{2}}=6 \alpha_{2}-\frac{16}{3}
$$

which is null for $\alpha_{2}=\frac{8}{9}$. This is a minimum because the second derivative is equal to 6 , which is positive. Therefore the optimal step is

$$
\alpha_{2}=\frac{8}{9} .
$$

Hence we have

$$
x^{(2)}=\left[\begin{array}{c}
3-\frac{8}{9} \\
\frac{2}{3}^{9}
\end{array}\right]=\left[\begin{array}{c}
\frac{19}{9} \\
\frac{2}{3}
\end{array}\right] .
$$

Iteration 3. The gradient evaluated in $x^{(2)}=\left[\begin{array}{c}\frac{19}{9} \\ \frac{2}{3}\end{array}\right]$ is

$$
\nabla f\left(x^{(2)}\right)=\left[\begin{array}{c}
0 \\
-\frac{16}{9}
\end{array}\right]
$$

Choosing the direction opposite to it and normalizing the components to have unit norm, we obtain

$$
d^{(3)}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Depending on the step α_{3}, the next point is

$$
x^{(3)}=x^{(2)}+\alpha_{3} d^{(3)}=\left[\begin{array}{c}
\frac{19}{9} \\
\frac{2}{3}
\end{array}\right]+\alpha_{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{19}{9} \\
\frac{2}{3}+\alpha_{3}
\end{array}\right] .
$$

To compute the optimal step, we must find the minimum of the function

$$
f\left(\alpha_{3}\right)=3\left(\frac{19}{9}\right)^{2}+\frac{38}{9}\left(\frac{2}{3}+\alpha_{3}\right)+3\left(\frac{2}{3}+\alpha_{3}\right)^{2}-14 \frac{19}{9}-10\left(\frac{2}{3}+\alpha_{3}\right)=3 \alpha_{3}^{2}-\frac{16}{9} \alpha_{3}+\ldots
$$

To find the minimum, we compute its first derivative with respect to α_{3} :

$$
\frac{\partial f}{\partial \alpha_{3}}=6 \alpha_{3}-\frac{16}{9}
$$

which is null for $\alpha_{3}=\frac{8}{27}$. This is a minimum because the second derivative is equal to 6 , which is positive. Therefore the optimal step is

$$
\alpha_{3}=\frac{8}{27} .
$$

Hence we have

$$
x^{(3)}=\left[\begin{array}{c}
\frac{19}{9} \\
\frac{2}{3}+\frac{8}{27}
\end{array}\right]=\left[\begin{array}{c}
\frac{19}{9} \\
\frac{26}{27}
\end{array}\right] .
$$

The algorithm asymptotically converges towards the minimum at $x^{*}=$ $\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

3 Multi-dimensional constrained optimization

Find the minimum of the function $f(x)=-\left(x_{1}-4\right)^{2}-\left(x_{2}-3\right)^{2}$ subject to the constraints
$\left\{\begin{array}{l}\text { constraints } \\ x_{1}+x_{2}-6 \leq 0 \\ -x_{1} \leq 0 \\ -x_{2} \leq 0\end{array}\right.$
with the feasible directions method, starting from $x^{(0)}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
The gradient of $f(x)$ has the following form:

$$
\nabla f(x)=\left[\begin{array}{l}
-2 x_{1}+8 \\
-2 x_{2}+6
\end{array}\right]
$$

Iteration 1. In $x^{(0)}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ we have

$$
\nabla f\left(x^{(0)}\right)=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

and an empty set of active constraints

$$
\Omega\left(x^{(0)}\right)=\emptyset
$$

Since we want to minimize $f(x)$, the best direction is the one that minimizes the scalar product with the gradient vector $\nabla f(x)$ at the current point. All directions are feasible because no constraints are active. So, we solve the subproblem

$$
\begin{aligned}
& \operatorname{minimize} \nabla f\left(x^{(0)}\right) d^{(1)}=2 d_{1}^{(1)}+2 d_{2}^{(1)} \\
& \text { s.t. }\left(d_{1}^{(1)}\right)^{2}+\left(d_{2}^{(1)}\right)^{2}=1
\end{aligned}
$$

The optimal solution is obviously

$$
d^{(1)}=\left[\begin{array}{l}
-\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2}
\end{array}\right] .
$$

The next point $x^{(1)}$ is a function of the step α_{1} to be taken along direction $d^{(1)}$:

$$
x^{(1)}=x^{(0)}+\alpha_{1} d^{(1)}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]+\alpha_{1}\left[\begin{array}{l}
-\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2}
\end{array}\right]=\left[\begin{array}{l}
3-\frac{\sqrt{2}}{2} \alpha_{1} \\
2-\frac{\sqrt{2}}{2} \alpha_{1}
\end{array}\right] .
$$

The value of $f(x)$ in the new point $x^{(1)}$ is a function of α_{1} :

$$
f\left(x^{(1)}\right)=-\left(-1-\frac{\sqrt{2}}{2} \alpha_{1}\right)^{2}-\left(-1-\frac{\sqrt{2}}{2} \alpha_{1}\right)^{2}=-\alpha_{1}^{2}-2 \sqrt{2} \alpha_{1}-2
$$

and the following constraints must be satisfied

$$
\left\{\begin{array}{l}
\left(3-\frac{\sqrt{2}}{2} \alpha_{1}\right)+\left(2-\frac{\sqrt{2}}{2} \alpha_{1}\right)-6 \leq 0 \\
-3+\frac{\sqrt{2}}{2} \alpha_{1} \leq 0 \\
-2+\frac{\sqrt{2}}{2} \alpha_{1} \leq 0
\end{array}\right.
$$

To find the optimal step $\alpha_{1} \geq 0$ we have to solve the sub-problem:

$$
\begin{aligned}
& \operatorname{minimize} f\left(\alpha_{1}\right)=-\alpha_{1}^{2}-2 \sqrt{2} \alpha_{1}-2 \\
& \text { s.t. } \alpha_{1} \geq-\frac{\sqrt{2}}{2} \quad \text { (redundant) } \\
& \alpha_{1} \leq 3 \sqrt{2} \\
& \alpha_{1} \leq 2 \sqrt{2} \\
& \alpha_{1} \geq 0
\end{aligned}
$$

The first derivative of $f\left(\alpha_{1}\right)$ is

$$
\frac{\partial f}{\partial \alpha_{1}}=-2 \alpha_{1}-2 \sqrt{2}
$$

which is never null for $\alpha_{1} \geq 0$. Therefore no minimum is reached by moving along $d^{(1)}$; the step is only limited by the constraints. The first constraint that becomes active is the third one: $\alpha_{1} \leq 2 \sqrt{2}$. This is the binding constraint. Therefore we have

$$
\alpha_{1}=2 \sqrt{2}
$$

The new point is

$$
x^{(1)}=x^{(0)}+\alpha_{1} d^{(1)}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

and $\Omega\left(x^{(1)}\right)=\{3\}$.
Iteration 2. In $x^{(1)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ we have

$$
\nabla f\left(x^{(1)}\right)=\left[\begin{array}{l}
6 \\
6
\end{array}\right]
$$

and a set of active constraints

$$
\Omega\left(x^{(1)}\right)=\{3\} .
$$

Since we want to minimize $f(x)$, the best direction is the one that minimizes the scalar product with the gradient vector $\nabla f(x)$ at the current point. However the direction must be feasible with respect to the active constraint, i.e. its scalar product with the gradient of the active constraint must be non-negative. The gradient of constraint $x_{2} \geq 0$ is

$$
\nabla g_{3}(x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

everywhere. So, we solve the sub-problem

$$
\begin{aligned}
& \operatorname{minimize} \nabla f\left(x^{(1)}\right) d^{(2)}=6 d_{1}^{(2)}+6 d_{2}^{(2)} \\
& \text { s.t. } \\
& d_{2}^{(2)} \geq 0 \\
& \\
& \left(d_{1}^{(2)}\right)^{2}+\left(d_{2}^{(2)}\right)^{2}=1
\end{aligned}
$$

The optimal solution is

$$
d^{(2)}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] .
$$

The next point $x^{(2)}$ is a function of the step α_{2} to be taken along direction $d^{(2)}$:

$$
x^{(2)}=x^{(1)}+\alpha_{2} d^{(2)}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1-\alpha_{2} \\
0
\end{array}\right] .
$$

The value of $f(x)$ in the new point $x^{(2)}$ is a function of α_{2} :

$$
f\left(x^{(2)}\right)=-\left(-3-\alpha_{2}\right)^{2}-9
$$

and the following constraints must be satisfied

$$
\left\{\begin{array}{l}
\left(1-\alpha_{2}\right)+0-6 \leq 0 \\
-1+\alpha_{2} \leq 0
\end{array}\right.
$$

To find the optimal step $\alpha_{2} \geq 0$ we have to solve the sub-problem:

$$
\begin{aligned}
& \operatorname{minimize} f\left(\alpha_{2}\right)=-\left(-3-\alpha_{2}\right)^{2}-9 \\
& \text { s.t. } \alpha_{2} \geq-5 \quad \text { (redundant) } \\
& \alpha_{2} \leq 1 \\
& \alpha_{2} \geq 0
\end{aligned}
$$

The first derivative of $f\left(\alpha_{2}\right)$ is

$$
\frac{\partial f}{\partial \alpha_{2}}=-2 \alpha_{2}-6
$$

which is never null for $\alpha_{2} \geq 0$. Therefore no minimum is reached by moving along $d^{(2)}$; the step is only limited by the constraints. The first constraint that becomes active is the second one: $\alpha_{2} \leq 1$. This is the binding constraint. Therefore we have

$$
\alpha_{2}=1
$$

The new point is

$$
x^{(2)}=x^{(1)}+\alpha_{2} d^{(2)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and $\Omega\left(x^{(2)}\right)=\{2,3\}$.

Iteration 3. $\operatorname{In} x^{(2)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ we have

$$
\nabla f\left(x^{(2)}\right)=\left[\begin{array}{l}
8 \\
6
\end{array}\right]
$$

and a set of active constraints

$$
\Omega\left(x^{(1)}\right)=\{2,3\} .
$$

Since we want to minimize $f(x)$, the best direction is the one that minimizes the scalar product with the gradient vector $\nabla f(x)$ at the current point. However the direction must be feasible with respect to the active constraints, i.e. its scalar product with the gradient of the active constraints must be non-negative. So, we solve the sub-problem

$$
\begin{aligned}
\operatorname{minimize} \nabla f\left(x^{(2)}\right) d^{(3)} & =8 d_{1}^{(3)}+6 d_{2}^{(3)} \\
\text { s.t. } & d_{1}^{(3)} \geq 0 \\
& d_{2}^{(3)} \geq 0 \\
& \left(d_{1}^{(3)}\right)^{2}+\left(d_{2}^{(3)}\right)^{2}=1
\end{aligned}
$$

Disregarding the normalization constraint, the optimal solution is

$$
d^{(3)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

which means that no improving direction exists at the current point. Therefore the algorithm stops at the local minimum $x^{(2)}$.

