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Exercise 2.1: post-optimal analysis.

Given the following LP,

maximizez =x1 + 2x2

s.t.x2 ≤ 2x1 + 2

x1 + 3x2 ≤ 27

x1 + x2 ≤ 15

2x1 ≤ x2 + 18

x ≥ 0

and its optimal tableau (see Exercise 1.1)

21 0 0 0 1/2 1/2 0
14 0 0 1 -3/2 7/2 0
6 0 0 0 3/2 -7/2 1
6 0 1 0 1/2 -1/2 0
9 1 0 0 -1/2 3/2 0

1. discuss the robustness of the optimal solution with respect to variations of the marginal revenues, interpretingz as
a profit;

2. which resources can be scarce ifc1 can vary between1/2 and3/2?

Question 1: sensitivity analysis.
The optimal tableau corresponds to the optimal basisB∗ = {1, 2, 3, 6} and to the optimal basic solutionx∗ =

[9 6 14 0 0 6] with z∗ = 21.

Variations of c1. Examining the tableau at optimality,

21 0 0 0 1/2 1/2 0
6 0 1 0 1/2 -1/2 0
9 1 0 0 -1/2 3/2 0
14 0 0 1 -3/2 7/2 0
6 0 0 0 3/2 -7/2 1

sincex1 is basic on row2, we have

−1/2

3/2
≤ ∆c1 ≤

−1/2

−1/2

that is

−
1

3
≤ ∆c1 ≤ 1

which means
2

3
≤ c1 ≤ 2.

Variations of c2. Examining the tableau at optimality,

21 0 0 0 1/2 1/2 0
6 0 1 0 1/2 -1/2 0
9 1 0 0 -1/2 3/2 0
14 0 0 1 -3/2 7/2 0
6 0 0 0 3/2 -7/2 1

sincex2 is basic on row1, we have
−1/2

1/2
≤ ∆c2 ≤

−1/2

−1/2

that is
−1 ≤ ∆c2 ≤ 1

which means
1 ≤ c2 ≤ 3.

2



Question 2: parametric analysis.
At optimality (vertexD in the figure), the resources corresponding tox4 andx5 are scarce, since the corresponding

constraints are active andx4 andx5 are non-basic. However, sensitivity analysis reveals thatB∗ remains optimal only for
2

3
≤ c1 ≤ 2. So, we have no information about scarce resources when1

2
≤ c1 ≤ 2

3
. For this purpose we need parametric

analysis onc1.
We already know from sensitivity analysis that the ratio that bounds the allowable decrease ofc1 is −1/2

3/2 which is
found on column5. In other wordsx5 becomes basic whenc1 decreases by more than1/3. Whenc1 decreases by1/3, the
indifference lines of the objective function become parallel to constraint(4) and we have two equivalent optimal solutions
(verticesC andD in the figure). This corresponds to the occurrence of a zero reduced cost in the tableau.

We need to perform a pivot step so that column5 leaves the basis, in order to explore what happens forc1 < 2/3.
Therefore, we need to reconstruct the tableau that would have been obtained in vertexD with c1 = 2/3 instead ofc1 = 1.
The only difference would have been in row0, because the entries in the other rows of the tableau do not depend on the
coefficientsc.

First of all, we have to remember that in standard form we put the objective funnction in minimization form. So,
we are minimizingz′ = −c1x1 − 2x2. we can easily compute the value ofz′ in vertexD whenc1 = 2/3. We have
xD = [9 6 14 0 0 6]. Hence,z′(D) = −9c1 − 12; For c1 = 1, z′(D) = −21 and this is consistent with the result already
found. forc1 = 2/3, z′(D) = −18. Therefore in the top left corner of the tableau we would haveobtained an entry equal
to 18 instead of21.

The reduced costs on the basic columns{1, 2, 3, 6} would have been equal to0, by definition of canonical form.
The reduced cost of the non-basic variables must be computed. We know that in a canonical form,z′ = z′B + (c′N

T
−

c′B
T
B−1N)xN andIxB + B−1NxN = B−1b. By c′ we indicate the coefficents ofz′, which are opposite in sign to the

coefficients of the original objectivez. We can read the matrixB−1N from the current tableau, after reordering the rows
in order to obtain an identity matrix in the basic columns:

B−1N =









−1/2 3/2
1/2 −1/2
−3/2 7/2
3/2 −7/2









.

Sincec′B = [−c1 − 2 0 0]T andc′N = [0 0]T , we obtainz′(D) = z′B +(−1/2 c1+1)x4+(3/2 c1− 1)x5. Whenc1 = 1,
both reduced costs ofx4 andx5 are equal to1/2, and this is consistent with the tableau in vertexD we have obtained
with the simplex algorithm. Whenc1 = 2/3 the same formula gives us the reduced costs2/3 for x4 and0 (as expected)
for x5. So, pivoting on column5 does not change the value ofz′.

x1(2)

x2

(1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

(3)

(4)

(5)

(6)

X

A

B

C

D

E

F

z

Therefore forc1 = 2/3, the tableau in vertexD reads as follows:
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18 0 0 0 2/3 0 0
6 0 1 0 1/2 -1/2 0
9 1 0 0 -1/2 3/2 0
14 0 0 1 -3/2 7/2 0
6 0 0 0 3/2 -7/2 1

Now we can pivot on column5 to reach a new equivalent basic solution.
To pivot on column5 keeping the basis feasible, the pivot must be chosen according to the usual rules: there are two

candidate pivots on column5, one on row2 and the other on row3. The minimum ratio is14

7/2 , which is smaller than9

3/2 .
Therefore the pivot in on column5, row 3 (in bold). The variable leaving the basis is thusx3, which is basic on row3.
The starting tableau is on the left, the resulting tableau ison the right.

18 0 0 0 2/3 0 0
6 0 1 0 1/2 -1/2 0
9 1 0 0 -1/2 3/2 0
14 0 0 1 -3/2 7/2 0
6 0 0 0 3/2 -7/2 1

B = {1, 2, 3, 6} x = [9 6 14 0 0 6] z = 21

18 0 0 0 2/3 0 0
8 0 1 1/7 2/7 0 0
3 1 0 -3/7 1/7 0 0
4 0 0 2/7 -3/7 1 0
20 0 0 1 0 0 1

B = {1, 2, 5, 6} x = [3 8 0 0 4 20] z = 18

Now it is possible to repeat the sensitivity analysis onc1 around the new basic solution. Variablex1 is still basic on row
2. A lower bound for∆c1 is given by−2/3

1/7 , i.e. −14/3. For∆c1 = −14/3, we havec1 = 2/3 − 14/3 = −4, which
includes the required range1/2 ≤ c1 ≤ 3/2.

Therefore vertexC remains optimal for1/2 ≤ c1 ≤ 2/3 and this concludes the required parametric analysis onc1.
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Exercise 2.2: post-optimal analysis.

Given the following LP,

maximizez =2x1 + 3x2 + 4x3 + 5x4

s.t.x1 + x2 − x3 + x4 ≤ 10

x1 + 2x2 ≤ 8

x3 + x4 ≤ 20

x ≥ 0

and its optimal tableau (see exercise 1.2),

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2

assumingz is the profit of a manufacturing company andb is the amount of available resources, whose current price
is 1/2, 1 and2, answer these questions with post-optimal analysis.

1. An offer is issued by a provider for an additional amount ofthe third resource at a price equal to4. Is it profitable
to accept it? What amount of resource should be purchased?

2. Which of the three resources is subject to the largest increase in value due to its transformation in the manufacturing
plant?

3. What is the maximum amount of the first resource that could be profitably used, if available at negligible price?

4. Do the sensitivity analysis on all coefficients of the objective function and all right-hand-sides of the constraints.

Question 1.
All three constraints are active at optimality. In particular, the slack variablex7, corresponding to the third resource,

has reduced cost9/2; i.e. the shadow price of the third resource is9/2. Hence, although the price4 is definitely larger
than the price of the usual provision of resource (at a price1/2) it is still convenient to accept it, because its shadow price
is larger than its price. This remains true in the range in which the optimal basis does not change. Examining the optimal
tableau, and in particular column7, we see that the increase of its right hand side is not bounded. Therefore the shadow
price remains equal to9/2 for any additional quantity of resource. Hence it is always profitable to buy at price4 any
available amount of the resource.

Question 2.
The increase in value of the three resources can be immediately obtained by comparing the price at which they are

purchased and their shadow price, i.e,. their actual value for the company.

First resource:1/2−1/2
1/2 = 0%.

Second resource:3/2−1

1
= 50%.

Third resource:9/2−2

2
= 125%.

Question 3.
The answer is given by the value of the right hand side beyond which the resource becomes non-scarce and its

corresponding constraint becomes non-active. The first resource corresponds to the non-basic variablex5. From the
sensitivity analysis on column5, we see that

−11

1/2
≤ ∆b ≤

−9

−1/2

i.e.
−22 ≤ ∆b ≤ 18.

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2
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This guarantees that at least18 additional units of resource would be used, if available. Now we need to know whether
x5 would remain non-basic if∆b > 18; parametric analysis provides the answer. Pivoting on column5, row3, i.e. on the
element defining the allowable increase, we obtain the following tableau.

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2

B = {1, 3, 4} x = [8 0 9 11 0 0 0] z = 107

116 0 1 1 0 0 2 5
20 0 0 1 1 0 0 1
8 1 2 0 0 0 1 0

-18 0 -1 -2 0 1 -1 -1

B = {1, 4, 5} x = [8 0 0 20 − 18 0 0] z = 116

The solution is infeasible because we have pivoted on a negative coefficient, moving beyond constraint(5). Now we shift
the constraint, so that it passes through the current basic solution, by replacing the entry−18 in column0 with 0.

116 0 1 1 0 0 2 5
20 0 0 1 1 0 0 1
8 1 2 0 0 0 1 0
0 0 -1 -2 0 1 -1 -1

Now the current solution is degenerate. To go on, we have to makex5 non-basic again. However this is not possible,
because there are no available candidate pivots on row3. This means that beyond this value,x5 would remain basic: the
optimal solution is now determined by the other constraintsand it would not change even if constraint(5) were moved
further. Hence, it is not profitable to buy more than18 additional units of the first resource.

Question 4.
Sensitivity analysis on c1.

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2

Column1 is basic on row2.

max

{

−1/2

2
,
−3/2

1

}

≤ ∆c1 < ∞

−1/4 ≤ ∆c1 < ∞

Sensitivity analysis on c2.

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2

Column2 is non-basic. Then
∆c2 ≤ 1/2.

Sensitivity analysis on c3.

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2

Column3 is basic on row3.

max

{

−1/2

1/2
,
−1/2

1/2
,
−9/2

1/2

}

≤ ∆c1 ≤
−1/2

−1/2
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−1 ≤ ∆c3 ≤ 1

Sensitivity analysis on b1.

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2

Row1 corresponds to slack variablex4, which is non-basic.

−11

1/2
≤ ∆b1 ≤

−9

−1/2

−22 ≤ ∆b1 ≤ 18.

Sensitivity analysis on b2.

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2

Row2 corresponds to slack variablex5, which is non-basic.

max

{

−8

1
,
−9

1/2

}

≤ ∆b2 ≤
−11

−1/2

−8 ≤ ∆b2 ≤ 22.

Sensitivity analysis on b3.

107 0 1/2 0 0 1/2 3/2 9/2
11 0 -1/2 0 1 1/2 -1/2 1/2
8 1 2 0 0 0 1 0
9 0 1/2 1 0 -1/2 1/2 1/2

Row2 corresponds to slack variablex5, which is non-basic.

max

{

−11

1/2
,
−9

1/2

}

≤ ∆b3 < ∞

−18 ≤ ∆b3 < ∞.
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Exercise 2.3: duality.

Given the following LP,

maximizez =x2

s.t.x1 − 2x2 ≤ −2

− 2x1 + x2 ≤ −4

x1 + x2 ≤ 4

x ≥ 0

1. write its dual;

2. solve the dual with the simplex algorithm;

3. solve the primal geometrically.

Question 1.

maximizez =x2

s.t.x1 − 2x2 ≤ −2

− 2x1 + x2 ≤ −4

x1 + x2 ≤ 4

x ≥ 0

minimizew =− 2y3 − 4y4 + 4y5

s.t.y3 − 2y4 + y5 ≥ 0

− 2y3 + y4 + y5 ≥ 1

y ≥ 0

Question 2.
The initial basis is infeasible. We define an auxiliary problem, where the violated constraint temporarily plays the role

of the objective function.
0 0 0 -2 -4 4
0 1 0 -1 2 -1
-1 0 1 2 -1 -1

B = {1, 2} y = [0 −1 0 0 0] w = 0

-1 0 1 2 -1 -1
0 1 0 -1 2 -1
0 0 0 -2 -4 4

Iteration 1. We can pivot on column4 or column5. Selecting column4, the following pivot step is done.
-1 0 1 2 -1 -1
0 1 0 -1 2 -1
0 0 0 -2 -4 4

B = {1, 2} y = [0 −1 0 0 0] w = 0

-1 1/2 1 3/2 0 -3/2
0 1/2 0 -1/2 1 -1/2
0 2 0 -4 0 2

B = {2, 4} y = [0 −1 0 0 0] w = 0

The constraint is still violated.

Iteration 2. We can pivot on column5. Since there no positive candidate pivots on column5, the pivot must be
selected on the row of the violated constraint (the auxiliary problem is unbounded).

-1 1/2 1 3/2 0 -3/2
0 1/2 0 -1/2 1 -1/2
0 2 0 -4 0 2

B = {2, 4} y = [0 −1 0 0 0] w = 0

2/3 -1/3 -2/3 -1 0 1
1/3 1/3 -1/3 -1 1 0
-4/3 8/3 4/3 -2 0 0

B = {4, 5} y = [0 0 0 1/3 2/3] w = 4/3

Now the basis is feasible. The tableau of the original dual problem can be reconstructed.

-4/3 8/3 4/3 -2 0 0
1/3 1/3 -1/3 -1 1 0
2/3 -1/3 -2/3 -1 0 1

B = {4, 5} y = [0 0 0 1/3 2/3] w = 4/3

Column3 is made by negative entries: the dual problem is unbounded. Hence, the primal problem is infeasible.
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Question 3.
Since the primal problem has two variables, we can solve it bygeometrical means.

x1(2)

x2

(1)

0−2 2 4

−4

1

4

(3)

(4)

(5)

z

The feasible region is empty; the primal problem is infeasible.
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Exercise 2.4: duality.

Given the unbounded LP (see exercise 1.4),

maximizez =x1 + x2

s.t.x1 − x2 ≥ −2

− x1 + 2x2 ≥ −1

x ≥ 0

1. write its dual;

2. solve the dual with the simplex algorithm;

3. solve the dual geometrically.

Question 1.

maximizez =x1 + x2

s.t. − x1 + x2 ≤ 2

x1 − 2x2 ≤ 1

x ≥ 0

minimizew =2y3 + y4

s.t. − y3 + y4 ≥ 1

y3 − 2y4 ≥ 1

y ≥ 0

Question 2.
The initial basis is infeasible: both constraints are violated. We define an auxiliary problem, where constraint(1)

temporarily plays the role of the objective function.
0 0 0 2 1
-1 1 0 1 -1
-1 0 1 -1 2

B = {4, 5} y = [0 0 0 0 −1] w = 0

-1 1 0 1 -1
-1 0 1 -1 2
0 0 0 2 1

Iteration 1. We pivot on column4. The only available pivot is on the row of the violated constraint.
-1 1 0 1 -1
-1 0 1 -1 2
0 0 0 2 1

1 -1 0 -1 1
-3 2 1 1 0
-1 1 0 3 0

Feasibility with respect to constraint(1) has been repaired. We can now define a second auxiliary problem, using
constraint(2) as a temporary objective function.

-3 2 1 1 0
1 -1 0 -1 1
-1 1 0 3 0

The violated constraint cannot be repaired, since all entries on row0 are non-negative and the right-hand-side is negative.
Hence the dual problem is infeasible.
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Question 3.
Since the dual problem has two variables, we can solve it by geometrical means.

y3(4)

y4

(3)

0−2 2 4

−4

1

4

(1)

(2)

w

The feasible region is empty; the primal problem is infeasible.
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Exercise 2.5: duality.

Given the following LP,

maximizez = 2x1 + 6x2

s.t. − 5x1 + 2x2 ≤ 4

4x2 ≤ −3

x ≥ 0

solve it and its dual.

Solution.
Primal problem

maximizez = 2x1 + 6x2

s.t. − 5x1 + 2x2 ≤ 4

4x2 ≤ −3

x ≥ 0

Dual problem

minimizew = 4y3 − 3y4

s.t. − 5y3 ≥ 2

2y3 + 4y4 ≥ 6

y ≥ 0

The primal problem is infeasible, owing to the constraint4x2 ≤ −3.
The dual problem is infeasible too, owing to the constraint−5y3 ≥ 2.
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Exercise 2.6: complementary slackness.

Given the following LP (see exercise 1.6),

maximizez =x1 + 2x2

s.t.x2 ≤ 2x1 + 2

x2 ≤ x1 + 2

x2 ≤
1

2
x1 + 2

x1 ≤ 4

x ≥ 0

1. write its dual;

2. solve the dual with the dual simplex algorithm;

3. obtain the optimal solution of the dual from the optimal solution of the primal computed in exercise 1.6.

Question 1.
Primal problem

maximizez =x1 + 2x2

s.t.x2 ≤ 2x1 + 2

x2 ≤ x1 + 2

x2 ≤
1

2
x1 + 2

x1 ≤ 4

x ≥ 0

Dual problem

minimizew =2y3 + 2y4 + 4y5 + 4y6

s.t. − 2y3 − y4 − y5 + y6 ≥ 1

y3 + y4 + 2y5 ≥ 2

y ≥ 0

Question 2.
In the dual tableau, feasibility conditions are violated (two constraints have negative right-hand-side), but optimal-

ity conditions are satisfied (all reduced costs are non-negative). Therefore, instead of having recourse to the initialization
phase of the simplex algorithm to achieve feasibility, it ispossible to start the dual simplex algorithm, with no initialization.

Iteration 1. We select the row corresponding to the lasgest violation of aconstraint, i.e. row2. There are three possible
equivalent choices for the pivot column. As a tie-break rule, we choose the column with smallest index. Therefore we
pivot on column3.

0 0 0 2 2 4 4
-1 1 0 2 1 1 -1
-2 0 1 -1 -1 -2 0

B = {1, 2}
y = [−1 − 2 0 0 0 0]
w = 0

-4 0 2 0 0 0 4
-5 1 2 0 -1 -3 -1
2 0 -1 1 1 2 0

B = {1, 3}
y = [−5 0 2 0 0 0]
w = 4

Iteration 2. We observe that two reduced costs on columns4 and5 are null, even if the columns are non-basic. We
pivot on row1 and as a tie-break rule between column4 and5 we select the one with smallest index.

-4 0 2 0 0 0 4
-5 1 2 0 -1 -3 -1
2 0 -1 1 1 2 0

B = {1, 3}
y = [−5 0 2 0 0 0]
w = 4

-4 0 2 0 0 0 4
5 -1 -2 0 1 3 1
-3 1 1 1 0 -1 -1

B = {3, 4}
y = [0 0 − 3 5 0 0]
w = 4

In this iteration the basic solution has changed but the value of the objective function has not. Where the primal
problem is degenerate, its dual has multiple equivalent solutions.

Iteration 3.
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-4 0 2 0 0 0 4
5 -1 -2 0 1 3 1
-3 1 1 1 0 -1 -1

B = {3, 4}
y = [0 0 − 3 5 0 0]
w = 4

-4 0 2 0 0 0 4
-4 2 1 3 1 0 -2
3 -1 -1 -1 0 1 1

B = {4, 5}
y = [0 0 0 − 4 3 0]
w = 4

Again, a different basic solution but with the same objective value.
Iteration 4.

-4 0 2 0 0 0 4
-4 2 1 3 1 0 -2
3 -1 -1 -1 0 1 1

B = {4, 5}
y = [0 0 0 − 4 3 0]
w = 4

-12 4 4 6 2 0 0
2 -1 -1/2 -3/2 -1/2 0 1
1 0 -1/2 1/2 1/2 1 0

B = {5, 6}
y = [0 0 0 0 1 2]
w = 12

The solution is now feasible and optimal.

Question 3.
The optimal solution of the primal problem (see exercise 1.6) is

B = {1, 2, 3, 4} x = [4 4 6 2 0 0] z = 12

By the complementary slackness theorem, we know that optimality implies

y1 = y2 = y3 = y4 = 0.

Hence the dual problem reduces to

w =4y5 + 4y6

s.t. − y5 + y6 = 1

2y5 = 2

Solving this linear system of two equations with two variables, we obtainy5 = 1, y6 = 2 andw = 12.
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Exercise 8: dual simplex algorithm.

Solve the following LP with the dual simplex algorithm and verify the optimal solution geometrically.

minimizez =8x1 + 10x2 + 24x3

s.t. − x1 + x2 + 3x3 ≥ 1

2x1 + x2 + x3 ≥ 2

x ≥ 0

Question 1.
Iteration 1.

0 8 10 24 0 0
-1 1 -1 -3 1 0
-2 -2 -1 -1 0 1

B = {4, 5}
x = [0 0 0 − 1 − 2]
z = 0

-8 0 6 20 0 4
-2 0 -3/2 -7/2 1 1/2
1 1 1/2 1/2 0 -1/2

B = {1, 4}
x = [1 0 0 − 2 0]
z = 8

Iteration 2.

-8 0 6 20 0 4
-2 0 -3/2 -7/2 1 1/2
1 1 1/2 1/2 0 -1/2

B = {1, 4}
x = [1 0 0 − 2 0]
z = 8

-16 0 0 6 -4 6
4/3 0 1 7/3 -2/3 -1/3
1/3 1 0 -2/3 1/3 -1/3

B = {1, 2}
x = [1/3 4/3 0 0 0]
z = 16

Question 2.
The dual problem is as follows.

Primal problem

minimizez =8x1 + 10x2 + 24x3

s.t. − x1 + x2 + 3x3 ≥ 1

2x1 + x2 + x3 ≥ 2

x ≥ 0

Dual problem

minimizew =y4 + 2y5

s.t. − y4 + 2y5 ≤ 8

y4 + y5 ≤ 10

3y4 + y5 ≤ 24

y ≥ 0

Since the dual problem has only two variables, we can solve itgeometrically. The geometrical representation of the dual
problem is the following.
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