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Exercise 2.1: post-optimal analysis.

Given the following LP,

maximizez =z + 2x2
St.axy <21+ 2

T + 3z < 27
T1+ 22 <15
201 < a9+ 18
x>0
and its optimal tableau (see Exercise 1.1)
21/]0 0 0 1/2 12 0
14|10 0 1 -3/2 7/12 0
6 |0 0 0 32 -72 1
6 |0 1 0 12 -12 0O
91 0 0 -1/2 32 0O

1. discuss the robustness of the optimal solution with retjpevariations of the marginal revenues, interpretiras
a profit;

2. which resources can be scarcejittan vary betweet/2 and3/2?

Question 1: sensitivity analysis.
The optimal tableau corresponds to the optimal bd@kis= {1,2,3,6} and to the optimal basic solutiar* =
[96 1400 6] with z* = 21.

Variations of ¢; . Examining the tableau at optimality,

21 | 0O 0 0 1/2 1/2 O
6|0 1 0 12 -1/2 0
9/1 0 O -1/2 3/2 0
1410 0 1 -3/2 7/2 0
6 |0 0 0 32 -772 1
sincez; is basic on row2, we have
-1 —
i < Acy < 1_/2
3/2 -1/2
that is )
—- <A <1
3
which means 9
s <c <2
3
Variations of ¢co. Examining the tableau at optimality,
21 | 0O 0 0 1/2 1/2 0O
6|0 1 0 12 -1/2 0
9(1 0 0 -1/2 32 0
1410 0 1 -3/2 7/2 0
6 |0 0 0 32 -772 1
sincezy is basic on row, we have
-1 —
J < Acy < 1_/2
1/2 —1/2
that is
-1 S ACQ S 1
which means
1 S Co <3



Question 2: parametric analysis.

At optimality (vertexD in the figure), the resources corresponding:faandz; are scarce, since the corresponding
constraints are active and andzs; are non-basic. However, sensitivity analysis revealsiiatemains optimal only for
% < ¢; < 2. So, we have no information about scarce resources Wher; < % For this purpose we need parametric
analysis ore;.

We already know from sensitivity analysis that the ratiat thaunds the allowable decreasem®fis %/22 which is
found on columrs. In other words:s becomes basic when decreases by more thaji3. Whenc, decreases by/3, the
indifference lines of the objective function become palath constrain{4) and we have two equivalent optimal solutions
(verticesC andD in the figure). This corresponds to the occurrence of a zehoosd cost in the tableau.

We need to perform a pivot step so that coluiieaves the basis, in order to explore what happens;for 2/3.
Therefore, we need to reconstruct the tableau that would begn obtained in verté with ¢; = 2/3 instead of; = 1.
The only difference would have been in rowbecause the entries in the other rows of the tableau do peindeon the
coefficientsc.

First of all, we have to remember that in standard form we patdbjective funnction in minimization form. So,
we are minimizingz’ = —cjz1 — 2z2. we can easily compute the value gfin vertex D whene; = 2/3. We have
xp =[9614006]. Hencez' (D) = —9¢; — 12; Forey = 1, 2/(D) = —21 and this is consistent with the result already
found. fore; = 2/3, 2/(D) = —18. Therefore in the top left corner of the tableau we would havained an entry equal
to 18 instead oR1.

The reduced costs on the basic colunihs2, 3, 6} would have been equal f by definition of canonical form.

The reduced cost of the non-basic variables must be compikeénow that in a canonical form, = 2z, + (¢jy" —
¢y"B7IN)zy andIzp + B-'Nzy = B~'b. By ¢’ we indicate the coefficents of, which are opposite in sign to the
coefficients of the original objective We can read the matri® —' N from the current tableau, after reordering the rows
in order to obtain an identity matrix in the basic columns:

—-1/2  3/2
. /2 —1/2
BUN=1 35 72
3/2  —7/2

Sincecy = [—c1 —200]T andeyy = [00]T, we obtainz’ (D) = 25+ (—=1/2 ¢1 +1)x4 + (3/2 ¢; — 1)x5. Wheney = 1,
both reduced costs af, andxz; are equal tal /2, and this is consistent with the tableau in verf2xwe have obtained
with the simplex algorithm. Whea, = 2/3 the same formula gives us the reduced c@gtsfor =, and0 (as expected)
for z5. So, pivoting on columi does not change the value gf

2

4 » T1
0 1 2 3 4 5 6 7 8 /<<K9 10 11 12 13 14 1’& 16

Therefore fore; = 2/3, the tableau in verte® reads as follows:



18/0 0 0 23 0 0O
60 1 0 12 1120
91 0 0 -1/2 32 0
1400 0 1 -32 72 0
60 0 0 32 -7/2 1

Now we can pivot on columa to reach a new equivalent basic solution.

To pivot on columrb keeping the basis feasible, the pivot must be chosen acgptdithe usual rules: there are two
candidate pivots on colun one on ron2 and the other on row. The minimum ratio is}—‘*, which is smaller tha@%.
Therefore the pivot in on colum®, row 3 (in bold). The variable leaving the basis is t(m;s which is basic on rovs.
The starting tableau is on the left, the resulting tableaunithe right.

18]0 0 0 23 0 0 18]0 0 0 23 0 0
6|0 1 0 12 -12 0 80 1 17 2i7 0 0
9|1 0 0 -1/2 32 0 31 0 37 17 0 0
140 0 1 -32 72 0 410 0 2/7 37 1 0
60 0 0 32 -72 1 2000 0 1 0 0 1
B={1,2,3,6} =[9614006] z=21 B={1,2,56} z=[3800420] z=18

Now it is possible to repeat the sensitivity analysiscpraround the new basic solution. Variahleis still basic on row
2. Alower bound forAc; is given by%/?g, i.e. —14/3. ForAc; = —14/3, we haver; = 2/3 — 14/3 = —4, which
includes the required rande2 < ¢; < 3/2.

Therefore vertexC remains optimal fot /2 < ¢; < 2/3 and this concludes the required parametric analysis on



Exercise 2.2: post-optimal analysis.

Given the following LP,

maximizez =2x1 + 3xo + 4x3 + Sy
Stori4+x—23+24 <10

r1 + 220 <8

x3 + x4 <20

z>0

and its optimal tableau (see exercise 1.2),

107|0 12 0 0 1/2 32 9
11 (0 -1/2 0 1 12 -12 1/2
8 |1 2 0 0 O 1 0
9 |0 12 1 0 -12 1/2 1/2

assuming: is the profit of a manufacturing company ai the amount of available resources, whose current price
is 1/2, 1 and2, answer these questions with post-optimal analysis.

1. An offer is issued by a provider for an additional amounthef third resource at a price equaktols it profitable
to accept it? What amount of resource should be purchased?

2. Which of the three resources is subject to the largestase in value due to its transformation in the manufacturing
plant?

3. What is the maximum amount of the first resource that coelgrbfitably used, if available at negligible price?

4. Do the sensitivity analysis on all coefficients of the alijee function and all right-hand-sides of the constraints

Question 1.

All three constraints are active at optimality. In partewlthe slack variable, corresponding to the third resource,
has reduced co$t/2; i.e. the shadow price of the third resourcé®j®. Hence, although the prickis definitely larger
than the price of the usual provision of resource (at a pri@ it is still convenient to accept it, because its shadowepric
is larger than its price. This remains true in the range incWlithe optimal basis does not change. Examining the optimal
tableau, and in particular coluni) we see that the increase of its right hand side is not bountleerefore the shadow
price remains equal t6/2 for any additional quantity of resource. Hence it is alwaysfipable to buy at pricel any
available amount of the resource.

Question 2.
The increase in value of the three resources can be immbdidtmined by comparing the price at which they are
purchased and their shadow price, i.e,. their actual valuth& company.

First resource% = 0%.
Second resource’2=L = 50%.
Third resource22=2 = 125%.

Question 3.

The answer is given by the value of the right hand side beyohidtwthe resource becomes non-scarce and its
corresponding constraint becomes non-active. The firstures corresponds to the non-basic varialbje From the
sensitivity analysis on colunf we see that

—11 -9

< < 7

1/2 SAbs —1/2

i.e.

—22 < Ab < 18.
107| 0O 12 0 0 12 3/2 9/2
11 (0 -1/2 0 1 1/2 -1/2 1/2
8 |1 2 0 0 o0 1 0
9 (0 12 1 0 -1/2 1/2 1/2



This guarantees that at ledstadditional units of resource would be used, if availablewNee need to know whether
x5 would remain non-basic i\b > 18; parametric analysis provides the answer. Pivoting onmalg, row 3, i.e. on the
element defining the allowable increase, we obtain theviafig tableau.

107|0 12 0 0 12 32 9 116/0 1 1 0 0 2 5
11 |0 -1/2 0 1 12 -12 112 200 0 1 1 0 0 1
8|1 2 00 0 1 0 8|1 2 000 1 0
9 [0 12 1 0 -12 12 112 180 -1 -2 0 1 -1 -1
B={1,3,4} 2=[80911000] z=107 B={1,4,5} +=[80020 —1800] z =116

The solution is infeasible because we have pivoted on a wegatefficient, moving beyond constraif). Now we shift
the constraint, so that it passes through the current bakitian, by replacing the entry 18 in column0 with 0.

116]0 1 1 0 0 2 5
20/0 0 1 1 0 0 1
8|1 2 000 1 0
00 -1 20 1 -1 -1

Now the current solution is degenerate. To go on, we have t@®@manon-basic again. However this is not possible,
because there are no available candidate pivots or8rdvhis means that beyond this valug, would remain basic: the
optimal solution is now determined by the other constraémig it would not change even if constrai) were moved
further. Hence, it is not profitable to buy more thighadditional units of the first resource.

Question 4.
Sensitivity analysison ¢;.
107]0 12 0 0 12 32 92
11|10 -1/2 0 1 12 -1/2 1/2
8 |1 2 0 0 O 1 0
9 |0 12 1 0 -1/2 12 1/2

Column1 is basic on row2.

max{lT/Q,gTﬂ} < Acy <

—1/4 < Acy < ©

Sensitivity analysison cs.
107|0 12 0 0 1/2 32 92
11 (0 -1/2 0 1 1/2 -1/2 1/2
8 |1 2 0 0 O 1 0
9 |0 12 1 0 -1/2 1/2 1/2

Column2 is non-basic. Then
ACQ S 1/2

Sensitivity analysison cs.
107|0 12 0 O 3/2  9/2
112 |0 -1/2 0 1 1/2 -1/2 1/2
8 |1 2 0 0 O 1 0
9 |0 12 1 O 1/2  1/2

Column3 is basic on rows.

“1/2 —1/2 —9/2
max{ 12 1/2 °1)2 }SAcl =

6



71§A63§1

Sensitivity analysison b;.
107 | 0O 12 0 0 12 3/2 9/2
11 (0 -1/2 0 1 1/2 -1/2 1/2
8 |1 2 0 0 O 1 0
0O 12 1 0 172 1/2
Row 1 corresponds to slack variabig, which is non-basic.
—11
— < Ay <
12 = brs
—22 < Ab; < 18.
Sensitivity analysison bs.
107 | 0O 12 0 0 12 3/2 9/2
0O -1/2 0 1 1/2 1/2
8 |1 2 0 0 O 1 0
9 (0 12 1 0 -1/2 1/2 1/2

Row 2 corresponds to slack variablg, which is non-basic.

max{S 9} < Aby <

112
—8 < Aby < 22.
Sensitivity analysison bs.
107 | 0O 12 0 0 12 3/2 9/2
11 (0 -1/2 0 1 1/2 -1/2 1/2
8 |1 2 0 0 oO 1 0
9 (0 12 1 0 -1/2 1/2 1/2

Row 2 corresponds to slack variablg, which is non-basic.

—-11 -9
—,— < AD
n1ax{1/2,1/2}_ 3 < 00

—18 < Ab3 < o0.



Exercise 2.3: duality.

Given the following LP,

maximizez =z,
Stxy — 21, < =2
— 2$1 —+ X9 S —4

xr1 + o S 4
x>0
1. write its dual;
2. solve the dual with the simplex algorithm;
3. solve the primal geometrically.
Question 1.
maximizez =xzo minimizew = — 2ys — 4y4 + 4ys
stz — 225 < -2 Stys—2ys+ys >0
—2r1 + 22 < —4 —2ystystys =1
Ty +x2 <4 y>0
x>0
Question 2.

The initial basis is infeasible. We define an auxiliary pesh| where the violated constraint temporarily plays the rol
of the objective function.

0|0 0 -2 -4 4 -1]0 1 2 -1 -1
01 0 -1 2 -1 0]1 0 -1 2 -1
-1]0 1 2 -1 -1 0|0 0 -2 4 4

B={1,2} y=[0-1000] w=0

Iteration 1. We can pivot on colum# or column5. Selecting columnd, the following pivot step is done.

10 12 1 04 1|12 1 32 0 -312

01 0 1 2 1 0|12 0 -12 1 -1I2

0/0 0 2 -4 4 0] 2 0 -4 0 2
B={1,2} y=[0-1000] w=0 B={2,4} y=[0-1000] w=0

The constraint is still violated.

Iteration 2. We can pivot on columis. Since there no positive candidate pivots on colunthe pivot must be
selected on the row of the violated constraint (the auxil@oblem is unbounded).

412 1 32 0 -32 213 |-13 -2/3 -1 0 1

012 0 -12 1 -12 73| 13 13 -1 1 0

0] 2 0 -4 0 2 431813 43 -2 0 0
B={2,4} y=[0-1000] w=0 B={4,5} y=1[0001/32/3] w=4/3

Now the basis is feasible. The tableau of the original dualblgm can be reconstructed.

43| 83 43 2 0 0
13 [ 13 -1/3 -1 1 0 B={4,5} y=[0001/32/3] w=4/3
23 |-13 213 -1 0 1

Column3 is made by negative entries: the dual problem is unboundedcé] the primal problem is infeasible.



Question 3.
Since the primal problem has two variables, we can solve gdgmetrical means.

The feasible region is empty; the primal problem is infelesib



Exercise 2.4: duality.

Given the unbounded LP (see exercise 1.4),

maximizez =z + o
Sty —x0 > =2
— 21+ 229 > —1
x>0

1. write its dual;
2. solve the dual with the simplex algorithm;

3. solve the dual geometrically.

Question 1.
maximizez =z + xo minimizew =2y3 + y4
St —z1 429 <2 st. —ys+ys >1
T1— 2722 <1 ys —2ys 2 1
x>0 y=>0
Question 2.

The initial basis is infeasible: both constraints are wieda We define an auxiliary problem, where constraint
temporarily plays the role of the objective function.

0/0 0 2 1 1)1 0 1 -1
111 0 1 -1 1]/0 1 1 2
10 1 -1 2 0]0 0 2 1

B={4,5} y=1[0000-1] w=0

Iteration 1. We pivot on columnt. The only available pivot is on the row of the violated coasitt.

-:1(1 0 1 -1 1,1 0 -1 1
-:11]0 1 -1 2 312 1 1 0
0|0 0 2 1 -111 0 3 O

Feasibility with respect to constraifit) has been repaired. We can now define a second auxiliary pnobising
constraint(2) as a temporary objective function.

3/]2 1 1 O
1/-1 0 -1 1
-111 0 3 O

The violated constraint cannot be repaired, since allentn row0 are non-negative and the right-hand-side is negative.
Hence the dual problem is infeasible.

10



Question 3.
Since the dual problem has two variables, we can solve it byngérical means.

The feasible region is empty; the primal problem is infelesib

11



Exercise 2.5: duality.

Given the following LP,

maximizez = 2z + 69
St. — bz + 220 <4

4$2 S *3
x>0
solve it and its dual.
Solution.
Primal problem Dual problem
maximizez = 2z + 625 minimizew = 4ys — 3ya
S.t. — bz + 219 <4 s.t. —5y3 >2
dze < =3 2y3 +4ys > 6
x>0 y>0

The primal problem is infeasible, owing to the constraint < —3.
The dual problem is infeasible too, owing to the constraibys > 2.

12



Exercise 2.6: complementary slackness.

Given the following LP (see exercise 1.6),

maximizez =x1 + 2z,
S.tt.axg <21 + 2
i) S xr1 + 2

1
w2§§x1+2

$1§4
x>0

1. write its dual;

2. solve the dual with the dual simplex algorithm;

3. obtain the optimal solution of the dual from the optimdusion of the primal computed in exercise 1.6.

Question 1.
Primal problem Dual problem
maximizez =z + 2z5 minimizew =2y3 + 2y + 4ys + 4ys
Staxs <221 +2 St. —2ys —ys —ys +ys > 1
x2 < w1 + 2 ys +ys+2ys > 2
1 >

x2 < 571 +2 y=0

T S 4

x>0
Question 2.

In the dual tableau, feasibility conditions are violatesiqtconstraints have negative right-hand-side), but optima
ity conditions are satisfied (all reduced costs are nonthegaTherefore, instead of having recourse to the iniétlion
phase of the simplex algorithm to achieve feasibility, figssible to start the dual simplex algorithm, with no iriziation.

Iteration 1. We select the row corresponding to the lasgest violationcofetraint, i.e. rov2. There are three possible
equivalent choices for the pivot column. As a tie-break rule choose the column with smallest index. Therefore we
pivot on column3.

0]0 0 2 2 4 4 -4/0 2 0 0 0 4
111 0 2 1 1 -1 511 2 0 -1 -3 -1
210 1 -1 1 -2 O 2|10 -1 1.1 2 O

B=1{1,2} B =1{1,3}

y=[-1-20000] y=[-502000]

w=20 w=4

Iteration 2. We observe that two reduced costs on columasd5 are null, even if the columns are non-basic. We
pivot on row1 and as a tie-break rule between colufnand5 we select the one with smallest index.

-4|0 2 0 0 0 4 -4|0 2 0 0 0 4
511 2 0 -1 -3 -1 5(-1 -2 0 1 3 1
210 -1 1 1 2 O 31 1 1 0 -1 -1

B =1{1,3} B ={3,4}

y=[-502000] y=1[00 —3500]

w=4 w=4

In this iteration the basic solution has changed but theevaluthe objective function has not. Where the primal
problem is degenerate, its dual has multiple equivalenitisois.
Iteration 3.

13



_4|020004 —4|020004
511 -2 0 1 3 1 412 1 3 1 0 -2
-3/1 1 1 0 -1 -1 3/1-1 -1 -1 0 1 1
B = {3,4} B ={4,5}
y=1[00—-3500] y=1[000 —430]
w =4 w=4
Again, a different basic solution but with the same objextmlue.
Iteration 4.
-4 | 0O 2 0 0O 0 4 -12 | 4 4 6 2 0 0
412 1 3 1 0 -2 2 |-1 -1/2 -3/2 -1/2 0 1
3/]-1 1 -1 0 1 1 1 0O -1/2 1/2 1/2 1 0
B ={4,5} B = {5,6}
y=1[000 —430] y=1[000012]
w =4 w=12

The solution is now feasible and optimal.

Question 3.
The optimal solution of the primal problem (see exercis¢ it.6

B=1{1,2,3,4} x=[446200] z=12
By the complementary slackness theorem, we know that ofitynraplies

Y1 =Y2=ys=ys =0.

Hence the dual problem reduces to

w =4ys + 4ys
St. —ys+ys =1
2y5 =2

Solving this linear system of two equations with two varelwe obtainy; = 1, yg = 2 andw = 12.

14



Exercise 8: dual simplex algorithm.

Solve the following LP with the dual simplex algorithm andifethe optimal solution geometrically.

minimizez =8z + 10z + 2423

Question 1.
Iteration 1.
0 | 8 10 24 0 O
171 -1 -3 1 0
21-2 -1 -1 0 1
B ={4,5}
=000 -1 —2]
z=0
Iteration 2.
-8|0 6 20 0 4
2|10 -3/2 -72 1 1/2
11 12 1/2 0 -1/2
B=1{1,4}
r=1[100 —20]
z2 =28
Question 2.

The dual problem is as follows.

Primal problem

minimize z =8x1 + 10x5 + 24x3
st. —z1+20+323>1
2r1+ 2o+ 23 > 2
x>0

Since the dual problem has only two variables, we can solgedtetrically. The geometrical representation of the dual

problem is the following.

st.—x1+a94+3x3>1
2$1+$2+$322

x>0

-8/0 6 20 0 4
210 -3/2 -7/2 1 1/2
11 12 1/2 0 -1/2

B ={1,4}

x=[100 —20]

z2=28
-16|O 0 6 -4 6
4310 1 7/3 -2/3 -1/3
/3|11 0 -2/3 1/3 -1/3

B =1{1,2}

x=1[1/34/3000]

z =16

Dual problem

minimizew =y4 + 2ys
St —ys+2y; <8
ya+ys <10
3ys +ys <24
y=>0
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