Computing Point-to-Point Shortest
Paths from External Memory

Andrew V. Goldberg (Microsoft Research)
Renato F. Werneck (Princeton University)



Shortest Paths

e Point-to-point shortest path problem (P2P):
— Given:

+ directed graph with nonnegative arc lengths £(v, w);
* source vertex s.
* target vertex t

— Goal: find shortest path from s to t.

e Our study:

— data is preprocessed to avoid looking at the whole graph:

x #£vertices visited by the algorithm;
#vertices on the shortest path

x efficiency: :
y #vertices scanned

— road networks:

— target architecture: Pocket PC (works on PCs also).



Target Architecture

e Pocket PC:
— Windows Mobile 2003
— 400 MHz ARM processor
— 128 MB of RAM

— data read from external memory:
+ Compact Flash (4 GB, FAT32).

e Flash is bottleneck:
— minimum block size: 512 bytes;

— throughput: ~200 KB/sec for random accesses.



Data

e North America: 30M vertices.

e Five partial graphs with 330K to 1M vertices:
— San Francisco Bay Area
— Los Angeles
— St Louis
— Dallas

— Washington State and vicinity

e Data does not fit in RAM.



Example Graph

Washington Area
1M vertices
2.3M arcs



Dijkstra’s Algorithm
e Vertices processed in increasing order of distance:

— Maintains a distance label d(v) for each vertex:

% upper bound on dist(s, v);
* initially, d(v) = oo for all vertices, except d(s) = 0.

— Select unscanned vertex with smallest d(-).
— Scan it, updating estimates for neighbors.

— Stop when target is selected.

— [Dijkstra's9, Dantzig'63].

e Intuition:
— grows a ball around s;

— radius is dist(s, t).



Dijkstra’s Algorithm




Bidirectional Dijkstra’s Algorithm
Perform a forward search from s, as before.

Also perform a reverse search from t:

— similar, but on the reverse graph.
Stop when the two searches meet.

Intuition: grows one ball from each side.



Bidirectional Dijkstra’s Algorithm




A* Search

Similar to Dijkstra’s algorithm:
— Uses potentials 7w(v), estimates on dist(v, t).

— Vertices scanned in increasing order of k(v) = d(v) + w(v).

* k(v): estimate on length of shortest s-t path through v.
Equivalent do Dijkstra’s algorithm on graph with modified weights:
- gﬂ'(”? w) — K(U, w) o 7'('(1)) + 7T(rw)

— {.(v,w): reduced cost of arc (v, w).

A* is optimal if £, (v,w) > 0 (7 feasible).

If 7(¢) = 0 and 7 feasible, w(v) is a lower bound on dist(v, ).

10



Bidirectional A*

e Two searches, as in bidirectional Dijkstra’s algorithm.

e Uses two potential functions:
— ms(v): estimate on dist(v, ), for forward search.

— 7-(v): estimate on dist(s, v), for reverse search.

e The pair must be consistent:
— An arc must have the same reduced cost in both searches.
— Not true for arbitrary feasible functions.
— True for their average [lkeda et al. 94]:
x pr(v) = 5(mp(v) — 70 (v))
x pp(v) = 5(mr(v) — mp(v)) = —py(0)

— In general, p provides worse bounds than 7.

11



Lower Bounds

e Preprocessing:
— Select a constant number of landmarks:

— For each landmark, precompute distance to and from every vertex.

e Lower bounds use the triangle inequality:

dist(v, w) > dist(A, w) — dist(A4, v)

A dist(v, w) > dist(v, A) — dist(w, A)

dist(v,w) > max{dist(A4, w) — dist(A4, v), dist(v, A) — dist(w, A)}
e A good landmark appears “before” v or “after” w.

e More than one landmark: pick maximum.

12



ALT Algorithm

e ALT = A* search 4+ Landmarks + Triangle inequality.
e Goldberg and Harrelson (SODA'05).

13



ALT Algorithm

14



Dealing with External Memory

e Immutable data (read-only):
— forward and reverse graphs (adjacency lists and arc lengths);

— distances to and from each landmark.

e Mutable data (changes during the algorithm):
— distance labels:
— parent pointers;

— heap position.
e Immutable data in external memory, mutable data in RAM:

— only visited vertices in RAM (“mutable nodes”);

— hash table keeps track of them.

15



Dealing with External Memory

e Caching:
— Landmark files and graphs are cached.

— Data read in pages:

* good locality (neighbors have similar IDs).

e Compression:

— Landmark data compressed by almost 50%:

x faster reading;
* more landmarks fit in flash.

16



Important Goals

e Make the search as efficient as possible:
— limit number of mutable nodes in RAM:;

— read as little as possible from external memory.

e \We propose improvements to the ALT algorithm.

17



Landmarks

e Landmark selection occurs in two levels:
— During preprocessing (PC), pick some vertices to be landmarks;

— During the actual search (Pocket PC), pick a small subset to be active:

* less data to read;
« bad landmarks are not helpful anyway.

18



Landmark Selection During Preprocessing

e Ultimate goal:
— For every pair s-t, there should be a landmark “behind” it.

— Graphs are big, cannot evaluate this exactly: use heuristics.
+« All methods are O(n).

e Two new methods:
— avoid: adds landmarks “behind” regions not currently covered;

— maxcover: avoid + local search:

* tries to minimize the number of arcs with zero reduced cost.

e Improvements with maxcover (over best method in [GHO5]):
— Partial graphs: ~25% fewer nodes visited;

— North America: ~50% fewer nodes visited.

19



Active Landmarks

e Goldberg and Harrelson [GHO5] propose static selection:
— pick the landmarks that give the best bound on dist(s, t);

— use them during the whole search.

e We propose dynamic selection:
— start with two landmarks (the best for each search);
— periodically check if a new landmark will help;

— new landmarks change the potential function:

x Wwe propose a new stopping criterion to handle this.
e Dynamic selection is better:
— On average, picks only ~3 landmarks;

— Visits fewer nodes than with any fixed number of static landmarks.

20



Pocket PC Runs

e 100 random pairs, 23 maxcover landmarks.

Measure Partial graphs North America
Nodes visited (avg) ~1% ~1%
Nodes visited (max) ~10% ~10%
Average efficiency 29%—-45% 15%
Average time 5-10 seconds 6 minutes
Data read 500-700 KB 22 MB

e Our improvements did help:

— original implementation had efficiency < 10% for partial graphs.

e Current bottleneck: reading the data.

— Preloading makes the algorithm 13 times faster on Bay Area.

21



Pocket PC Runs

e BFS distribution:

— vertices are 50 hops away from each other in this distribution;

— simulates “local” queries, typical in practice.

e Results for 100 pairs using 23 maxcover landmarks:

Nodes visited (avg) 300-700
Nodes visited (max) | 1000-4000

Average efficiency 26%—43%
Average time 1-2 seconds
Data read 50-100 KB

e Graph size is not an important factor.

22



Final Thoughts

e Our contributions:
— improved landmark selection (avoid, maxcover);
— dynamic selection of active landmarks;
— new stopping criterion;

— external memory implementation.

e Future work:
— direct access to flash:
— even better landmark selection;
— reusing active nodes;
— proper in-memory implementation;

— theoretical justification.

23



Thank You

24



