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Shortest Paths

• Point-to-point shortest path problem (P2P):

– Given:

∗ directed graph with nonnegative arc lengths `(v, w);

∗ source vertex s.

∗ target vertex t

– Goal: find shortest path from s to t.

• Our study:

– data is preprocessed to avoid looking at the whole graph:

∗ #vertices visited by the algorithm;

∗ efficiency:
#vertices on the shortest path

#vertices scanned

– road networks;

– target architecture: Pocket PC (works on PCs also).
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Target Architecture

• Pocket PC:

– Windows Mobile 2003

– 400 MHz ARM processor

– 128 MB of RAM

– data read from external memory:

∗ Compact Flash (4 GB, FAT32).

• Flash is bottleneck:

– minimum block size: 512 bytes;

– throughput: ∼200 KB/sec for random accesses.
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Data

• North America: 30M vertices.

• Five partial graphs with 330K to 1M vertices:

– San Francisco Bay Area

– Los Angeles

– St Louis

– Dallas

– Washington State and vicinity

• Data does not fit in RAM.
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Example Graph

Washington Area

1M vertices

2.3M arcs
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Dijkstra’s Algorithm

• Vertices processed in increasing order of distance:

– Maintains a distance label d(v) for each vertex:

∗ upper bound on dist(s, v);

∗ initially, d(v) = ∞ for all vertices, except d(s) = 0.

– Select unscanned vertex with smallest d(·).

– Scan it, updating estimates for neighbors.

– Stop when target is selected.

– [Dijkstra’59, Dantzig’63].

• Intuition:

– grows a ball around s;

– radius is dist(s, t).
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Dijkstra’s Algorithm
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Bidirectional Dijkstra’s Algorithm

• Perform a forward search from s, as before.

• Also perform a reverse search from t:

– similar, but on the reverse graph.

• Stop when the two searches meet.

• Intuition: grows one ball from each side.
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Bidirectional Dijkstra’s Algorithm
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A∗ Search

• Similar to Dijkstra’s algorithm:

– Uses potentials π(v), estimates on dist(v, t).

– Vertices scanned in increasing order of k(v) = d(v) + π(v).

∗ k(v): estimate on length of shortest s-t path through v.

• Equivalent do Dijkstra’s algorithm on graph with modified weights:

– `π(v, w) = `(v, w) − π(v) + π(w)

– `π(v, w): reduced cost of arc (v, w).

• A∗ is optimal if `π(v, w) ≥ 0 (π feasible).

• If π(t) = 0 and π feasible, π(v) is a lower bound on dist(v, t).
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Bidirectional A∗

• Two searches, as in bidirectional Dijkstra’s algorithm.

• Uses two potential functions:

– πf (v): estimate on dist(v, t), for forward search.

– πr(v): estimate on dist(s, v), for reverse search.

• The pair must be consistent:

– An arc must have the same reduced cost in both searches.

– Not true for arbitrary feasible functions.

– True for their average [Ikeda et al. 94]:

∗ pf (v) = 1

2
(πf (v) − πr(v))

∗ pr(v) = 1

2
(πr(v) − πf (v)) = −pf (v)

– In general, p provides worse bounds than π.
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Lower Bounds

• Preprocessing:

– Select a constant number of landmarks;

– For each landmark, precompute distance to and from every vertex.

•

wv

A

wv

A

Lower bounds use the triangle inequality :

dist(v, w) ≥ dist(A, w) − dist(A, v)

dist(v, w) ≥ dist(v, A) − dist(w, A)

dist(v, w) ≥ max{dist(A, w) − dist(A, v), dist(v, A) − dist(w, A)}

• A good landmark appears “before” v or “after” w.

• More than one landmark: pick maximum.
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ALT Algorithm

• ALT = A∗ search + Landmarks + Triangle inequality.

• Goldberg and Harrelson (SODA’05).
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ALT Algorithm
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Dealing with External Memory

• Immutable data (read-only):

– forward and reverse graphs (adjacency lists and arc lengths);

– distances to and from each landmark.

• Mutable data (changes during the algorithm):

– distance labels;

– parent pointers;

– heap position.

• Immutable data in external memory, mutable data in RAM:

– only visited vertices in RAM (“mutable nodes”);

– hash table keeps track of them.
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Dealing with External Memory

• Caching:

– Landmark files and graphs are cached.

– Data read in pages:

∗ good locality (neighbors have similar IDs).

• Compression:

– Landmark data compressed by almost 50%:

∗ faster reading;

∗ more landmarks fit in flash.
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Important Goals

• Make the search as efficient as possible:

– limit number of mutable nodes in RAM;

– read as little as possible from external memory.

• We propose improvements to the ALT algorithm.
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Landmarks

• Landmark selection occurs in two levels:

– During preprocessing (PC), pick some vertices to be landmarks;

– During the actual search (Pocket PC), pick a small subset to be active:

∗ less data to read;

∗ bad landmarks are not helpful anyway.
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Landmark Selection During Preprocessing

• Ultimate goal:

– For every pair s-t, there should be a landmark “behind” it.

– Graphs are big, cannot evaluate this exactly: use heuristics.

∗ All methods are Õ(n).

• Two new methods:

– avoid : adds landmarks “behind” regions not currently covered;

– maxcover : avoid + local search:

∗ tries to minimize the number of arcs with zero reduced cost.

• Improvements with maxcover (over best method in [GH05]):

– Partial graphs: ∼25% fewer nodes visited;

– North America: ∼50% fewer nodes visited.
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Active Landmarks

• Goldberg and Harrelson [GH05] propose static selection:

– pick the landmarks that give the best bound on dist(s, t);

– use them during the whole search.

• We propose dynamic selection:

– start with two landmarks (the best for each search);

– periodically check if a new landmark will help;

– new landmarks change the potential function:

∗ we propose a new stopping criterion to handle this.

• Dynamic selection is better:

– On average, picks only ∼3 landmarks;

– Visits fewer nodes than with any fixed number of static landmarks.
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Pocket PC Runs

• 100 random pairs, 23 maxcover landmarks.

Measure Partial graphs North America

Nodes visited (avg) ∼1% ∼1%

Nodes visited (max) ∼10% ∼10%

Average efficiency 29%–45% 15%

Average time 5–10 seconds 6 minutes

Data read 500–700 KB 22 MB

• Our improvements did help:

– original implementation had efficiency < 10% for partial graphs.

• Current bottleneck: reading the data.

– Preloading makes the algorithm 13 times faster on Bay Area.
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Pocket PC Runs

• BFS distribution:

– vertices are 50 hops away from each other in this distribution;

– simulates “local” queries, typical in practice.

• Results for 100 pairs using 23 maxcover landmarks:

Nodes visited (avg) 300–700

Nodes visited (max) 1000–4000

Average efficiency 26%–43%

Average time 1–2 seconds

Data read 50–100 KB

• Graph size is not an important factor.
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Final Thoughts

• Our contributions:

– improved landmark selection (avoid, maxcover);

– dynamic selection of active landmarks;

– new stopping criterion;

– external memory implementation.

• Future work:

– direct access to flash;

– even better landmark selection;

– reusing active nodes;

– proper in-memory implementation;

– theoretical justification.
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Thank You
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