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The Shortest Path Arborescence Problem

Data:
e adigraph D = (N, .A) with |[N| = n nodes and | A| = m arcs;
e asource node s € \V;
® g cost function c: A — R.

Shortest Path Arborescence Problem.
Find all minimum cost (i.e. shortest) paths from s to all nodes in .

The problem is called Shortest Path Tree/Arborescence Problem,
because of a property of its solution: the set of all shortest paths
forms a spanning arborescence rooted in s.

Remark. Negative arc costs are allowed.
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The shortest paths arborescence
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Figure: A shortest paths arborescence (s = 1). Costs are black. Flows are
red. Distances are blue.
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Bellman’s optimality principle

Bellman’s optimality principle states that every optimal policy is made
by optimal sub-policies.

Translating this statement for the SPP:
every shortest path from s to t € A/ visiting i € A is made by the
shortest path from s to i and the shortest path from j to t.

As a consequence of this principle, the set of all the shortest paths
from s to V forms a spanning arborescence rooted in s.

But this “principle” is indeed a theorem: it can be proved, instead of
assumed.

We do not assume a priori that we are looking for a spanning
arborescence rooted in s.
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ta-structures

The mathematical model: variables

Variables. x; € Z, V(i,j) € A: number of shortest paths that use arc

(i,)-

Figure: One unit of flow goes from s to each other node. The flow on each
arc equals the number of nodes that are reached through it.
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The mathematical model: obj. function

Objective. Minimize the cost of each path from sto t Vt € N:

minimize Y ¢jx;.
(ih)eA

Figure: The sum of the costs times the flow equals the sum of the distances:
1x241x142%x442x3+1x14+42x1=04+14+2+2+4+5+6=200
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The mathematical model: constraints

Constraints. Flow conservation constraints for each shortest path
from sto t € NV:

Z Xji — Z X,'I'ZO ViEN\{S,t}

(.)es (i)es;
Do K D K=
(j,s)€65 (s,j)eds
> e Y ne
(,tyes; (th)es’

Summing them up for all t € NV:

Z Xji — Z X,‘j:1 VIEN\{S}

(.nes; (ih)esf

Y oXs— >, xXg=1-n

(j,8)€ds (s.f)eds
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SPP: primal formulation (ILP)

P) minimize > ¢;x;

(ij)eA
s.t. Z Xji — Z Xjj = 1 Vi e N\{S}
(.nes; (i.j)es;
Y oxs— Y, xg=1-n
(.9)€ds (s.)€sd
Xj € Z4 v(i,j) € A.

Observation 1. The constraint matrix is totally unimodular.

Observation 2. The right-hand-sides of the constraints are all integer
numbers.

Therefore every base solution of the continuous relaxation of P has oA
integer coordinates. '
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Reformulation (relaxation) of the primal problem (LP)

Hence we can relax the integrality restrictions:

P) minimize ) c;x;

(i,j)eA
Z Xji — Z Xj =1 VIEN\{S}
U.i)es; (ij)es;
S oxs— Y xg=1-n
(j,8)€d5 (s.j)€dd
Xj>0 V(i) € A.

This primal problem P has a dual problem D.
For the primal-dual pair (P, D) the LP duality theorems hold.



P) minimize > ¢;x;

(i.j)eA
s.t. Z Xji — Z Xjj = 1 Vi e N\{S}
(.ies;” (i.j)es’
(.s)€ds (s.)ess
Xj >0 v(i,j) € A.

D) maximize > y;i+(1-n)ys
ieN\{s}

st.yi—yi<cy v(i,j) € A
y;i free VieN.
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An equivalent dual formulation (LP)

D) maximize Z yit(1 = n)ys

ieN\{s}
sty —yi<g v(i,j) € A
y; free VieN.

Observation 1. Adding a constant « to each y variable, nothing
changes. Hence we can fix a variable:

ys:0

Observation 2. There are m inequality constraints, n — 1 original y
variables and m slack variables. The LP tableau of the dual problem
has mrows and n — 1 + m columns. Hence, in each base solution of
D there should be m basic variables and n — 1 non-basic (null)
variables. For the complementary slackness theorem, there should
be n — 1 basic variables in the primal problem.
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An equivalent primal formulation (LP)

P) minimize ) ¢;x;

(i,H)eA
Sooxi— Y x=1 Vi e M\{s}
Giess  Gjedt
Y oXs— >, Xg=1-n
U:s)€ds (s:))€ds
Xj >0 Y(i,j) € A.

Observation 3. There are n equality constraints that are not linearly
independent: summing up all the rows we obtain 0 = 0. Hence we
can delete a constraint: the flow conservation constraint for s.
Observation 4. There are now n — 1 equality constraints and m
variables. The LP tableau of P has n — 1 rows and m columns.
Hence, in each base solution of P there are n — 1 basic variables and
m — (n — 1) non-basic variables.
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Complementary slackness conditions (CSC)

P') minimize z = > ¢jx;

(i)eA

s.t. Z Xji — Z Xjj = 1 Vi e N\{S}
(.Ees; (i.j)est
Xj >0 v(i,j) € A.

D') maximize w = Yy

iEN\{s}
sty —yi<gc V(i,j)e A
y; free Vi e N\{s}.

Primal CSCs: x;(cj+ yi—y;)=0
Basic variables in P’ correspond to active constraints in D'.
Only arcs (/,/) for which y; + ¢;j = y; can carry flow Xx;.
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The Ford-Fulkerson algorithm (1962)

A spanning s-arborescence is completely described by a vector of
predecessors, one for each node but s.

forie M\{s} do Data structures:

Vi 00 e a predecessor label, 7; Vi € N;

T;’_% il * acost label, y; Vi € \.
s o V= {(i)) A} sty yi> g
V« {(s.)) € A} (violated dual constraints).
while V # () do

(1,)) < Select(V)

Yi = VYi+Cj

Tj < i

Update(V)

Different algorithms with different worst-case time complexity are

obtained from different implementations of the Select function.
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Feasibility

After initialization we have neither primal feasibility nor dual feasibility.

Primal viewpoint:
We have =; = nil for all i € A'; hence no flow enters any node.

Dual viewpoint:
We have y; = o for all j € N\ {s}; hence all constraints y; — ys < ¢y
are violated.

All constraints with r.h.s. ¢; < 0 are also violated.

The algorithm maintains the CSCs and iteratively enforces primal and
dual feasibility.
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Dual descent and correctness

After each iteration one of the dual values y; is decreased
e from a value such that y; — y; > ¢;
* to avalue such that y; — y; = ¢;
so that arc (/,j) becomes tight and x; enters the primal basis.

Dual variables monotonically decrease by integer amounts: hence if a
finite optimal solution exists, the algorithm terminates in a finite
number of iterations.
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Termination

The algorithm always achieves primal and dual feasibility, but two
special cases may occur.

Infeasibility. If there is a node t € N not reachable from s, the
algorithm does not find any arc (i, t) € A corresponding to a violated
dual constraint. Hence y; remains equal to oo; no arc entering ¢
becomes tight; no flow can reach t: the primal problem is infeasible
and the dual problem is unbounded.

Unboundedness. If there is a negative-cost cycle reachable from s,
the algorithm keeps finding a violated dual constraint corresponding
to one of the arcs in the cycle. Hence the algorithm enters a
never-ending loop in which the y values of the nodes in the cycle are
decreased to —oo and it never finds a feasible dual solution: the dual
problem is infeasible and the primal problem is unbounded.

The two things can also happen independently: both problems are
infeasible.
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Complexity

The update affects the other constraints (dual viewpoint) and arcs
(primal viewpoint).

* Case I: before the iteration, y; = oo and 7; = nil.
Then arc (i, j) becomes tight and nothing else changes.
Flow can now reach j from i (node j has been appended to the
arborescence).

® Case lI: before the iteration, y; # oo and 7; = k.
Then, j was already in the arborescence and was receiving flow
from some node k along a tight arc (k, ), i.e. y; — yx = cxj. After
the iteration, arc (k,j) is no longer tight, i.e. y; — yx < ¢4 and
cannot carry flow any more.
Node j now receives flow from i and not from k.
All constraints corresponding to tight arcs leaving node j become
violated.
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Case |

P
ONONO) ONO)
Figure: Arc (5,6) becomes tight and ys takes a finite value.
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Case Il

Figure: Arc (7, 6) replaces arc (5, 6). Arcs (6,2) and (6, 4) become infeasible
again.
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Bellman-Ford algorithm (1956,1958)

fori=1,....ndo
ylil « c(s,i)
w[i] + s

fork=1,...,n—1do
for (/,j) € Ado
if (y[i] + c(i,j) < y[j]) then
wlj] i
vl < ylil +c(i,))

The time complexity is O(nm) because it requires O(n) iterations,
each one with complexity O(m).
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Moore algorithm (1959)

fori=1,... ndo Q: set of nodes whose
y[i] < c(s, i) corresponding variable has been
w[i] < s updated in the last iteration.

Q <« {s}

while Q # () do

Extract(Q, i)
for (i,j) € 67(i) do
if (y[1]+ c(i,j) < y[j]) then
yUl < ylil + c(i,f)
wlf] i
if j ¢ Q then
Insert(Q, )

The worst-case time complexity is still O(nm) but in practice it runs
faster than Bellman-Ford, because many operations are skipped.
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Moore algorithm (1959)

The performance of Moore’s algorithm (also called SPFA, for Shortest
Path Faster Algorithm) depends on how Q is implemented.

¢ Nodes are not ordered in Q.
Extract and Insert take O(1); the complexity remains O(mn).
No queue is needed; just a binary flag for each node.

¢ Nodes are sorted according to their value of y.
A priority queue is used: Insert and Extract take O(log n), they
are executed at most n — 1 times for each node: they contribute
O(r? log n) to the complexity.
¢ An approximate order is given to the nodes, using a list.
Extract always extracts the head of the listin O(1).
Three Insert policies have been tried in practice:
® FIFO: always inserts j at the end of the list (queue) in O(1).
® Small Label First: if y(j) < y(First(Q)), then j is inserted as the
first element of Q, otherwise as the last one, in O(1).
® large Label Last: let q be the average of the values in Q (it can be
updated in O(1) after each operation on Q); all elements larger
than g are moved at the end of Q in O(n).
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Dijkstra’s algorithm (1959)

T« 0
fori e N do
y(i) + c(s,i)
(i)« s
f(i) « (i=s)
fork=1,...,n—1do
I argmin;c g {Y (1)}
T« Tu{(=(i"), i*;}
f(i*) < true
forj € N do
if (=f()) A (y(i") + ¢(i*,j) < y(j)) then
m(j) < i*
y() < y(i*) + (i, ))

The time complexity is O(n?) (improvable). It requires ¢ > 0.
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Dijkstra algorithm (dual ascent)

When ¢ > 0, Dijkstra algorithm can be revisited as a dual ascent
algorithm.

Assume to represent the graph as a set of stars (lists of outgoing
arcs).

We introduce two node sets:

¢ O: set of nodes for which a path from s has been found, but the
labels 7 and y are not permanent:

y(i) <d(s,i) =(i)#nil Vie O
e F: set of nodes with permanent labels:
y(i) =d(s,i) y(i)=y(x(i)) + c(x(i),i) Vie E

where d(s, /) is the cost of a shortest path from sto i Vi € N.
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Dijkstra algorithm (dual ascent)
All dual variables y are initialized at 0.
This corresponds to a feasible dual solution, since ¢; > 0 V(i,j) € A.

All primal variables 7 are not permanent.
This corresponds to an infeasible primal solution.

All nodes i # s are initially in O; only sisin E.

Iteratively, all y(i) Vi € O are increased until a dual constraint
becomes tight.

The corresponding arc (/,j) has the tail in E and the head in O.
Its head is moved from Oto E.

The values of y are non-decreasing (dual ascent procedure).

The algorithm terminates when all labels are permanent.
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Dijkstra algorithm (dual ascent)

E+ {s}; O« N\{s}; w«0;, y(s)«<0; n(s)«+ s
while (O # () do
J < argmin,co{c(n(v),v) — y(v) + y(r(v))}
0« c(r(/)./) — y(U) + y(r()))
W<+ w+0
fork e Odo
y(k) «w
O« O\{j};, E«~ EU{j}
for (j,k) € 67(j) : k ¢ E do
if y(j) + c(j, k) < y(w(k)) + c(=(k), k) then
m(k) < Jj
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Correctness
Dual feasibility is guaranteed after every iteration.
The rule for selecting the next node to insert in E is equivalent to find
an arc from i € E to j € O corresponding to a dual constraint with

minimum slack, i.e. minimum reduced cost.

Such a dual constraint becomes active (the corresponding arc
becomes tight).

The other dual constraints, not corresponding to arcs in the (E, O)
cut, are not affected by the increase of the dual variables y(i) Vi € O.

Foreach node iin E, y(i) — y(s) = d(s,i), and y(i) = d(s,i) Vi€ E
because y(s) remains fixed to 0.
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Dijkstra algorithm

The computational complexity of the array implementation of Dijkstra
algorithm is O(n?).

However, it can be improved in case of sparse graphs, using suitable
data-structures, such as heaps.
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Initialization

H<+0
foric N do
(i) < nil
if i = sthen
y(i) <0
else
y(i) < 400
BuildHeap(H)

H is a min-heap of nodes, partially sorted according to their
associated y value.
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Dijkstra algorithm

Inizialization
while H # 0 do
ExtractMin(H, i, v)
for (i,j) € 67(i) do
if v+ c(i,j) < y(j) then
DecreaseKey(j, v + ¢(i,)), H)
y(j) + v+ c(i. )
w(j) « i

Here 67 (i) indicates the set of arcs outgoing from i, while = and y are
the primal and dual variables.
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Complexity

e BuildHeap is called once and has O(n) complexity.
¢ DecreaseKey is called O(m) times (each arc is used only once).
e ExtractMin is called O(n) times (the heap includes only n nodes).

The latter two sub-routines have complexity O(log n) if the values of
non-permanent labels are stored in a binary heap.

Therefore the overall complexity of Dijkstra algorithm implemented in
this way is O(mlog n).
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d-heaps

Dijkstra algorithm with a d-heap:
e each MoveDn requires O(log, n) executions of Swap.
e the selection of the min cost successor node requires O(d).

In Dijkstra algorithm this occurs for each call of ExtractMin, i.e. O(n)
times.

¢ BuildHeap is called once and its complexity is O(n) (same as
binary heaps).

® DecreaseKey is called O(m) times and its complexity is
O(logy n).

e ExtractMin is called O(n) times and its complexity is O(d log, n).

Complexity: O(nd logy n+ mloggy n).



The resulting complexity O(nd logy n + mlogy n) depends on d.

Best choice: d = | m/n|, yielding complexity
O(mlogp,,n) = O(MiEey) = O(M——).

|gnn

Assuming m = Q(n°) for any fixed e > 1, the complexity is
Oo(m-2) = O(m).

e—1

The complexity is linear in m for very mild hypothesis on the density
of the digraph.
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Problen

Fibonacci heaps

Using a Fibonacci heap instead of a binary heap:
® BuildHeap is called once and its complexity is O(n).
e DecreaseKey is called O(m) times and its complexity is O(1).
e ExtractMin is called O(n) times and its complexity is O(log n).

Therefore the overall complexity of Dijkstra algorithm in this
implementation is O(m + nlog n).
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Data-dependent data-structures

Bucket: array of sets that uses the key values as indices.

It requires two assumptions:
¢ all cost values are integer;
e all cost values are bounded by a known constant C.

In Dijkstra algorithm all the values of non-permanent labels are in the
range [0, ..., nC], where C = max; jea{Cj}.
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Operations

Initialize.

Initialize an array of nC + 1 empty buckets, indexed by 0,1, ..., nC.
Set an index MinValue to 0.

Complexity: O(nC).

Insert(x).
Insert x into Bucket[key(x)].
Complexity: O(1).
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Operations

DecreaseKey(x, v).
Extract x from Bucket[key(x)] and insert it into Bucket[v].
Complexity: O(1).

ExtractMin.

Increase MinValue iteratively until a non-empty bucket is found in
position p.

Remove an element from Bucket|p].

Complexity: O(nC).

Amortized complexity for all ExtractMin operations is O(C) (i.e. O(1)),
because n — 1 iterations are done and MinValue never decreases.
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Buckets

Dijkstra algorithm using buckets (Dial implementation):
¢ Insert is called O(n) times and its complexity is O(1).
e DecreaseKey is called O(m) times and its complexity is O(1).
e ExtractMin is called O(n) times and its amortized complexity is

O(C).
Complexity: O(m+ nC).

This implementation has pseudo-polynomial complexity.
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Radix heap

Conditions:
¢ all key values are integer;
e they cover a range of at most C values (assume [0,...,C — 1]);

® values extracted by ExtractMin are monotonically
non-decreasing.

A radix heap is made by 1 + |log, (nC) | buckets, indexed from 0 to
[logo (nC)].

Each bucket covers a range of key values:
® Bucket[0] covers a range of 1 value;
* Bucket[k] covers a range of 2k~ values Vk > 1.

AlK]: lower bound to the values in each bucket k.
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Radix heap

Initialization.

Allocate the array in O(log, (nC)).

Set \[0] = 0; set A[k] =2¢""in O(1) Yk > 1.
Set MinValue to 0 in O(1).

Complexity: O(log, (nC)).

Insert(x) (initially).
Insert element x with key(x) = v in bucket k = 1 + |log, (V)].

Complexity: O(1) for each inserted element, i.e. O(n).
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Radix heap

DecreaseKey(x, v).

Let k be the current bucket of x. Test each bucket k’ from k down to 1
until A\[k’] < v is found in O(log, (nC)).

Extract x from its bucket k and insert it into bucket k" in O(1).
Complexity: O(log, (nC)) for each node (amortized).

ExtractMin.

Starting at MinValue, scan the heap until a non-empty bucket k is
found.

If kK > 2, replace bucket k by k buckets of size 1,1,2,4,...,2¢2,
Set A[0] = A[k] and A[k'] = A[0] + 2K 1 vk’ =1,...,k—1in
O(log, (nC)).

For each element of bucket k, find its new bucket k’ < k in
O(log, (nC)) and insert it.

Complexity: O(log, (nC)) for each node (amortized).

Whenever an element is moved by DecreaseKey or ExtractMin, it
always goes down the list of log, (nC) buckets.
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Radix heap

Dijkstra algorithm with a radix heap:
® Insert is initially called O(n) times and its complexity is O(1).

e DecreaseKey is called O(m) times and its complexity is O(1) for
each execution plus the time to move the elements which takes
O(nlog, (nC)) overall.

e ExtractMin is called O(n) times and its amortized complexity is
O(log, (nC)) for each node.

Complexity: O(m + nlog, (nC)).

This implementation has polynomial complexity in the input size.
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Data structure | Insert DecreaseKey ExtractMin | Total complexity
Basic o(1) o(1) O(n) Oo(n)
Binary heap O(log n) O(log n) O(log n) O(mlog n)
d-heap O(logy n) O(logy n) O(dlogy n) O(mlogy,, n)
Buckets o(1) o(1) o(nC)r O(m+ nC)
Radix heap | O(nlog(nC))r O(nlog(nC))r  O(nlog(nC))r | O(m+ nlog(nC))
Fib. heap o(m)r o(m)r O(nlogn)t O(m+ nlogn)

Improved priority queue: O(mlog log C).
Radix + Fibonacci heaps: O(m + +/log C).
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