Minimum spanning tree re-optimization

Giovanni Righini

University of Milan

UNIVERSITA DEGLI STUDI DI MILANO

The problem
[I}

MST re-optimization

Given

e agraph G = (V,¢&),

® acostfunctionc: £ — R,

® a minimum spanning tree 7* of G,
find n = |V alternative minimum spanning trees, one for each graph
that is obtained by deleting a vertex of G.

Naive procedure: re-compute as many minimum spanning trees as
the number n of vertices of G, each one spanning V with the
exception of a vertex p € V.

The problem
oe

MST re-optimization

Main idea: compute all the alternative edges that are needed to
rebuild a minimum cost spanning tree when a vertex is deleted from

g.
Main result: This goal is achieved with the same worst-case
computational complexity required by the computation of a single
minimum spanning tree of G.
Input:

® a weighted graph G = (V, &), with n = |V| vertices and m = |£|

edges,

® a minimum spanning tree 7+,

¢ a sorted list of all edges £ (by non-decreasing cost).
Output:

¢ an optimal set of alternative edges.

The search
©00000

Overview: p-components

When a vertex p € V is deleted, 7™ is disconnected into a forest
made of as many connected components as the degree of p in 7.

In the remainder they are called p-components, to mean that they
arise when p is deleted.

When vertex p € V is deleted, alternative edges must be found to
reconnect the p-components and they must be selected to produce a
new minimum spanning tree 7.

The search
0@0000

Naive method

Naive method. For each deleted vertex p € V, recompute a
minimum spanning tree 7, with Kruskal or Boruvka algorithm, after
having restored the state of a suitable data-structure to represent the
p-components of 7.

The vertices in each p-component can be identified in O(n) and this
is the complexity to set up the state of a Union-Find data-structure.

Then, the computation of an alternative minimum spanning tree with
Kruskal algorithm requires O(m + nlog d(p)), where d(p) indicates
the degree of vertex p € V.

Hence, repeating this naive procedure for all vertices would require
O(mn + n? log n).

The search
00®000

Search of alternative edges in parallel

All edges are scanned in non-decreasing order of their cost, as in
Kruskal algorithm.

For each edge [i,j] € T* the algorithm searches the vertices p such
that edge [/, j] reconnects two different p-components of F;.

For each vertex p and for each pair of p-components in Fj, the first
edge that is found to reconnect them, certainly belongs to 7, owing
to the edge ordering.

In this way all forests F; can be populated in parallel with alternative
edges for all p € V until all alternative minimum spanning trees T;
are produced.

The search
000@00

Accelerating the search
This search, if performed as described above, would be very
inefficient.
Idea for accelerating the search:
Consider the minimum spanning tree T* and an edge [i,j] & T*.
Adding edge [/,] to T* defines a unique cycle C(J, /).

The vertices along C(i,j), except i and j, are those for which [/,] is a
candidate alternative edge: if a vertex p € V along C(i,j) is deleted
from T*, then [/, j] reconnects two different p-components.

On the contrary, for all vertices p € V not belonging to C(/, j), [i, /]
cannot be a candidate alternative edge, because both i and j belong
to the same p-component.

To efficiently scan C(i, j), the algorithm skips in O(1) all vertices p
along C(i,j) for which an alternative edge reconnecting the
p-components of i and j has already been found.

The search
000000

Accelerating the search

When edge [/, '] is considered, it can be an alternative edge for
vertices a, b, ¢, d and e. Later on, when the more expensive edge
[i”,]"] is considered, it can be an alternative edge for vertices f, g, h
and /, but there is no point in considering it for a, b, ¢, d and e again.

Figure: Cycles C(/',j") and C(/” J") partially overlap: since [/’ j'] is cheaper
than [i/”, "], the vertices in C(i,j') are skipped when [i”, /] is considered.

The search
00000@

Computational complexity

With this idea: overall computational complexity O(m + nlog n),
because

¢ all operations when a candidate alternative edge is discarded:
O(1) for each edge, O(m) overall;

¢ all operations when a candidate alternative edge is inserted:
O(log n) for each insertion, O(nlog n) overall.

Data-structures
©0000000000000000000000000

The oriented minimum spanning tree

The minimum spanning tree T* is initially oriented from an arbitrarily
selected root vertex r € V.

Definition
The predecessor of any vertex p € V\{r}, indicated by Pred(p), is
the vertex adjacent to p along the path between p and r in T*.

Property

Since T* is a spanning tree, there exists a unique path between any
vertex p € V\{r} and r; therefore the predecessor exists and is
unique for each p € V\{r}.

Pred(r) is set to a null value to indicate that the root vertex r has no
predecessor.

Data-structures
0®000000000000000000000000

The depth of vertices

Definition
On the oriented tree T* the depth of any vertex p € V, indicated by
Depth(p), is the number of edges between r and p.

From Definition 2 and Property 1 the following property follows.

Property

For any two vertices u and v such that v = Pred(u), it holds
Depth(u) = Depth(v) + 1.

Data-structures
00®00000000000000000000000

Up and Down

Consider a depth-first-search visit of T* and let us define a move to
happen every time an edge is traversed in any direction.

Definition

We define Dn(r) = 1. For all p € V\{r}, Dn(p) is the progressive
number of the move that reaches p from Pred(p). Forallp € V, Up(p)
is the progressive number of the move that reaches Pred(p) from p.

The following properties hold.

Property
(i) The indices Dn(p) and Up(p) have unique values in T*. (ii) Their
values span the interval [1,...,2n]. (iii) For any vertex v € V and for

each vertex u € V in the oriented subtree rooted at v with u # v,

Dn(v) < Dn(u) < Up(u) < Up(v).

Data-structures
000®0000000000000000000000

Example: Up, Dn

33,340 11,12
31,32 f 13,14

30,35 4 59

+—O
6,37 8.29¥ 16,19 17,18

b 4/0 9 b b

7,36
22 23
21,28 "
L5 .38
23 26,27 24,25

Figure: An oriented spanning tree with the values (Dn, Up) for each vertex.

Data-structures
00008000000000000000000000

The apex of a cycle

Consider an edge [i,j] € T*. When [i,] is added to T* a unique
cycle, C(i,), is produced.

Definition
The apex of a cycle C(i,) is the minimum depth vertex along it.

Owing to the orientation of T* and to Property 3, the following
properties hold.

Property

(i) For any cycle C(i,), the apex exists and it is unique; (ii) if vertex p
is the apex of C(i,), then Dn(p) < min{Dn(/), Dn(j)} and

Up(p) = max{Up(i), Up(j)}.

Data-structures
00000@00000000000000000000

Identifying the apex

Let SubTree(p, i, j) be a boolean function that tests Property above, to
check whether one of the endpoints of [/, j] is the apex of C(i,j) or not.

Property

Given any edge |i,j] ¢ T*, if a vertex p verifies SubTree(p, i,j) and it
also belongs to C(i,), then it is the apex of C(i,j).

Data-structures
00000080000000000000000000

Procedure Orient

Algorithm 1 Orient

forpe Vdo
3(p) < 0
for[i,j] € T* do
o(i) = a(i) U {/j}
6(j) <= 6(j) U {i}
r «+ Select
Pred(r) «+ 0
Depth(r) « 0
a<+0
DFS(r)

QOU® N OhwN 2

—_

(i) is the star of each generic vertex i € V.

Data-structures
0000000@000000000000000000

Procedure DFS()

Algorithm 2 DFS(p)

a+—a+1

: Dn(p) + «

: for k € §(p) do

if kK # Pred(p) then

Pred(k) « p
Depth(k) « Depth(p) + 1
DFS(k)

a+—a+1

: Up(p) «+ o

©oo Noga K~ b2

A counter « counts every move in either direction along the edges of
T*.

Data-structures
00000000800000000000000000

Complexity of Orient
The computation of the stars of all vertices (lines 1 to 5) takes O(n),
because T* contains n — 1 edges.
All the operations on lines 6-9 of Orient can be done in O(1).

The time complexity taken by all instructions on lines 1, 2, 8 and 9 of
DFSis O(n), because « ranges from 1 to 2n.

The total number of iterations of the loop on lines 3-7 of DFS is twice
the number of edges of T+, i.e. 2(n — 1), and the body of the loop
(lines 5 and 6) is executed in O(1).

Therefore the time complexity for visiting T* with DFS is O(n).

Data-structures
00000000080000000000000000

Local subgraphs

Definition

For each vertex p € V a local subgraph G(p) = (V(p), T (p)) is
defined: it has |V(p)| = d(p) vertices, where d(p) is the degree of p
in T*.

Vertices in V(p) < neighbors of pin T*, p-components.

Edges in local subgraphs: links in the remainder.

T(p) is a forest Vp € V; initially empty; eventually, a spanning tree of
g(p)-

Each link in 7(p) is a record with two fields: the link itself between
two vertices of G(p), and the alternative edge [/, j] reconnecting the
two corresponding p-components.

Data-structures
00000000008000000000000000

Local subgraphs: an example

When vertex p is deleted from the spanning tree, edges [/, j] and [k,]
are used to reconnect the three resulting p-components at minimum
cost. Links [a, b] and [b, c] are inserted in G(p), forming a spanning
tree 7(p). Each link in T(p) has an associated alternative edge in G.

Data-structures
00000000000800000000000000

Local subgraphs: horizontal and vertical links

Definition

Links in T (p) incident to the local vertex corresponding to Pred(p) are
vertical links; links in T (p) not incident to the local vertex
corresponding to Pred(p) are horizontal links.

Remark. The local forest 7 (r) cannot include vertical links, since r
has no predecessor.

Data-structures
00000000000080000000000000

Horizontal and vertical links: an example

When the candidate alternative edge [/,] is considered, a vertical link
between the local vertices i and a is inserted in G(k), because k is a
vertex between i and the apex; a horizontal link between the local
vertices k and j is inserted in G(a), because a is the apex.

Data-structures
0000000000000e000000000000

Local Union-Find data-structure

A Union-Find data-structure is kept for each vertex p € V:

e an array of d(p) linked lists. Each list L(p, k) is initialized with a
single element k € V(p), corresponding to a neighbor k of pin
T™.

e Card(p, k): cardinality of L(p, k);

e Head(p, k): head of the list to which k belongs.

Data-structures
00000000000000800000000000

Local Union-Find: an example

@ Vertex | Head Card L
‘/@ () ™\ a a 2 {ab}
@, e @ b a 0 {}
O c c 1 {c}
@ © OR) d | d 2 {de
e d 0 {}
A vertex p with five neighbors (left), its local subgraph G(p) (center)

and the corresponding state of the Union-Find data-structure (right).
Oriented arcs: predecessors in T*.
Pred(p): thick line.

Data-structures
00000000000000080000000000

Initialization of local subgraphs

AltTreeCost(p): total cost of the

Algorithm 3 Initialization alternative edges for vertex p € V.

forp < V do w: number of missing alternative
Vip) 0 edges
for [i,j] € T* do '
V(i) < V() U{j} Complexity: O(n).
V(j) < V() U {i}
L(i,]) < {j}

Card(i,j) + 1
Head(i,j) « j
£(j,i) « {i}
Card(j, i) « 1
Head(j, i) < i
forpe Vdo
T(p) <0
AltTreeCost(p) < 0
p—n—2

Data-structures
00000000000000008000000000

Oriented paths and trees
Consider an edge [/, j] ¢ T* and the corresponding cycle C(J,).
Definition
The oriented path P(i,j) goes from vertex i to apex(i,j) in T*; the
oriented path P(j, i) goes from vertex j to apex(i,j) in T*.

One of the two paths may not exist, when i or j is the apex of C(/,).

Figure: Left: edge [/, j] corresponds to two oriented paths, one including a
and b, the other including ¢ and d. Right: edge [/, j] corresponds to a single
path, because one of its endpoints is the apex of C(/,). Apex: thick line.
Oriented arcs: predecessors in T*.

Data-structures
00000000000000000e00000000

Internal vertices

Definition
The internal vertices of a non-empty oriented path are the vertices
along it excluding its endpoints.

The apex(i, j) and the internal vertices of P(i,j) and P(j, i) are those
for which edge [/,] can be used as an alternative edge.

In the local subgraph of apex(/,j) edge [i,] corresponds to a
horizontal link.

In the local subgraphs of the internal vertices edge [/, j] corresponds
to a vertical link.

For this reason, the apex is processed separately from the internal
vertices.

Data-structures
00000000000000000080000000

Root of an oriented path

Definition
The root of a non-empty oriented path P(i,j) or P(j, i) is its vertex t
with Depth(t) = Depth(apex(i,j)) + 1.

For each internal vertex p of an oriented path P(i, j), edge [/,]]
reconnects two p-components, one of them containing i and the other
one containing Pred(p) (and the same holds for P(j, /) swapping i
with j).

For each candidate alternative edge [/, j] the algorithm scans P(i, j)
from i and P(j, i) from j up to their roots.

Therefore all local forests of internal vertices of the two paths are
considered to possibly insert a vertical link in each of them.

Data-structures
0000000000000000000e000000

Oriented trees

Definition
Two oriented paths P’ and P" overlap if and only if they have at least
an internal vertex in common.

When two (or more) oriented paths overlap, the algorithm merges
them to form an oriented tree with the following properties.

Property

(i) Each vertex belongs to at most one oriented tree; (ii) each oriented
tree has a unique root, that is the minimum depth root of its paths; (iii)
there is at least one vertical link in the local forest of each vertex in an
oriented tree.

Owing to this property, every time the algorithm scans a path and it
detects that it (partially) overlaps with an existing oriented tree, the
oriented tree is skipped in O(1) and the scan resumes directly from
its root.

Data-structures
00000000000000000000800000

Relevant paths

For each vertex p € V a variable Path(p) records the index of the first
path that introduces a vertical link in G(p).

Definition
An oriented path is relevant if and only if it inserts a vertical link in at
least one subgraph.

Property

Since the number of vertical links is bounded above by n — 2, this is
also the maximum number of relevant paths.

Data-structures
00000000000000000000080000

Counting relevant paths

Every time an oriented path is scanned, a path counter = is increased
by 1 and the path root is initialized at 0.

Every time a vertical link is inserted in some local forest 7 (p), the
path root is updated to p.

At the end of the scan, if the path root is still equal to 0, then the path
is discarded as non-relevant and the path counter = is decreased by
1.

No update to any data-structure is done, while the currently scanned
path has not yet been recognized as relevant.

Data-structures
0000000000000000000000e000

The Tree-Union-Find data-structure

A suitable data-structure, called Tree-Union-Find, is used to efficiently
merge relevant oriented paths into oriented trees.
The Tree-Union-Find includes

e an array TList of linked lists,

e an array TCard,

e an array THead,

e an array TRoot.

Each component of such arrays corresponds to an oriented tree, i.e.
a set of overlapping relevant oriented paths:

e TList(7): set of paths merged into the tree 7;
e TCard(r): their number;
e THead(r): index of a representative path in TList(7);

¢ TRoot(7): root of tree 7, i.e. minimum depth vertex among the
roots of the paths in TList(7).

All arrays in the Tree-Union-Find are made by at most n — 2 items. ==

Data-structures
00000000000000000000000e00

Initialization of a new path

Algorithm 4 InitPath

mé— T+ 1
TList(n) < {7}
TCard(7) « 1
THead(w) < =
TRoot(7) «+ 0

Complexity: O(1).

Data-structures
000000000000000000000000 80

Deletion of non-relevant paths

Algorithm 5 PurgePath(~)

1: if TRoot(THead(x)) = 0 then
22 mwé+—m—1
3: TList(w) «+ 0

Complexity: O(1).

Data-structures
0000000000000000000000000e

Merging two subtrees

TreeMerge(n’, n”") merges the subtrees containing paths =’ and =”.

Algorithm 6 TreeMerge(n’, 7").

if TCard(THead(#')) > TCard(THead(=")) then
7' + THead(n’)
7" + THead(7")

else
7/« THead(n"")
7"+ THead(")

if (Depth(TRoot(7")) < Depth(TRoot(7'))) then
TRoot(7") + TRoot(r")

for = € TList(r") do
THead(w) « 7/

TCard(7’) + TCard(7’) + TCard(r")
TCard(7"”) «+ 0
TList(')) < TList(7')) U TList(7"))

The algorithm
®00000000000000000000

The main algorithm

Input:
e agraph G,
e 3 cost function c,
® a minimum spanning tree T*,
a sorted list S of all edges e € E.

Algorithm 7 Main(G, ¢, T*,S)

Orient
Initialization
Search

Complexity of Search: O(m + nlog n)), to be proven.

The algorithm
O®@00000000000000O00000

Search

Algorithm 8 Search.

1. 1«0

2: repeat
3: repeat
4 [i,j] + Extract(S)

5. until [1,j]¢ T*

6: U<+

7: if =SubTree(i,,j) then
8: PathScan(i, j, u)

9 Vg

10: if =SubTree(j, i, j) then

11: PathScan(j, i, v)

12: if =SubTree(i,/,j) A —=SubTree(j, i, j) A (Stop(u) v Stop(v)) then
13: ProcessApex(u, v, i,§)

14: until x =0

The algorithm
O0@000000000000000000

Search, part |

At each iteration of the main loop a candidate alternative edge is
considered and all the corresponding vertical and horizontal links are
inserted.

Lines 3-5: the next candidate alternative edge [/, j] is extracted from
the sorted list S.

The algorithm
0O00@00000000000000000

Search, part Il

Lines 6-11: paths P(i,j) and P(j, i) are scanned to possibly insert
vertical links.

Indices u € P(i,j) and v € P(j, i): current vertices on the paths.
PathScan is called only if the corresponding path exists (lines 7 and
10).

SubTree(p, i, j) checks whether an endpoint of [/, j] is the apex of
C(i,j) or not. So, empty paths are disregarded.

Two effects:
¢ to insert all possible vertical links in local forests;

e to indicate how the search along each path terminates. This is
represented by the value of Stop(u) and Stop(v).

Stop(u) is true: the current vertex u is within the cycle C(i, j); hence,
when the loop is over, Pred(u) is apex(/,).

Stop(u) is false: the path on the side of / has been merged with a
pre-existing oriented tree, rooted at apex(/, j) or above; hence,
Pred(u) is out of C(i,j).

The algorithm
O000@00000000000O00000

Search, part lll

Lines 12-13: a horizontal link is possibly inserted in the local forest of
apex(i, j) by ProcessApex.

This is done only if the apex is different from i and j (i.e. both oriented
paths exist) and if at least one of the two current vertices u and v is
within the cycle C(i, j).

If both u and v have reached the apex, then both the

apex(i, j)-components of i and j are already connected with that of
Pred(apex(/, j)) and therefore no horizontal link must be inserted in

T (apex(i, f)).

The algorithm
0O0000@000000000000000

Procedure PathScan and vertical links

Algorithm 9 PathScan(i, j, w).

: Stop(w) « true
: InitPath
while -SubTree(Pred(w), /,/) do
p « Pred(w)
if (Head(p, w)) # Head(p, Pred(p)) then
/* Insert a vertical link */
if Path(p) = 0 then
Path(p) « =
else
/* Skip Path(p) up to its root */
: PurgePath(r)

-
TeOw® No gkl b=

—_

The algorithm
000000800000 000000000

Insert a vertical link

Algorithm 10 Insert a vertical link.

@ gk wh=

2 T(P) < T(p) U{([w, Pred(p)], [i, /])}
: AltTreeCost(p) « AltTreeCost(p) + c(i,)
= p—1

Merge(p, w, Pred(p))
TRoot(THead()) + p
W< p

The algorithm
0000000 @0000000000000

Skip Path(p) up to its root

Algorithm 11 Skip the current path up to its root.

if TRoot(THead(r)) # 0 then

TreeMerge(w, Path(p))
w « TRoot(THead(Path(p)))
if SubTree(w, i, j)) then

Stop(w) « false

A

The algorithm
O0000000e000000000000

Procedure ProcessApex and horizontal links

The procedure ProcessApex(u, v, i, j), shown in Algorithm 12 and 13,
inserts a horizontal link in the local forest of apex(i, j) if and only if the
apex(i, j)-components of i and j are not already connected in

T (apex(i,f)). If they are already connected, the procedure has no
effect.

To check whether the horizontal link can be inserted, it is necessary to
know the indices of the two vertices adjacent to the apex along P(/,)
and P(j, /). These correspond to u and v when Stop(u) and Stop(v)
are true: if Stop(u) A Stop(v), then Pred(u) = Pred(v) = apex(/, j).

Hence, the apex is found as the predecessor of the current vertex for
which Stop is true.

If ProcessApex is executed, at least one of Stop(u) and Stop(v) is
guaranteed to be true, owing to the test on line 12 of Search.

The algorithm
000000000 e00000000000

Procedure ProcessApex and horizontal links

If one of the two current vertices, say u, has been moved to the apex
or above (Stop(v) is false), then the p-component of i is already
connected with the p-component of Pred(p) in 7(p). Hence a test on
the local Union-Find data-structure of vertex p must be done to check
whether v and Pred(p) are connected or not. Hence, a variable v’ is
set to u if Stop(u) is true and to Pred(p) if Stop(v) is false (lines 5-8).
The same is done for v’ (lines 9-12).

If the test on the Union-Find data-structure succeeds (line 1), then a
horizontal link is inserted; otherwise the procedure terminates with no
effect.

The algorithm
0000000000000 0000000

Procedure Find

Before inserting the horizontal link, it is necessary to find the index of
both vertices adjacent to the apex p along P(i,j) and P(j,). They are
not both available if Stop is false for one of the two current vertices.
Therefore, u or v is reset to the position just below the apex, in case it
is not (lines 2-3 and 4-5). This is done by a procedure Find, that
exploits the values of Up and Dn of all vertices adjacent to p.

Assume Stop(u) be false. The execution of Find(p, /) implies a
search among the vertices of V(p) to find the vertex which lies on the
path between i and p. This requires to find the (unique) vertex

u € V(p) such that (Dn(u) < Dn(i)) A (Up(u) > Up(/)).

The algorithm
00000000000 e000000000

Procedure ProcessApex(u, v, i,j), part |

Algorithm 12 ProcessApex(u, v, i,j), part I.

©

—_ -
- O

@GN g po0bd 2

. if (Stop(v)) then

p « Pred(u)
else
p < Pred(v)

. if (Stop(v)) then

u«—u
else
U« Pred(p)

. if (Stop(v)) then

Vi—v

: else
12:

v’ + Pred(p)

The algorithm
000000000000 e00000000

Procedure ProcessApex(u, v, i,j), part Il

Algorithm 13 ProcessApex(u, v, i,j), part Il.

1: if (Head(p, u') # Head(p, v')) then
if —Stop(u) then
u <+ Find(p, i)
if —Stop(v) then
v « Find(p, j)
T(p) < T(p) U{[u, V], [i,]}
AltTreeCost(p) + AltTreeCost(p) + c(i, /)

w—p—1
Merge(p, u, v)

e ok @D

The algorithm
0000000000000 e0000000

Complexity of Search (1)

The number of iterations of the outer loop of Search (lines 2-14) is
o(m).

Therefore the time taken by all constant time operations in Search
(including SubTree that takes constant time), PathScan and
ProcessApex (including InitPath and PurgePath), yield an overall
O(m) contribution to the time complexity.

The loop on lines 3-5 can be implemented so that it takes O(1) time
per iteration, i.e. O(m) overall.

This requires to sort the edges of T* with the same criterion used to
sort the edges in S (non-decreasing cost plus some additional
lexicographic criterion to break ties).

This pre-sorting step requires O(nlog n) because T* contains n — 1
edges.

Hence, the pre-sorting step and the loop on lines 3-5 require
O(m+ nlog n) time.

The algorithm
0000000000000 0e000000

Complexity of Search (2)

The block of operations on line 6 of PathScan is executed O(n) times,
because a vertical link is inserted each time and the number of
possible vertical links is O(n).

Since all operations excepted Merge have O(1) complexity, their
overall contribution to the time complexity of the algorithm is O(n).

The test on line 7 of PathScan can succeed at most n times.
Therefore the total contribution to the time complexity of the O(1)
operation on line 8 is O(n).

The algorithm
0000000000000 00eO00000

Complexity of Search (3)

The block of operations on line 10 of PathScan takes O(1) with the
exception of the contribution of TreeMerge.

The complexity analysis requires to distinguish the case in which r is
non-relevant (TRoot(THead(n)) = 0) from the case in which 7 is
relevant (TRoot(THead(x)) > 0).

An empty path can exist only twice for each candidate alternative
edge, once for each side of C(i,j). Therefore the execution of this
block with non-relevant = can occur O(m) times. In these cases
TreeMerge is not executed and thus the total contribution is O(m).

The number of relevant paths in the Tree-Union-Find data-structure is
O(n), because all roots are different. Therefore, a call to TreeMerge
can occur at most O(n) times. Hence, the number of times the block
is executed with relevant 7 is O(n) and therefore the total contribution
of these iterations is O(n) plus the contribution of TreeMerge.

The algorithm
000000000000 0000e0000

Complexity of Search (4)

The number of times the loop on lines 3-10 of PathScan is executed
is the sum of both types of iterations, i.e. with relevant = and
non-relevant . Therefore the tests on lines 5 and 7 are executed
O(m+ n) times.

The procedure ProcessApex is called at most once for each edge, i.e.
O(m) times. Therefore all O(1) operations on lines 1-12 contribute
o(m).

The test on line 1 can succeed O(n) times, because the number of
horizontal links that can be inserted is O(n). Excluding the
contribution of Merge and Find, the total contribution of the operations
on lines 2-9 to the time complexity is O(n).

The algorithm
000000000000 0000Oe000

Complexity of Find

The execution of Find(p, i) implies a search among the vertices of
V(p) (i.e. the neighbors of p in T*) to find the vertex which lies on the
path between p and i on T*, i.e. the (unique) vertex u satisfying
(Dn(u) < Dn(i)) A (Up(u) = Up(/)).

This task can be accomplished in O(log d(p)) (which is not worse
than O(log n)) by binary search, because the vertices of V(p) are
sorted by their values of Dn and Up after the execution of Orient.
Since the number of calls to Find is O(n), as observed above, the
overall contribution of Find to the total time complexity is O(nlog n).

The algorithm
000000000000 000000e00

Procedure Merge

Algorithm 14 Merge(p, u, v).

if Card(p, Head(p, u)) < Card(p, Head(p, v)) then
K v
K"« u
else
K+ u
K'+v
for k € L(p,Head(p, k")) do
Head(p, k) + Head(p, k')
Card(p, Head(p, k")) < Card(p, Head(p, k’))+Card(p, Head(p, k"))
Card(p,Head(p, k")) < 0
L(p,Head(p, k")) + L(p,Head(p, k")) U L(p, Head(p, k"))

The algorithm
000000000000 0000000e0

Complexity of Merge and TreeMerge

At each call of Merge two lists in the local subgraph G(p) of some
vertex p € V are merged. This can happen O(n) times overall,
because O(n) alternative edges must be found.

For the well-known property of the Union-Find data-structure: for
each local graph with d(p) vertices, the time taken by the update
operations is O(d(p) log d(p)). Summing up these contributions over
all vertices results in an O(nlog n) contribution to the complexity of
the whole algorithm, because ., d(p) log d(p) <

> pevd(p)logn=logny_ .\, d(p) =2|T*[logn=2(n—1)logn.

The total time taken by TreeMerge to merge trees is O(nlog n),
because of the properties of Union-Find: every time two or more
trees are merged, their lists are merged so that the shortest one is
appended to the longest one. This guarantees that no representative
is updated more than log n times since the number of oriented trees is
o(n).

Remark. To achieve this, it is necessary to accept that the root of an’;,
oriented tree does not necessarily belong to its representative path suswoniso

The algorithm
000000000000 00000000e

Conclusion

The asymptotic worst-case time complexity of an algorithm to
pre-compute an optimal set of alternative edges, so that a minimum
cost spanning tree can be immediately restored in a graph if a vertex
is deleted is O(m + nlog n) which is the same of a single run of
Kruskal algorithm (or Prim algorithm implemented with Fibonacci
heaps).

	The problem
	The problem

	The search
	The search

	Data-structures
	The algorithm

