

The problem The search Data-structures The algorithm

Minimum spanning tree re-optimization

Giovanni Righini
University of Milan

The problem The search Data-structures The algorithm

MST re-optimization

Given

• a graph G = (V , E),

• a cost function c : E 7→ ℜ,

• a minimum spanning tree T ∗ of G,

find n = |V| alternative minimum spanning trees, one for each graph
that is obtained by deleting a vertex of G.

Naive procedure: re-compute as many minimum spanning trees as

the number n of vertices of G, each one spanning V with the
exception of a vertex p ∈ V .

The problem The search Data-structures The algorithm

MST re-optimization

Main idea: compute all the alternative edges that are needed to

rebuild a minimum cost spanning tree when a vertex is deleted from

G.

Main result: This goal is achieved with the same worst-case
computational complexity required by the computation of a single

minimum spanning tree of G.

Input:

• a weighted graph G = (V , E), with n = |V| vertices and m = |E|
edges,

• a minimum spanning tree T ∗,

• a sorted list of all edges E (by non-decreasing cost).

Output:

• an optimal set of alternative edges.

The problem The search Data-structures The algorithm

Overview: p-components

When a vertex p ∈ V is deleted, T ∗ is disconnected into a forest F∗

p

made of as many connected components as the degree of p in T ∗.

In the remainder they are called p-components, to mean that they

arise when p is deleted.

When vertex p ∈ V is deleted, alternative edges must be found to

reconnect the p-components and they must be selected to produce a

new minimum spanning tree T ∗

p .

The problem The search Data-structures The algorithm

Naive method

Naive method. For each deleted vertex p ∈ V , recompute a

minimum spanning tree T ∗

p with Kruskal or Boruvka algorithm, after

having restored the state of a suitable data-structure to represent the
p-components of F∗

p .

The vertices in each p-component can be identified in O(n) and this

is the complexity to set up the state of a Union-Find data-structure.

Then, the computation of an alternative minimum spanning tree with
Kruskal algorithm requires O(m + n logd(p)), where d(p) indicates

the degree of vertex p ∈ V .

Hence, repeating this naive procedure for all vertices would require
O(mn + n2 log n).

The problem The search Data-structures The algorithm

Search of alternative edges in parallel

All edges are scanned in non-decreasing order of their cost, as in

Kruskal algorithm.

For each edge [i, j] 6∈ T ∗ the algorithm searches the vertices p such

that edge [i, j] reconnects two different p-components of F ∗

p .

For each vertex p and for each pair of p-components in F ∗

p , the first

edge that is found to reconnect them, certainly belongs to T ∗

p owing

to the edge ordering.

In this way all forests F ∗

p can be populated in parallel with alternative
edges for all p ∈ V until all alternative minimum spanning trees T ∗

p

are produced.

The problem The search Data-structures The algorithm

Accelerating the search

This search, if performed as described above, would be very

inefficient.

Idea for accelerating the search:

Consider the minimum spanning tree T ∗ and an edge [i, j] 6∈ T ∗.

Adding edge [i, j] to T ∗ defines a unique cycle C(i, j).

The vertices along C(i, j), except i and j, are those for which [i, j] is a
candidate alternative edge: if a vertex p ∈ V along C(i, j) is deleted

from T ∗, then [i, j] reconnects two different p-components.

On the contrary, for all vertices p ∈ V not belonging to C(i, j), [i, j]
cannot be a candidate alternative edge, because both i and j belong

to the same p-component.

To efficiently scan C(i, j), the algorithm skips in O(1) all vertices p
along C(i, j) for which an alternative edge reconnecting the

p-components of i and j has already been found.

The problem The search Data-structures The algorithm

Accelerating the search

When edge [i ′, j ′] is considered, it can be an alternative edge for

vertices a, b, c, d and e. Later on, when the more expensive edge

[i ′′, j ′′] is considered, it can be an alternative edge for vertices f , g, h
and l, but there is no point in considering it for a, b, c, d and e again.

c

b d

a e

i ′ j ′
g h

f l

i ′′ j ′′

Figure: Cycles C(i ′, j ′) and C(i ′′, j ′′) partially overlap: since [i ′, j ′] is cheaper

than [i ′′, j ′′], the vertices in C(i ′, j ′) are skipped when [i ′′, j ′′] is considered.

The problem The search Data-structures The algorithm

Computational complexity

With this idea: overall computational complexity O(m + n log n),

because

• all operations when a candidate alternative edge is discarded:

O(1) for each edge, O(m) overall;

• all operations when a candidate alternative edge is inserted:

O(log n) for each insertion, O(n log n) overall.

The problem The search Data-structures The algorithm

The oriented minimum spanning tree

The minimum spanning tree T ∗ is initially oriented from an arbitrarily

selected root vertex r ∈ V .

Definition
The predecessor of any vertex p ∈ V\{r}, indicated by Pred(p), is

the vertex adjacent to p along the path between p and r in T ∗.

Property
Since T ∗ is a spanning tree, there exists a unique path between any
vertex p ∈ V\{r} and r ; therefore the predecessor exists and is

unique for each p ∈ V\{r}.

Pred(r) is set to a null value to indicate that the root vertex r has no

predecessor.

The problem The search Data-structures The algorithm

The depth of vertices

Definition
On the oriented tree T ∗ the depth of any vertex p ∈ V, indicated by

Depth(p), is the number of edges between r and p.

From Definition 2 and Property 1 the following property follows.

Property
For any two vertices u and v such that v = Pred(u), it holds

Depth(u) = Depth(v) + 1.

The problem The search Data-structures The algorithm

Up and Down

Consider a depth-first-search visit of T ∗ and let us define a move to

happen every time an edge is traversed in any direction.

Definition
We define Dn(r) = 1. For all p ∈ V\{r}, Dn(p) is the progressive

number of the move that reaches p from Pred(p). For all p ∈ V, Up(p)
is the progressive number of the move that reaches Pred(p) from p.

The following properties hold.

Property
(i) The indices Dn(p) and Up(p) have unique values in T ∗. (ii) Their

values span the interval [1, . . . , 2n]. (iii) For any vertex v ∈ V and for

each vertex u ∈ V in the oriented subtree rooted at v with u 6= v,

Dn(v) < Dn(u) < Up(u) < Up(v).

The problem The search Data-structures The algorithm

Example: Up, Dn

4, 5

2, 3

1, 38

6, 37

7, 36

30, 35

31, 32
33, 34

8, 29

21, 28

26, 27
24, 25

22, 23

9, 20

16, 19 17, 18

10, 15

11, 12
13, 14

Figure: An oriented spanning tree with the values (Dn,Up) for each vertex.

The problem The search Data-structures The algorithm

The apex of a cycle

Consider an edge [i, j] 6∈ T ∗. When [i, j] is added to T ∗ a unique

cycle, C(i, j), is produced.

Definition
The apex of a cycle C(i, j) is the minimum depth vertex along it.

Owing to the orientation of T ∗ and to Property 3, the following

properties hold.

Property
(i) For any cycle C(i, j), the apex exists and it is unique; (ii) if vertex p
is the apex of C(i, j), then Dn(p) ≤ min{Dn(i),Dn(j)} and

Up(p) ≥ max{Up(i),Up(j)}.

The problem The search Data-structures The algorithm

Identifying the apex

Let SubTree(p, i, j) be a boolean function that tests Property above, to

check whether one of the endpoints of [i, j] is the apex of C(i, j) or not.

Property
Given any edge [i, j] 6∈ T ∗, if a vertex p verifies SubTree(p, i, j) and it

also belongs to C(i, j), then it is the apex of C(i, j).

The problem The search Data-structures The algorithm

Procedure Orient

Algorithm 1 Orient

1: for p ∈ V do

2: δ(p)← ∅
3: for [i, j] ∈ T ∗ do

4: δ(i)← δ(i) ∪ {j}
5: δ(j)← δ(j) ∪ {i}

6: r ← Select
7: Pred(r)← 0

8: Depth(r)← 0
9: α← 0

10: DFS(r)

δ(i) is the star of each generic vertex i ∈ V .

The problem The search Data-structures The algorithm

Procedure DFS()

Algorithm 2 DFS(p)

1: α← α+ 1

2: Dn(p)← α

3: for k ∈ δ(p) do

4: if k 6= Pred(p) then

5: Pred(k)← p

6: Depth(k)← Depth(p) + 1
7: DFS(k)

8: α← α+ 1
9: Up(p)← α

A counter α counts every move in either direction along the edges of

T ∗.

The problem The search Data-structures The algorithm

Complexity of Orient

The computation of the stars of all vertices (lines 1 to 5) takes O(n),
because T ∗ contains n − 1 edges.

All the operations on lines 6-9 of Orient can be done in O(1).

The time complexity taken by all instructions on lines 1, 2, 8 and 9 of
DFS is O(n), because α ranges from 1 to 2n.

The total number of iterations of the loop on lines 3-7 of DFS is twice

the number of edges of T ∗, i.e. 2(n − 1), and the body of the loop

(lines 5 and 6) is executed in O(1).

Therefore the time complexity for visiting T ∗ with DFS is O(n).

The problem The search Data-structures The algorithm

Local subgraphs

Definition
For each vertex p ∈ V a local subgraph G(p) = (V(p), T (p)) is
defined: it has |V(p)| = d(p) vertices, where d(p) is the degree of p

in T ∗.

Vertices in V(p)⇔ neighbors of p in T ∗, p-components.

Edges in local subgraphs: links in the remainder.

T (p) is a forest ∀p ∈ V ; initially empty; eventually, a spanning tree of
G(p).

Each link in T (p) is a record with two fields: the link itself between
two vertices of G(p), and the alternative edge [i, j] reconnecting the

two corresponding p-components.

The problem The search Data-structures The algorithm

Local subgraphs: an example

When vertex p is deleted from the spanning tree, edges [i, j] and [k , l]
are used to reconnect the three resulting p-components at minimum

cost. Links [a, b] and [b, c] are inserted in G(p), forming a spanning
tree T (p). Each link in T (p) has an associated alternative edge in G.

G(p)

a

b

c

[i, j]

[k , l]pa

i j

b
k

l
c

The problem The search Data-structures The algorithm

Local subgraphs: horizontal and vertical links

Definition
Links in T (p) incident to the local vertex corresponding to Pred(p) are

vertical links; links in T (p) not incident to the local vertex
corresponding to Pred(p) are horizontal links.

Remark. The local forest T (r) cannot include vertical links, since r
has no predecessor.

The problem The search Data-structures The algorithm

Horizontal and vertical links: an example

When the candidate alternative edge [i, j] is considered, a vertical link

between the local vertices i and a is inserted in G(k), because k is a

vertex between i and the apex; a horizontal link between the local
vertices k and j is inserted in G(a), because a is the apex.

G(a)

h

k j[i, j]

G(k)

a

i

[i, j]

i

k

a

h

j

The problem The search Data-structures The algorithm

Local Union-Find data-structure

A Union-Find data-structure is kept for each vertex p ∈ V :

• an array of d(p) linked lists. Each list L(p, k) is initialized with a

single element k ∈ V(p), corresponding to a neighbor k of p in
T ∗.

• Card(p, k): cardinality of L(p, k);

• Head(p, k): head of the list to which k belongs.

The problem The search Data-structures The algorithm

Local Union-Find: an example

G(p)

a

b
c

d
e

pa

b
c

d

e Vertex Head Card L
a a 2 {a, b}
b a 0 {}
c c 1 {c}
d d 2 {d , e}
e d 0 {}

A vertex p with five neighbors (left), its local subgraph G(p) (center)

and the corresponding state of the Union-Find data-structure (right).

Oriented arcs: predecessors in T ∗.

Pred(p): thick line.

The problem The search Data-structures The algorithm

Initialization of local subgraphs

Algorithm 3 Initialization

for p ∈ V do

V(p)← ∅
for [i, j] ∈ T ∗ do

V(i)← V(i) ∪ {j}
V(j)← V(j) ∪ {i}
L(i, j)← {j}
Card(i, j)← 1

Head(i, j)← j
L(j, i)← {i}
Card(j, i)← 1
Head(j, i)← i

for p ∈ V do

T (p)← ∅
AltTreeCost(p)← 0

µ← n − 2

AltTreeCost(p): total cost of the

alternative edges for vertex p ∈ V .

µ: number of missing alternative
edges.

Complexity: O(n).

The problem The search Data-structures The algorithm

Oriented paths and trees

Consider an edge [i, j] 6∈ T ∗ and the corresponding cycle C(i, j).

Definition
The oriented path P(i, j) goes from vertex i to apex(i, j) in T ∗; the
oriented path P(j, i) goes from vertex j to apex(i, j) in T ∗.

One of the two paths may not exist, when i or j is the apex of C(i, j).

b d

a c

i j

j
b

a

i

Figure: Left: edge [i , j] corresponds to two oriented paths, one including a

and b, the other including c and d . Right: edge [i , j] corresponds to a single

path, because one of its endpoints is the apex of C(i , j). Apex: thick line.

Oriented arcs: predecessors in T ∗.

The problem The search Data-structures The algorithm

Internal vertices

Definition
The internal vertices of a non-empty oriented path are the vertices

along it excluding its endpoints.

The apex(i, j) and the internal vertices of P(i, j) and P(j, i) are those

for which edge [i, j] can be used as an alternative edge.

In the local subgraph of apex(i, j) edge [i, j] corresponds to a

horizontal link.

In the local subgraphs of the internal vertices edge [i, j] corresponds
to a vertical link.

For this reason, the apex is processed separately from the internal

vertices.

The problem The search Data-structures The algorithm

Root of an oriented path

Definition
The root of a non-empty oriented path P(i, j) or P(j, i) is its vertex t

with Depth(t) = Depth(apex(i, j)) + 1.

For each internal vertex p of an oriented path P(i, j), edge [i, j]
reconnects two p-components, one of them containing i and the other
one containing Pred(p) (and the same holds for P(j, i) swapping i

with j).

For each candidate alternative edge [i, j] the algorithm scans P(i, j)
from i and P(j, i) from j up to their roots.

Therefore all local forests of internal vertices of the two paths are

considered to possibly insert a vertical link in each of them.

The problem The search Data-structures The algorithm

Oriented trees

Definition
Two oriented paths P′ and P′′ overlap if and only if they have at least

an internal vertex in common.

When two (or more) oriented paths overlap, the algorithm merges
them to form an oriented tree with the following properties.

Property
(i) Each vertex belongs to at most one oriented tree; (ii) each oriented

tree has a unique root, that is the minimum depth root of its paths; (iii)

there is at least one vertical link in the local forest of each vertex in an
oriented tree.

Owing to this property, every time the algorithm scans a path and it
detects that it (partially) overlaps with an existing oriented tree, the

oriented tree is skipped in O(1) and the scan resumes directly from
its root.

The problem The search Data-structures The algorithm

Relevant paths

For each vertex p ∈ V a variable Path(p) records the index of the first

path that introduces a vertical link in G(p).

Definition
An oriented path is relevant if and only if it inserts a vertical link in at

least one subgraph.

Property
Since the number of vertical links is bounded above by n − 2, this is
also the maximum number of relevant paths.

The problem The search Data-structures The algorithm

Counting relevant paths

Every time an oriented path is scanned, a path counter π is increased

by 1 and the path root is initialized at 0.

Every time a vertical link is inserted in some local forest T (p), the

path root is updated to p.

At the end of the scan, if the path root is still equal to 0, then the path

is discarded as non-relevant and the path counter π is decreased by

1.

No update to any data-structure is done, while the currently scanned
path has not yet been recognized as relevant.

The problem The search Data-structures The algorithm

The Tree-Union-Find data-structure

A suitable data-structure, called Tree-Union-Find, is used to efficiently

merge relevant oriented paths into oriented trees.

The Tree-Union-Find includes

• an array TList of linked lists,

• an array TCard,

• an array THead,

• an array TRoot.

Each component of such arrays corresponds to an oriented tree, i.e.
a set of overlapping relevant oriented paths:

• TList(τ): set of paths merged into the tree τ ;

• TCard(τ): their number;

• THead(τ): index of a representative path in TList(τ);

• TRoot(τ): root of tree τ , i.e. minimum depth vertex among the

roots of the paths in TList(τ).

All arrays in the Tree-Union-Find are made by at most n − 2 items.

The problem The search Data-structures The algorithm

Initialization of a new path

Algorithm 4 InitPath

π ← π + 1
TList(π)← {π}
TCard(π)← 1

THead(π)← π

TRoot(π)← 0

Complexity: O(1).

The problem The search Data-structures The algorithm

Deletion of non-relevant paths

Algorithm 5 PurgePath(π)

1: if TRoot(THead(π)) = 0 then

2: π ← π − 1
3: TList(π)← ∅

Complexity: O(1).

The problem The search Data-structures The algorithm

Merging two subtrees

TreeMerge(π′, π′′) merges the subtrees containing paths π′ and π′′.

Algorithm 6 TreeMerge(π′, π′′).

if TCard(THead(π′)) > TCard(THead(π′′)) then

τ ′ ← THead(π′)
τ ′′ ← THead(π′′)

else
τ ′ ← THead(π′′)
τ ′′ ← THead(π′)

if (Depth(TRoot(τ ′′)) < Depth(TRoot(τ ′))) then

TRoot(τ ′)← TRoot(τ ′′)

for π ∈ TList(τ ′′) do

THead(π)← τ ′

TCard(τ ′)← TCard(τ ′) + TCard(τ ′′)
TCard(τ ′′)← 0
TList(τ ′))← TList(τ ′)) ∪ TList(τ ′′))

The problem The search Data-structures The algorithm

The main algorithm

Input:

• a graph G,

• a cost function c,

• a minimum spanning tree T ∗,

• a sorted list S of all edges e ∈ E .

Algorithm 7 Main(G, c,T ∗,S)

Orient
Initialization

Search

Complexity of Search: O(m + n log n)), to be proven.

The problem The search Data-structures The algorithm

Search

Algorithm 8 Search.

1: π ← 0
2: repeat

3: repeat

4: [i, j]← Extract(S)
5: until [i, j] 6∈ T ∗

6: u ← i
7: if ¬SubTree(i, i, j) then

8: PathScan(i, j, u)
9: v ← j

10: if ¬SubTree(j, i, j) then

11: PathScan(j, i, v)

12: if ¬SubTree(i, i, j)∧¬SubTree(j, i, j)∧ (Stop(u)∨Stop(v)) then

13: ProcessApex(u, v , i, j)

14: until µ = 0

The problem The search Data-structures The algorithm

Search, part I

At each iteration of the main loop a candidate alternative edge is

considered and all the corresponding vertical and horizontal links are

inserted.

Lines 3-5: the next candidate alternative edge [i, j] is extracted from
the sorted list S.

The problem The search Data-structures The algorithm

Search, part II

Lines 6-11: paths P(i, j) and P(j, i) are scanned to possibly insert

vertical links.

Indices u ∈ P(i, j) and v ∈ P(j, i): current vertices on the paths.
PathScan is called only if the corresponding path exists (lines 7 and

10).

SubTree(p, i, j) checks whether an endpoint of [i, j] is the apex of
C(i, j) or not. So, empty paths are disregarded.

Two effects:

• to insert all possible vertical links in local forests;

• to indicate how the search along each path terminates. This is

represented by the value of Stop(u) and Stop(v).

Stop(u) is true: the current vertex u is within the cycle C(i, j); hence,

when the loop is over, Pred(u) is apex(i, j).
Stop(u) is false: the path on the side of i has been merged with a
pre-existing oriented tree, rooted at apex(i, j) or above; hence,

Pred(u) is out of C(i, j).

The problem The search Data-structures The algorithm

Search, part III

Lines 12-13: a horizontal link is possibly inserted in the local forest of

apex(i, j) by ProcessApex.

This is done only if the apex is different from i and j (i.e. both oriented

paths exist) and if at least one of the two current vertices u and v is
within the cycle C(i, j).

If both u and v have reached the apex, then both the

apex(i, j)-components of i and j are already connected with that of
Pred(apex(i, j)) and therefore no horizontal link must be inserted in

T (apex(i, j)).

The problem The search Data-structures The algorithm

Procedure PathScan and vertical links

Algorithm 9 PathScan(i, j,w).

1: Stop(w)← true

2: InitPath
3: while ¬SubTree(Pred(w), i, j) do

4: p ← Pred(w)
5: if (Head(p,w)) 6= Head(p,Pred(p)) then

6: /* Insert a vertical link */

7: if Path(p) = 0 then

8: Path(p)← π

9: else
10: /* Skip Path(p) up to its root */

11: PurgePath(π)

The problem The search Data-structures The algorithm

Insert a vertical link

Algorithm 10 Insert a vertical link.

1: T (p)← T (p) ∪ {([w ,Pred(p)], [i, j])}
2: AltTreeCost(p)← AltTreeCost(p) + c(i, j)
3: µ← µ− 1

4: Merge(p,w ,Pred(p))
5: TRoot(THead(π))← p

6: w ← p

The problem The search Data-structures The algorithm

Skip Path(p) up to its root

Algorithm 11 Skip the current path up to its root.

1: if TRoot(THead(π)) 6= 0 then

2: TreeMerge(π,Path(p))
3: w ← TRoot(THead(Path(p)))
4: if SubTree(w , i, j)) then

5: Stop(w)← false

The problem The search Data-structures The algorithm

Procedure ProcessApex and horizontal links

The procedure ProcessApex(u, v , i, j), shown in Algorithm 12 and 13,

inserts a horizontal link in the local forest of apex(i, j) if and only if the

apex(i, j)-components of i and j are not already connected in
T (apex(i, j)). If they are already connected, the procedure has no

effect.

To check whether the horizontal link can be inserted, it is necessary to
know the indices of the two vertices adjacent to the apex along P(i, j)
and P(j, i). These correspond to u and v when Stop(u) and Stop(v)
are true: if Stop(u) ∧ Stop(v), then Pred(u) = Pred(v) = apex(i, j).

Hence, the apex is found as the predecessor of the current vertex for
which Stop is true.

If ProcessApex is executed, at least one of Stop(u) and Stop(v) is

guaranteed to be true, owing to the test on line 12 of Search.

The problem The search Data-structures The algorithm

Procedure ProcessApex and horizontal links

If one of the two current vertices, say u, has been moved to the apex

or above (Stop(u) is false), then the p-component of i is already

connected with the p-component of Pred(p) in T (p). Hence a test on
the local Union-Find data-structure of vertex p must be done to check

whether v and Pred(p) are connected or not. Hence, a variable u′ is

set to u if Stop(u) is true and to Pred(p) if Stop(u) is false (lines 5-8).
The same is done for v ′ (lines 9-12).

If the test on the Union-Find data-structure succeeds (line 1), then a

horizontal link is inserted; otherwise the procedure terminates with no
effect.

The problem The search Data-structures The algorithm

Procedure Find

Before inserting the horizontal link, it is necessary to find the index of

both vertices adjacent to the apex p along P(i, j) and P(j, i). They are

not both available if Stop is false for one of the two current vertices.
Therefore, u or v is reset to the position just below the apex, in case it

is not (lines 2-3 and 4-5). This is done by a procedure Find, that

exploits the values of Up and Dn of all vertices adjacent to p.

Assume Stop(u) be false. The execution of Find(p, i) implies a

search among the vertices of V(p) to find the vertex which lies on the

path between i and p. This requires to find the (unique) vertex
u ∈ V(p) such that (Dn(u) ≤ Dn(i)) ∧ (Up(u) ≥ Up(i)).

The problem The search Data-structures The algorithm

Procedure ProcessApex(u, v , i , j), part I

Algorithm 12 ProcessApex(u, v , i, j), part I.

1: if (Stop(u)) then

2: p ← Pred(u)
3: else

4: p ← Pred(v)

5: if (Stop(u)) then

6: u′ ← u
7: else

8: u′ ← Pred(p)

9: if (Stop(v)) then

10: v ′ ← v
11: else

12: v ′ ← Pred(p)

The problem The search Data-structures The algorithm

Procedure ProcessApex(u, v , i , j), part II

Algorithm 13 ProcessApex(u, v , i, j), part II.

1: if (Head(p, u′) 6= Head(p, v ′)) then

2: if ¬Stop(u) then

3: u ← Find(p, i)

4: if ¬Stop(v) then

5: v ← Find(p, j)

6: T (p)← T (p) ∪ {[u, v], [i, j]}
7: AltTreeCost(p)← AltTreeCost(p) + c(i, j)
8: µ← µ− 1

9: Merge(p, u, v)

The problem The search Data-structures The algorithm

Complexity of Search (1)

The number of iterations of the outer loop of Search (lines 2-14) is

O(m).

Therefore the time taken by all constant time operations in Search

(including SubTree that takes constant time), PathScan and
ProcessApex (including InitPath and PurgePath), yield an overall

O(m) contribution to the time complexity.

The loop on lines 3-5 can be implemented so that it takes O(1) time
per iteration, i.e. O(m) overall.

This requires to sort the edges of T ∗ with the same criterion used to

sort the edges in S (non-decreasing cost plus some additional
lexicographic criterion to break ties).

This pre-sorting step requires O(n log n) because T ∗ contains n − 1

edges.

Hence, the pre-sorting step and the loop on lines 3-5 require
O(m + n log n) time.

The problem The search Data-structures The algorithm

Complexity of Search (2)

The block of operations on line 6 of PathScan is executed O(n) times,

because a vertical link is inserted each time and the number of

possible vertical links is O(n).

Since all operations excepted Merge have O(1) complexity, their
overall contribution to the time complexity of the algorithm is O(n).

The test on line 7 of PathScan can succeed at most n times.

Therefore the total contribution to the time complexity of the O(1)
operation on line 8 is O(n).

The problem The search Data-structures The algorithm

Complexity of Search (3)

The block of operations on line 10 of PathScan takes O(1) with the

exception of the contribution of TreeMerge.

The complexity analysis requires to distinguish the case in which π is

non-relevant (TRoot(THead(π)) = 0) from the case in which π is
relevant (TRoot(THead(π)) > 0).

An empty path can exist only twice for each candidate alternative

edge, once for each side of C(i, j). Therefore the execution of this
block with non-relevant π can occur O(m) times. In these cases

TreeMerge is not executed and thus the total contribution is O(m).

The number of relevant paths in the Tree-Union-Find data-structure is
O(n), because all roots are different. Therefore, a call to TreeMerge

can occur at most O(n) times. Hence, the number of times the block

is executed with relevant π is O(n) and therefore the total contribution
of these iterations is O(n) plus the contribution of TreeMerge.

The problem The search Data-structures The algorithm

Complexity of Search (4)

The number of times the loop on lines 3-10 of PathScan is executed

is the sum of both types of iterations, i.e. with relevant π and

non-relevant π. Therefore the tests on lines 5 and 7 are executed
O(m + n) times.

The procedure ProcessApex is called at most once for each edge, i.e.

O(m) times. Therefore all O(1) operations on lines 1-12 contribute
O(m).

The test on line 1 can succeed O(n) times, because the number of

horizontal links that can be inserted is O(n). Excluding the

contribution of Merge and Find, the total contribution of the operations
on lines 2-9 to the time complexity is O(n).

The problem The search Data-structures The algorithm

Complexity of Find

The execution of Find(p, i) implies a search among the vertices of

V(p) (i.e. the neighbors of p in T ∗) to find the vertex which lies on the

path between p and i on T ∗, i.e. the (unique) vertex u satisfying
(Dn(u) ≤ Dn(i)) ∧ (Up(u) ≥ Up(i)).

This task can be accomplished in O(log d(p)) (which is not worse

than O(log n)) by binary search, because the vertices of V(p) are
sorted by their values of Dn and Up after the execution of Orient.

Since the number of calls to Find is O(n), as observed above, the

overall contribution of Find to the total time complexity is O(n log n).

The problem The search Data-structures The algorithm

Procedure Merge

Algorithm 14 Merge(p, u, v).

if Card(p,Head(p, u)) < Card(p,Head(p, v)) then

k ′ ← v
k ′′ ← u

else

k ′ ← u
k ′′ ← v

for k ∈ L(p,Head(p, k ′′)) do

Head(p, k)← Head(p, k ′)
Card(p,Head(p, k ′))← Card(p,Head(p, k ′))+Card(p,Head(p, k ′′))
Card(p,Head(p, k ′′))← 0
L(p,Head(p, k ′))← L(p,Head(p, k ′)) ∪ L(p,Head(p, k ′′))

The problem The search Data-structures The algorithm

Complexity of Merge and TreeMerge

At each call of Merge two lists in the local subgraph G(p) of some

vertex p ∈ V are merged. This can happen O(n) times overall,

because O(n) alternative edges must be found.

For the well-known property of the Union-Find data-structure: for
each local graph with d(p) vertices, the time taken by the update

operations is O(d(p) log d(p)). Summing up these contributions over
all vertices results in an O(n logn) contribution to the complexity of

the whole algorithm, because
∑

p∈V d(p) log d(p) ≤∑
p∈V d(p) log n = log n

∑
p∈V d(p) = 2|T ∗| logn = 2(n − 1) log n.

The total time taken by TreeMerge to merge trees is O(n logn),
because of the properties of Union-Find: every time two or more

trees are merged, their lists are merged so that the shortest one is
appended to the longest one. This guarantees that no representative

is updated more than logn times since the number of oriented trees is

O(n).

Remark. To achieve this, it is necessary to accept that the root of an
oriented tree does not necessarily belong to its representative path.

The problem The search Data-structures The algorithm

Conclusion

The asymptotic worst-case time complexity of an algorithm to

pre-compute an optimal set of alternative edges, so that a minimum

cost spanning tree can be immediately restored in a graph if a vertex
is deleted is O(m + n log n) which is the same of a single run of

Kruskal algorithm (or Prim algorithm implemented with Fibonacci
heaps).

	The problem
	The problem

	The search
	The search

	Data-structures
	The algorithm

