
 

Union-Find

Union-Find

Giovanni Righini



 

Union-Find

Union-Find data-structure

Assume we have a set N of n items, partitioned into subsets.

We need to execute two operations on N:

• testing whether two items are in the same subset or not (Find);

• merging two subsets into one (Union).

Possible implementations:

• arrays;

• linked lists;

• trees.

Each subset is identified by a representative item: its head.



 

Union-Find

Union-Find data-structure: arrays

For each i ∈ N:

• v [i] is the item (ID, value, pointer...);

• h[i] is the head of its subset (index).

i 1 2 3 4 5 6 7 8 9 10
ID A B C D E F G H I L

h 1 1 1 6 9 6 6 6 9 9

correponds the partition {A,B,C}, {D,F ,G,H}, {E , I, L}.

Complexity:

• Find : O(1) with the test h[i] = h[j].

• Union: O(n) because all values of h in a merged subset must be

updated.



 

Union-Find

Union-Find data-structure: arrays

i 1 2 3 4 5 6 7 8 9 10

ID A B C D E F G H I L

h 1 1 1 6 9 6 6 6 9 9
card 3 ? ? ? ? 4 ? ? 3 ?

Union(2, 4):

i 1 2 3 4 5 6 7 8 9 10

ID A B C D E F G H I L
h 6 6 6 6 9 6 6 6 9 9

card ? ? ? ? ? 7 ? ? 3 ?

Modifying the smallest subset yields total complexity O(n log n) for all
Union operations, i.e. amortized complexity O(logn) for each Union

operation.

The same results hold for the implementation with linked lists.



 

Union-Find

Union-Find data-structure: trees

Each subset is a tree; its head is the root element.

ID A B C D E F G H I L

pred - A A F L - H F - I

A

B C

F

D H

G

I

L

E



 

Union-Find

Union-Find data-structure: trees

A

B C

F

D H

G

I

L

E

Union(E ,G): head(E) = I, head(G) = F .
One of the roots is appended to the other.

A

B C

F

D H

G

I

L

E



 

Union-Find

Union-Find data-structure: trees

Complexity:

• Find : O(n) (when a tree is a path)

• Union: O(1)

Objective: improve the complexity of Find : balance the trees.

Ideas for Union:

• Union-by-size: append the root of the tree with fewer nodes to

the root of the tree with more nodes;

• Union-by-rank: append the root of the tree with smaller depth to

the root of the tree with larger depth.

Complexity of Find : O(logn).



 

Union-Find

Union-Find data-structure: trees

Idea for Find : path compression: when the root is searched from

node i by Find(i), all nodes between i and the root are made

successors of the root.

Before Find(E)

F

D H

G

I

L

E

After Find(E)

F

D H

G

I L E

Total complexity of m executions of Find with m > n is O(m log∗ n).



 

Union-Find

The log∗ function

log∗ 2 = 1

log∗ 22 = log∗ 4 = 2

log∗ 2(22) = log∗ 16 = 3

log∗ 2(2(22)) log∗ 65536 = 4

log∗ 2(2(2(2
2))) = 5

For all ”reasonable” values of n, log∗ n ≤ 5.

Even better bounds were proven by Tarjan.


	Union-Find
	Union-Find


