Union-Find

Giovanni Righini

UNIVERSITA DEGLI STUDI DI MILANO

Union-Find
@0000000

Union-Find data-structure

Assume we have a set N of nitems, partitioned into subsets.

We need to execute two operations on N:
e testing whether two items are in the same subset or not (Find);
® merging two subsets into one (Union).

Possible implementations:
e arrays;
e linked lists;
® trees.
Each subset is identified by a representative item: its head.

Union-Find
O@000000

Union-Find data-structure: arrays

Foreachie N:
e vJ[i] is the item (ID, value, pointer...);
e h[i] is the head of its subset (index).

il1 2 3 4 5 6 7 8 9 10

D|A B C D E F G H I L

hf1 1 1 6 9 6 6 6 9 9
correponds the partition {A, B, C},{D, F, G, H},{E, I, L}.

Complexity:
® Find: O(1) with the test h[i] = h[j].

e Union: O(n) because all values of hin a merged subset must be
updated.

Union-Find
0O0@00000

Union-Find data-structure: arrays

i 1 2 3 4 5 6 7 8 9 10

D A B C D EF G H I L

h i 11 6 9 6 6 6 9 9

caad| 3 ? 2?2 2?2 2?2 4 ? 2?2 3 ?

Union(2,4):

i 1 2 3 4 5 6 7 8 9 10

D A B C D EF G H I L

h 6 6 6 6 9 6 6 6 9 9

caad | ? ? ? 2 2 7 ? ? 3 ?

Modifying the smallest subset yields total complexity O(nlog n) for all
Union operations, i.e. amortized complexity O(log n) for each Union
operation.

The same results hold for the implementation with linked lists. "

Union-Find
00080000

Union-Find data-structure: trees
Each subset is a tree; its head is the root element.

C DEFGHII L
AF L - H F - |

Union-Find
0O000@000

Union-Find data-structure: trees

Union(E, G): head(E) = I, head(G
One of the roots is appended to the other

() (F)
@@0
© ©
®

Union-Find
0O0000e00

Union-Find data-structure: trees

Complexity:
e Find: O(n) (when a tree is a path)
e Union: O(1)

Objective: improve the complexity of Find: balance the trees.

Ideas for Union:

¢ Union-by-size: append the root of the tree with fewer nodes to
the root of the tree with more nodes;

¢ Union-by-rank: append the root of the tree with smaller depth to
the root of the tree with larger depth.

Complexity of Find: O(logn).

Union-Find
00000080

Union-Find data-structure: trees

Idea for Find: path compression: when the root is searched from
node i by Find(i), all nodes between i and the root are made
successors of the root.

Before Find(E) After Find(E)

(F) (F)
© & W ORGORONGOERG
© © ©
®

Total complexity of m executions of Find with m > nis O(mlog™ n).

Union-Find
0000000

The log* function

log™2 =1
log* 22 log*4 =2
Iog*2) =log*16 =3

log* 2(2 Iog 65536 = 4

log* 2(2(2())) _ 5

For all “reasonable” values of n, log* n < 5.

Even better bounds were proven by Tarjan.

	Union-Find
	Union-Find

