

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Heaps

Giovanni Righini

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Heaps

In many combinatorial optimization problems it is quite common that
a set of values must be kept in a data-structure, so that some

operations can be repeatedly done on it. The efficiency of such

operations strongly affects the overall efficiency of the optimization
algorithm.

Very often, we are not interested in all values, but only in the

minimum (or maximum) value at any moment.

Typical operations to be repeatedly done are:

• insert a new element (Insert);

• extract the element with minimum value (ExtractMin);

• decrease the value of an element (DecreaseKey).

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Heaps

Let indicate the maximum number of elements in the data-structure
with n.

• List or array: Insert in O(1), ExtractMin in O(n).

• Sorted list: Insert in O(n), ExtractMin in O(1).

• Sorted array: Insert in O(n)(∗), ExtractMin in O(1)(∗∗).

• Balanced binary tree: Insert in O(logn), ExtractMin in O(logn).

(∗) Finding the correct insertion position by dichotomic search takes

O(log n) time; shifting the last elements one position to the right to
create the empty space in which the new element is to be inserted

takes O(n) time.

(∗∗) The elements must be sorted in non-increasing order, so that the
minimum is the last one.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Binary heaps

A binary heap is a binary tree in which a key is associated with each
node and the following two properties hold:

• all levels of the tree are filled from the left to the right and only

the last level is allowed to be incomplete;

• the key associated with a parent node is not larger than the keys

associated with its two children nodes.

In a binary heap the operations Insert, ExtractMin and DecreaseKey

can be implemented to run in O(log n), being n the number of nodes
in the tree.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Binary heap: basic operations

A binary heap can be represented with an array of size n, when we
know a priori that no more than n elements are needed (e.g. one for

each node of a (di-)graph).

The positions in the heap are numbered in breadth-first order.

Given any element in position p,

• left(p) = 2p

• right(p) = 2p + 1

• parent(p) = p div 2

where div indicates integer division.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Binary heap: basic operations

Every element of the heap is a record with the following fields

• element: the corresponding element (e.g. a node of a

(di-)graph);

• cost: the corresponding value of the key (sorting criterion).

We also need:

• an integer L indicating how many elements are in the heap;

• an array pos indicating the position of each element in the heap.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Insert(i , v)

An element i and its key value v are in input:

1. a new element is placed in the last position of the heap: O(1)

2. it is pushed upwards by swapping it with its parent, until the
property of the heap is restored: O(log n)

L← L + 1
heap[L].node ← i

heap[L].cost ← v

pos[i]← L
MoveUp(L)

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin(i , v)

The root node i and its key value v are in output:

1. the root of the heap is extracted and replaced by the last

element: O(1);

2. the new root is moved downwards by swapping it with its

minimum cost child, until the property of the heap is restored:

O(log n).

i ← heap[1].node

v ← heap[1].cost

pos[i]← nil
heap[1]← heap[L]
L← L− 1
MoveDn(1)

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

DecreaseKey(i , v)

An element i and a value v are in input:

1. the key value of the node corresponding to element i is updated:

O(1);

2. it is pushed upwards by swapping it with its parent, until the

property of the heap is restored: O(log n).

p ← pos[i]
heap[p].cost ← v

MoveUp(p)

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

MoveUp(p)

stop ← false

while (p 6= 1) ∧ (¬stop) do

q ← parent(p)
if heap[q].cost > heap[p].cost then

Swap(p, q)
else

stop ← true

end if
end while

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

MoveDn(p)

stop ← false

while (left(p) ≤ L) ∧ (¬stop) do

if (right(p) > L)∨(heap[left(p)].cost < heap[right(p)].cost) then
q ← left(p)

else

q ← right(p)
end if

if heap[p].cost > heap[q].cost then
Swap(p, q)

else

stop ← true
end if

end while

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Swap(p, q)

Both MoveUp and MoveDn use Swap as a sub-routine. Its complexity
is O(1).
It uses a temporary record r and a temporary integer k .

r ← heap[p]
heap[p] ← heap[q]
heap[q]← r
k ← pos[p]
pos[p]← pos[q]
pos[q]← k
k ← p

p ← q
q ← k

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Building a heap

When n values to be partially sorted in a heap are known since the
beginning, it is not needed to build the heap with n successive Insert

operations, which would take O(n log n) time.

// An array v of elements is in input //
for i = 1, . . . , n do

heap[i].node ← i

heap[i].value ← v [i]
pos[i]← i

end for
for k = ⌊n/2⌋, . . . , 1 do

MoveDn(k)
end for

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Complexity

The height (number of levels) of a heap with n elements is
h = ⌈log2 n + 1⌉.

Each leaf is a heap of height 1 and it trivially satisfies both properties

of binary heaps (it is a well-formed heap).

Iteratively, from the leaves to the root, well-formed heaps of height h

are matched in pairs to form well-formed heaps of height h + 1. For

each fusion of two heaps into one, if the root does not satisfy the
heap property, it is required to move it down to its correct position,

with MoveDn.

In the worst case, each execution of MoveDn implies a number of
swaps equal to the height of the two merged heaps.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Complexity

Assume the root is at level 1 and the leaves at level h.

For a node at level k , the maximum number of swap operations when

it is checked as a root is h − k .

At each level k there are at most 2k−1 nodes.

Hence, in the worst case the total number of swap operations is

S =

h−1
∑

k=1

(h − k)2k−1.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Complexity

Hence

S =
h−1
∑

k=1

(h − k)2k−1 = h

h−1
∑

k=1

2k−1 −
h−1
∑

k=1

k2k−1.

The second term is further split as follows:

h−1
∑

k=1

k2k−1 =

h−2
∑

k=0

(k + 1)2k =

h−2
∑

k=0

k2k +

h−2
∑

k=0

2k .

Therefore S = A− B − C, with

• A = h
∑h−1

k=1 2k−1;

• B =
∑h−2

k=0 k2k ;

• C =
∑h−2

k=0 2k .

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Complexity

A = h

h−1
∑

k=1

2k−1 = h

h−2
∑

k=0

2k = h(2h−1 − 1).

C =

h−2
∑

k=0

2k = 2h−1 − 1.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Complexity

B =

h−2
∑

k=0

k2k = 1 21 + 2 22 + 3 23 + . . .+ (h − 2)2h−2.

2B =

h−2
∑

k=0

k2k+1 = 1 22 + 2 23 + 3 24 + . . .+ (h − 2)2h−1.

B = 2B − B = −21 − 22 − 23 − . . .− 2h−2 + (h − 2)2h−1 =

= (h − 2)2h−1 −
h−2
∑

k=1

2k = (h − 2)2h−1 − (
h−2
∑

k=0

2k − 20) =

= (h − 2)2h−1 − (2h−1 − 1− 1) = (h − 3)2h−1 + 2.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Complexity

Finally

S = A− B − C = h(2h−1 − 1)− [(h − 3)2h−1 + 2]− [2h−1 − 1] =

= 2 2h−1 − h − 2 + 1 = 2h − h − 1.

Since h grows as O(logn), then S grows as O(n).

The complexity of BuildHeap when n elements are available is O(n).

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Find k th smallest element

By-product of the linear complexity of BuildHeap:
find the k th smallest element in a set of n elements.

Algorithm 1 (with an array):

• Sort the elements: O(n log n);

• Access the element in position k : O(1).

Algorithm 2 (with a binary heap):

• BuildHeap: O(n);

• For k times ExtractMin: O(k logn).

If k is “small” (i.e. O(n
log n

)), algorithm 2 is likely to be faster.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Insert vs DecreaseKey

When the key value of an element of the heap decreases:

• DecreaseKey of the existing element in the heap;

• Insert of a new copy of the element with the new key value,
leaving the old copy unchanged.

Both procedures take O(log n) in the worst case, but....

• DecreaseKey keeps the size of the heap constant, but it requires

pos to access the element;

• Insert makes the heap growing, but it does not require pos (and
the time to update it in Swap).

There is a trade-off between the additional time spent because the
heap grows and the additional time spent to update pos.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

d-heaps

A d-heap is a tree in which each element may have up to d children,
with d > 2.

Number of levels: ⌈logd n + 1⌉ instead of ⌈log2 n + 1⌉.

Pro: fewer Swap operations are required.

Con: in MoveDn the selection of the minimum cost child costs O(d)
instead of O(1).

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Binomial heaps

A binomial heap is a forest of heap-ordered trees of different size.

Property 1.

A tree of height k has exactly 2k elements (height = n. edges

between the root and the last leaf).
The number of elements at each level l = 1, . . . , k is

(

k
l

)

(binomial

coefficient).

Level

0

1

2

3

Nodes

1 = ����

3 = ����

3 = ����

1 = ����

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Binomial heaps

Property 2.
Elements in all trees are partially sorted as in a binary heap: the key

of the predecessor is always less than or equal to the keys of its

successors.

Property 3.

For each number n of nodes in the heap, there exists a unique

corresponding set of heights of the trees:
one-to-one correspondence with the binary encoding of n.

Therefore the number of trees in the heap is ⌈log2 n + 1⌉.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Binomial heaps

Property 4.
Every tree T of height k is composed of two trees T1 and T2 of height

k − 1: the root of T2 is the last successor of the root of T1.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Data structure

Elements in a binomial heap do not have a predefined number of
successors.

A possible implementation uses three pointers for each record:
• a pointer to the predecessor;
• a pointer to the first successor;
• a pointer to the next successor of the predecessor (“sibling”).

Figure: A sample binomial heap with 13 elements (binary encoding = 1101).

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin

There are O(log n) trees in the heap: comparing the keys of their
roots and selecting the best one takes O(log n).

The deletion of the root of a tree T of height k produces new trees

with height smaller than k .

Then, trees of the same height are merged as binary numbers are

added up.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin

Figure: In this example we assume that the red element has the minimum key

and it is extracted. Its tree has height k∗

= 3.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin

Figure: k∗ new trees are generated with height k = 0, . . . , k∗

− 1.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin

Figure: The trees must merged like binary digits must summed up in an

addition.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin

Figure: Two trees of height 0 are merged into a tree of height 1. Its root is the

element with the minimum key among the roots of the merged trees.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin

Figure: Now there are three trees of height 2. Any two of them can be

merged into a tree of height 3.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin

Figure: The final binomial heap corresponds to the binary encoding of

n = 13 − 1 = 12, i.e. 1 1 0 0.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Insert

The new element is a tree of height 0.

Inserting it into the heap corresponds to increasing a binary number

by 1.

The computational complexity of ExtractMin and Insert is O(log n) in
both cases, because it requires up to log n merge operations and

each merge takes O(1) time.

With binomial heaps:

• Insert does not require MoveUp;

• ExtractMin does not require MoveDn.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

DecreaseKey

In a binomial heap with n elements the height of the trees is
significantlty smaller than that of a binary heap with n elements.

Hence DecreaseKey , implying a repeated call to MoveUp, is faster.

Worst case: the element to be updated is a leaf of the largest tree
and it must be moved up to the root.

The maximum height of a tree in a binomial heap with n elements is

⌈log2 (n + 1)⌉ − 1.

Hence DecreaseKey has complexity O(logn).

An array of pointers is required to access each element in O(1).
Such an array does not require any update, because the binomial

heap is implemented with pointers, not with an array.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Repeated Insert and FindMin

An uninterrupted sequence of m Insert takes only O(m).
Its amortized complexity is O(1).

Finding the minimum without extracting it takes O(log n).
However, we can keep a pointer to the minimum root, so that FindMin
takes O(1).
The time needed to update it is:

• O(1) after each Insert;

• O(1) after each DecreaseKey ;

• O(log n) after each ExtractMin.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Fibonacci heaps

With Fibonacci heaps we can do:

• Insert in O(1);

• DecreaseKey in O(1);

• ExtractMin in O(logn).

The idea is “lazy update”: the data structure is updated (spending

time for this) only under special conditions.

The O(1) complexity above is achieved as amortized complexity, i.e.

considering sequences of operations, not single operations.

Amortized complexity is more realistic, because not all operations in a
sequence require the worst case time.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Amortized complexity

The amortized complexity of an operation is the average worst-case
time complexity that is achieved when a sequence of k operations are

executed for k large enough.

The amortized complexity of an operation is O(f (n)) if it exists a
positive integer k such that for a sequence of at least k operations the

total time required by the sequence is O(kf (n)).

The most common technique to establish the amortized complexity of
an operation uses a potential function.

A potential function is increased by some operations and decreased

by others, so that the maximum number of times an operation can
occur can be bounded by the number of times other operations occur.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Structure and implementation

A Fibonacci heap is made by a set of trees.
Their roots are linked in a doubly linked list.

An array Pred stores the predecessor of each element.

Successors of the same element are linked in a doubly-linked list,
pointed by the predecessor.

Each element has a rank, indicating the number of its successors.

A pointer π∗ indicates the root with the minimum key value.
An array Lost counts how many successors a non-root node has lost.

An array Bucket contains pointers to roots of rank 1, 2, . . . , ⌊logΦ n⌋.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Linking and cutting

All operations on a Fibonacci heap use two basic sub-routines:

• Link(i, j): merges two distinct trees into a single tree. The roots i

and j of the two trees must have the same rank.

• Cut(i): separates the subtree rooted at i from its tree so that i

becomes the root of a new tree.

In Link(i, j), one of the two roots becomes a successor of the other
(depending on their key values).

Both operations require O(1) time to update the data structures.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Potential function

Consider a potential function τ defined as the number of trees in the
heap.

Every Link operation decreases τ by 1 unit.

Every Cut operation increases τ by 1 unit.

Therefore, the number of executions of Link is bounded above by the

number of executions of Cut plus the starting value of τ , which is at

most n.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Invariant properties

A Fibonacci heap has the following invariant properties.

Property 1.

The key value of each element is less than or equal to the key values

of its successors.

Property 2.

Every non-root node may have lost at most one successor after

becoming a non-root node.

Property 3.

No two roots have the same rank.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Lower bounding the size of trees

Property 4.
Every (sub-)tree whose root has rank k contains at least F (k + 2)
elements.

The proof is based on invariant Property 2 and invariant Property 3
and on the Fibonacci numbers sequence.

Proof.

Consider node w with rank k .

Sort its k successors according to the order in which they have been

appended to w , from the earliest to the latest.

Consider node y , the i th successor of w , with 1 ≤ i ≤ k .

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

A lemma

Lemma. rank(y) ≥ i − 2.

• Before linking y to w , w had at least i − 1 successors.

• When y had been linked to w the two nodes had the same rank.

Therefore, at that moment y had at least i − 1 successors.

• After having being linked to w , y may have lost at most one

successor.

Therefore y must currently have at least i − 2 successors.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Proof of Property 4

The lemma implies that the subtree rooted at w has a number of
nodes at least equal to

G(k) = 1+G(0)+G(0)+G(1)+G(2)+ . . . ,+G(k−2) = 3+

k−2
∑

j=1

G(j).

Therefore G(k)−G(k − 1) = G(k − 2) as with Fibonacci numbers.

The base of the recursion is slightly different from Fibonacci numbers:

• G(0) = 1
• G(1) = 2
• G(2) = 3

0 1 2 3 4 5 . . .

G 1 2 3 5 8 13 . . .

F 0 1 1 2 3 5 . . .

G(k) = F (k + 2).

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Bounding the rank

Property 5. The rank of all nodes in a Fibonacci heap is bounded by
⌊logΦ n⌋.

Lemma. F (k + 2) ≥ Φk , where Φ = 1+
√

5
2

.
(The proof is omitted here. It will be given later.)

Since the size of any tree is bounded by n, we have

n ≥ size(T) ≥ F (k + 2) ≥ Φk

where k is rank of the root of tree T . Therefore,

k ≤ logΦ n.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Bounding the number of trees

Property 6. A Fibonacci heap contains at most ⌊logΦ n⌋ trees.

Proof. This property follows from:

• Property 3: No two roots have the same rank.

• Property 5: No rank can be larger than ⌊logΦ n⌋.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Primary and secondary Cuts

To keep invariant property 2 valid, we must ensure that every
non-root node does not loose more than one successor after

becoming a non-root node.

Lost(i) indicates how many successors node i has already lost.

For the complexity analysis we use a potential function

µ =
∑n

i=1 Lost(i).

Initially µ = 0 and µ can never become negative.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Primary and secondary Cuts

When a Cut(i) operation is done, two cases may occur. Note that
Pred(i) certainly exists, because i is not a root.

• Lost(Pred(i)) = 0: then Lost(Pred(i)) is set to 1 and the

procedure stops.

• Lost(Pred(i)) = 1: then Lost(Pred(i)) is set to 2 but

Cut(Pred(i)) is executed, to make Pred(i) the root of a new tree.
In turn Cut(Pred(i)) can trigger the execution of another Cut and

so on.

We say that Cut(i) is a primary Cut operation, while the Cut

operations triggered by it are secondary Cut operations.

A cascade of secondary Cut terminates

• when a non-root j is reached with Lost(j) = 0;

• when the root of the tree is reached.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Complexity analysis

Consider a primary Cut(i) operation.

• Lost(i) is set to 0: it decreases by 1 unit or remains unchanged.

• Lost(Pred(i)) is increased by 1.

Therefore a primary cut does not increase the potential µ by more

than 1 unit.

Consider a secondary Cut(i) operation.

• Lost(i) is updated from 2 to 0.

• Lost(Pred(i)) is increased by 1.

Therefore a secondary cut decreases the potential µ by 1.

Therefore, the number of secondary cuts cannot exceed the number

of primary cuts.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Linking trees

Invariant property 3 requires that no two roots have the same rank.

Bucket(k) points to the root of a tree with rank k , if it exists.

Otherwise Bucket(k) = 0.

When a new tree is generated (by a Cut operation for instance), two
cases can occur.

• its root j has rank k and Bucket(k) = 0: then Bucket(k) is

updated and the procedure stops;

• its root j has rank k and Bucket(k) = i: then we execute

Link(i, j), generating a new tree whose root has rank k + 1, and
the procedure is repeated.

A cascade of Link operations terminates when an empty position in

the array Bucket is reached.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

FindMin

This simply uses the pointer π∗ to the root with minimum value of the
key.

No pointer is modified.

Complexity: O(1).

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Insert(i)

A new tree with a single element i is created and it is inserted in the
list of roots in O(1).

The pointer to the best root is possibly updated in O(1).

A sequence of Link operations can be triggered to restore invariant
property 3.

Complexity: O(1) plus the contribution due to the cascade of Link

operations.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

DecreaseKey(i)

The value of element i is updated in O(1).

If the heap property 1 is violated by i and Pred(i), then Cut(i) is

executed and π∗ is updated in O(1).

A cascade of secondary Cut can be triggered.

All trees generated in this way are temporarily stored in a list.

Then the list is scanned and each element of the list is inserted into

the heap, possibly triggering a cascade of Link operations.

Complexity: O(1) plus the contribution due to the cascade of Link
and secondary Cut operations.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

ExtractMin

The minimum key root element i is identified in O(1).

For each successor j of i, Cut(j) is executed. Overall this takes

O(log n), because of the upper bound on the rank of i.

After each Cut, the new tree is immediately inserted into the heap,
possibly triggering a cascade of Link operations.

At the end, Bucket is scanned to find the new root with minimum key

value and to update π∗. This takes O(log n) because of the upper
bound on the number of trees in the heap.

Complexity: O(logn) plus the contribution due to the cascade of

Link operations.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Amortized complexity

To conclude the analysis we should bound the time taken by the

cascades of secondary Cut operations and Link operations.

We have proven that

• the number of secondary cuts cannot exceed the number of

primary cuts;

• the number of Link operations is bounded by n plus the number

of Cut operations.

Therefore, if we consider a long enough sequence of operations (at

least n), the time taken by Link operations and by secondary Cut

operations is bounded by a constant factor times the number of
primary Cut operations.

Therefore we can establish the amortized complexity just counting

primary Cut operations only.
No operation requires more than a single primary Cut, which takes

O(1) time.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Amortized complexity with Fibonacci heaps

Amortized complexity achieved with a Fibonacci heap:

• FindMin: O(1)

• Merge: O(1)

• Insert: O(1)

• DecreaseKey : O(1)

• ExtractMin: O(logn)

One can also prove the following amortized complexity results:

• IncreaseKey : O(logn)

• Extract: O(log n)

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Proving the lemma: F (k + 2) ≥ Φk

Proof for n odd.

We use the following equations:

F (n) =
Φn

√
5
− (1− Φ)n

√
5

F (n + 2) = F (n + 1) + F (n)

1− Φ = − 1

Φ

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Proving the lemma for odd n

F (n + 2) =
Φn

√
5
− (1− Φ)n

√
5

+
Φn+1

√
5
− (1− Φ)n+1

√
5

=

=
1√
5
(Φn − (1− Φ)n +Φn+1 − (1− Φ)n+1) =

=
Φn

√
5
(1− 1

Φn
(− 1

Φ
)n +Φ− 1

Φn
(− 1

Φ
)n+1) =

=
Φn

√
5
(1 + (

1

Φ
)2n +Φ− (

1

Φ
)2n+1) =

=
Φn

√
5
(1 + Φ+ (

1

Φ
)2n(1− 1

Φ
)).

Since (1
Φ)

2n(1− 1
Φ) > 0, then F (n + 2) > Φn

√
5
(1 +Φ).

Since 1+Φ√
5

> 1, then F (n + 2) > Φn.

Heaps Binary heaps d-heaps Binomial heaps Fibonacci heaps

Proving the lemma for even n

Proof for n even.

We use the following equations:

1 +
1

Φ
= Φ

F (n + 2) = F (n + 1) + F (n)

F (n + 2) > Φn ∀n odd.

Assume F (n) > Φn−2 for an even n.

F (n + 2) = F (n + 1) + F (n) > Φn−1 +Φn−2 =

= Φn−1(1 +
1

Φ
) = Φn−1Φ = Φn

Inductive step: F (n) > Φn−2 implies F (n + 2) > Φn.

Induction basis: F (4) = 3 > Φ2.

Therefore F (n + 2) > Φn also for all n even.

	Heaps
	Heaps

	Binary heaps
	Binary heaps

	d-heaps
	d-heaps

	Binomial heaps
	Binomial heaps

	Fibonacci heaps
	Fibonacci heaps

