Implementations of Kruskal algorithm

Giovanni Righini

UNIVERSITA DEGLI STUDI DI MILANO

Selection
©0000000

Median-of-medians

Median selection problem: find the median in a given set (unsorted
list L) of nvalues.
Median-of-medians algorithm.
e Split L in subsets of 5 elements each: S;Vi=1,...,n/5.
Find the median x; for each S;.
Find the median M of the x; values.

Partition L into three lists:

® |, with values smaller than M;
® [, with values equal to M;
® |3 with values larger than M.

Discard L1 or L3 depending on the sought element k.
® Recursively call the procedure on the remaning part of L.

Selection
0®000000

// Procedure Select(L, u, v, k).
if (v—u+1<10) then
Sort(L, u, v)
return L[u — 1+ K]
else
s+ [(v—u+1)/5]
fori=1,...,sdo
S(i) «+ {u+5(—1),...,min{u+5i—1,v}}
x(f) < Median — of — 5(5(/))
M < Median({x(1),...,x(s)})
Partition(L, M, Ly, Lo, L3)
if (k <|L¢|) then
Select(Ly, u,u+ |L1]| — 1,k)
else
if (k > |L1] + |L2|) then
Select(Ls, v — |Ls| + 1, v,k — |L1| — |L2|)
else
return M

Selection
00®00000

Complexity

Median of 5: at most 6 pair-wise comparisons.
Median of a set S of s elements: call Select(S, 1, s, [s/2]).
Size s of Sis n/5.

By definition, at least half of the medians x; (i.e. at least n/10) are
<M (= M).

For each of them, 3 values in S; are < M (> M).
Then, |L4| > 3n/10 (|L3| > 3n/10).
Hence |L3| < 7n/10 (|L1| < 7n/10).

Selection

00080000

Complexity

T(n): n. of comparisons to find the median of n elements.

Finding all medians x; takes at most 6n/5 comparisons.

Finding M takes T(n/5).

Partitioning L takes n — 1 comparisons.

Finding the median of the remaining list takes at most T(7n/10).

Therefore
6n

n n
T(n) < & + T(g) +n+ T<—1O>.
Hence

T(n)<%§:<%+%>k.

k=0

. 1 7 9 . .
Since 5T70-10 < 1, the geometric series converges to a
constant.

Therefore T(n) is O(n) (it can be reduced to 2.95 n).

Selection
0000@000

Selection problem

Selection problem: find the k" smallest value in a given set

(unsorted list N) of n values.

Select algorithm (Blum et al., 1973).
e Split N in n/c subsets of ¢ elements each and sort each of them.
e Find the d smallest element (the representative) in each subset.
e Find the b smallest element, M, in the set of representatives.

¢ Partition the n/c subsets into three parts:

® Left: b — 1 subsets with representatives < M;
® Center: the subset whose representative is M;
® Right: n/c — b subsets with representatives > M.

e [: entries in the left and center columns on rows from 1 to d.
e G: entries in the right and center columns on rows from d to c.
e Compare each element with M.

e Discard either L or G and repeat, until kK — 1 smallest entries or
n — k largest entries have been discarded.

Selection
00000@00

Selection problem

* L
A G
L
L
m ‘ «—T = {d-1h smallest
i element from
f
L > B each column }
b-1 columns with n/c -b columns with

d-th smallest <m d-th smallest > m

UNIVERSITA DEGLI STUDI DI MILANO

Selection
00000000

Complexity

h(c): n. of comparisons needed to sort ¢ elements.
Ford and Johnson (1959): h(c) = 3.7, log, (3/)].
T(n): n. of comparisons needed to find the k" smallest element in a
set of n.
* Sorting ¢ subsets of ¢ elements each: 7
¢ Finding M among the representatives: T
e Comparing each element with M: n.
e Solving the remaining problem: T(n — min{|L|,|G|}).

h(c).
(2):

T(n) = gh(c) + T(n/c)+ n+ T(n—min{|L],|G|}).

Selection
0000000e

Complexity

n
ILl=bd |G| = (E—b+1)(c—d+1)
By selecting b=n/42,c=21,d = 11:

11 n n 11
L= 45" |G|_(§—E+1)11 Zn+ 11

h(21) = 66.

66 31
T(n) < 2 .
(") 21”+T(21)+”+T<42)

Base of the induction: for small enough n, h(n) is linear (e.g. for
n <10, h(c) < 19n).

29,5 (1 3 2, 1 2914 58
-7 — 21 " 42) 7 4-1 773 37

Therefore

1
Hence T(n) is O(n).

Partial sorting
@000

Partial sorting problem

Partial sorting problem: find and sort the k™ smallest values in a
given set N of m values.

SelectionSort algorithm.
e Fori=1,... Kk,
¢ scan the list from N[i] and find the smallest value;
® swap the smallest element with N[i].

Time complexity: O(km). Space complexity: O(m).

Using a (big) binary heap (C++ STLs partial_sort function):
¢ Build a binary heap with the m elements.
e For k times, extract the root and rearrange the heap.
Complexity: O(m + k log m). Space complexity: O(m).

Partial sorting
(o] le]e)

Partial sorting problem

Using a (small) binary heap:
¢ Build a binary max-heap with the first k elements of N.

e Fori=k+1,...,mtimes, if N[i] is smaller than the current root
of the heap, then replace the root and update the heap.

e Sort the elements of the heap.
Complexity: O(k + mlog k). Space complexity: O(k).
Valid alternative if k << mor N is processed on-line.
QuickSelSort algorithm, combining Select and QuickSort.

e find the k" smallest element in N with Select (the pivot);

e scan the list and retain the elements smaller than the pivot (if
needed);

e sort the selected elements.
Complexity: O(m + k log k). Space complexity: O(m).

Partial sorting
ooeo

PartialQuickSort (Martinez, 2004)

Input for each recursive call of PartialQuickSort(N, i, j, k):

e an array N;

e aninterval [, ...,], with i <j;

® a number k of smallest elements of N to sort, with / < k.
Base of the recursion: i = .
Recursive step:

e select a pivot in position p € [/, ..., j];

e partition [/, ...,] as in QuickSort; let p’ be the final position of the
pivot;

e recursively call PartialQuickSort(N, i, p’ — 1, k);
e if kK > p/, then recursively call PartialQuickSort(N, p’ + 1,j, k).

Partial sorting
oooe

PartialQuickSort

/1 Procedure PartialQuickSort(N, i, j, k)
if (/ <j) then
p < Pivot(N, i,j)
p' « Partition(N, i, j, p)
PartialQuickSort(N, i, p’ — 1, k)
if (0’ < k) then
PartialQuickSort(N,p’ + 1., k)

Incremental sorting
@000

Incremental sorting problem (Paredes and Navarro,
2006)

Incremental sorting problem: on-line version of the Partial sorting
problem (k is not given).

Given set N of m numbers, output the elements of N from the
smallest one to the largest one, so that the process can be stopped
after k elements have been output, for any k (not given in input).
Iterate Select.

¢ Repeatedly select the smallest unselected element in N.
Time complexity: O(km). Space complexity: O(m).
Using a (big) binary heap:

¢ Build a binary heap with the m elements.

* Repeatedly, extract the root and rearrange the heap.
Complexity: O(m + k log m). Space complexity: O(m).
These naive methods are dominated by PartialQuickSort.

Incremental sorting
0@00

Incremental Quick Select

Algorithm IncrementalQuickSelect (Paredes and Navarro, 2006).

At each iteration, the algorithm finds the smallest element among
those not yet selected.

The algorithm exploits the same recursion of QuickSort, but it can
stop for each value of k.

As in iterative implementations of QuickSort, it keeps a stack of pivots
already set at their correct positions in previous iterations.

Partial sorting Incremental sorting
C 00e0

Incremental Quick Select

81 74 12 58 92 86 33 67 18 25 37 51 63 29 4l| s = {16}

— N

41 29 12 37 25 18(49

%

67 86 92 58 51 63 74 e1| s = {16, 7}

k::gls 29 12|33|37 41| 8 = a6, T, &)

Figure: Positions are numbered from 0 to 15.

UNIVERSITA DEGLI STUDI DI MILANO

Incremental sorting
oooe

Incremental Quick Select

Algorithm 1 Procedure IQS(N)

1: S« {s}

2. k<0

3: repeat

4: if Top(S) = k then
5: Pop(S)

6: return N[K]

7: k+— k+1

8: else

9 p + Pivot(N, k, Top(S) — 1)

10: p' «+ Partition(N, k, Top(S) — 1, p)
11 Push(S, p')

12: until k =s

Worst-case complexity: O(m?).
Average-case complexity: O(m + k log k).

Kruskal algorithm
®000000000000000

Comparing MST algorithms

Computational complexity:
¢ Fibonacci heaps (Fredman and Tarjan, 1987, Gabow et al. 1986)
for Prim algorithm: O(m + nlog n).
¢ Union-Find for Kruskal algorithm: O(mlog n) for sorting and
O(m+ nlog n) for the MST.

A randomized algorithm by Karger (1993) runs in linear expected
time.

In practice:
¢ Kruskal: effective when the edge weights are drawn from a small
range of integers or when the graph is sparse;
e Prim: effective in all the other cases, especially when the graph
is dense.
Experimental comparisons (Moret and Shapiro, 1991, Bazlamagci
and Hindi, 2001):
® Prim algorithm implemented with a binary heap (O(mlog n)) is
faster than Kruskal.
¢ Both algorithms are faster than the more recent ones.

Kruskal algorithm
O®00000000000000

Implementing Kruskal algorithm

Naive implementation: first the edge list is sorted; then it is scanned
to compute a MST.

“On demand sorting”: keep the edges partially sorted in a binary
heap, constructed by QuickSort when needed, i.e. when all
previously sorted edges have been examined.

QuickSortKruskal (QSK): no binary heap is constructed. Kruskal
algorithm is executed from within QuickSort: the two steps of sorting
and selecting the edges of the MST proceed in parallel.

Kruskal algorithm
0O0@0000000000000

Quick Sort Kruskal

QSK: the recursive procedure is run on the leftmost part first and on
the rightmost part later, for each interval to be sorted.

Base of the recursion: interval with a single element.

Every time QuickSort completes the sorting of the leftmost part of an
interval, the pivot element is considered for insertion in the MST as in
Kruskal algorithm, before sorting the rightmost part of the interval.

e edges are sorted only when needed;

® no additional data-structure and initialization.

QSK is especially effective when the input graph is given as an edge
list.

Kruskal algorithm
O00@000000000000

Quick Sort Kruskal

/I QuickSortKruskal. IN: £. OUT: T.
InitUnionFind

T+0

count + 0

QuickSortK(1, m)

E: input list of edges.
T: list of selected edges.
count: cardinality of T.

Kruskal algorithm
0O000@00000000000

// Procedure QuickSortK(p, q)
et +q
if p < g then
e «p
while e~ < e do
while &[e"].cost > £[p].cost do
et +— et —1
while (e~ < e™) A (€]e™].cost < £[p].cost) do
e +—e +1
if e~ < et then
Swap(e~,et);e” +— e +1;et + et — 1
Swap(p, e™)
if e” > pthen
QuickSortK(p, et — 1)
if count < n— 1 then
TestEdge(e™)
if (count < n—1) A (eT < q) then
QuickSortK(e™ +1,q)

Kruskal algorithm
O0000@0000000000

Quick Sort Kruskal

The pivot element in position et is tested by TestEdge(e™)

e after sorting the edges with cost smaller than the pivot
(QuickSortK (p, et — 1))

* before sorting the edges with cost larger than the pivot
(QuickSortK (et +1,q)).

// Procedure TestEdge(e)
i+ Ele].i
jElelj
if head|i] # head]j] then
count < count + 1
T« TUu{lij}
if card[head|i]] > card[head]j]] then
Append(head]j], head]i])
else
Append(head|i], head[j])

Kruskal algorithm
O00000@000000000

The Star Quick Sort Kruskal algorithm

Input graph: set of stars.

Naive solution 1: produce a sorted list of edges by merging the
subsets and then sorting the resulting list or heap.

Naive solution 2: produce a sorted list of edges by separately sorting
each star and then merging them into a unique sorted list or heap.

In StarQuickSortKruskal (SQSK) stars are not merged.

A sorted list is produced on demand by QuickSort from the edges of
each star; the first not-yet-examined edge in each list is the candidate
edge for its vertex.

All candidate edges are partially sorted in a binary heap.

lteratively:
® the best candidate e is selected;
® QuickSort is re-activated to find the next candidate for the
endpoints of e;
¢ the heap is rearranged.

Kruskal algorithm
0000000800000 000

The Star Quick Sort Kruskal algorithm

Main idea: save a potentially large fraction of the computing time that
would be spent to (partially) sort each vertex star in a binary heap or
a in sorted list, since only a very small fraction of the edges in each
star is likely to be considered by Kruskal algorithm.

The candidate edge in each star is the last edge of the sorted part of
the star; all the edges with a cost larger than the candidate remain
unsorted.

Pro: the sorting step does not work on a (typically large) set of
edges, but on several (much smaller) subsets.

Drawback: the selection of each edge requires some non-trivial
steps.

Since sorting requires super-linear computing time, it is intuitively
convenient to (partially) sort n subsets of cardinality m/n rather than
a unique set of cardinality m, especially when the input is given as a
set of vertex stars.

Kruskal algorithm
00000000 e0000000

SQSK: iterative Quick Sort

Since in SQSK QuickSort must be executed step-by-step only
on-demand, an iterative implementation is needed.

A step of QuickSort is executed by QSstep(v) on Star(v) every time
v is the endpoint of the selected edge.

The effect of QSstep is to define at least one more sorted element in
Star(v).

Stack(v): a stack associated with the star of each vertex v.

The stack contains the intervals in which the star has been
partitioned by QuickSort.

Every time the current interval [p, .. ., q] is divided into a left interval
[p,...,k—1] and aright interval [k +1,..., q] by a pivot element k,

e therightinterval [k +1,..., q] is put into the stack,

e the pivot element k is put in its final position between the two
intervals,

e the left interval [p, ...,k — 1] becomes the new current rang&

Kruskal algorithm
0O00000000e000000

SQSK: iterative QuickSort

h(v): position of last sorted element in Star(v).

If h(v) + 1 coincides with the leftmost element of the interval on top of
Stack(v), then the new candidate edge is already available: increase
h(v) and stop.

Otherwise:

extract [p, q] to be sorted from Stack(v);

select a pivot element k in [p, q];

temporarily put the pivot in the first position;

separate all elements smaller than or equal to the pivot (left) from
the others (right);

put the pivot back between the two sub-intervals;

e store the right interval [k + 1, g] in Stack(v), unless its cardinality

is less than 2;
repeat on the left interval [p, k — 1], until its cardinality is less
than 2.

After this step at least one more edge has been sorted and h(v) can
be increased by 1, indicating the next candidate in Star(v).

Kruskal algorithm
0000000000 e00000

// Procedure QSstep(v)
if (Stack(v) # nil) A (h(v) +1 = Top(v).p) then
[p. q] < Pop(v)
while p < g do
k < Pivot(v, p, q)
Swap(v, k,p); et + q; e <+ p+1
while e~ < e* do
while Star(v)[et].cost > Star(v)[p].cost do
et +— et -1
while (e~ < e™) A (Star(v)[e~].cost < Star(v)[p].cost) do
e «—e +1
if e~ < et then
Swap(v,e ,e");e” «—e +1;e" et —1
if (e" # p) then
Swap(v, p, e™)
if e +1 < g then
Push(v, et +1,q)
g+ et —1
h(v) < h(v) +1

SQSK: initialization

Kruskal algorithm
000000000000 000

// Procedure InitSQSK
fori=1,....ndo
Stack(i) < 0
Push(i, [1, |Star(i)]])
h(i)+< 0
QSstep(/)
BuildHeap(Heap)
T+ 0
count + 0
InitUnionFind

Partial sorting Incremental sorting Kruskal algorithm

SQSK: iteration

/I Procedure SQSK. IN: Star. OUT: T.
INitSQSK
while count < n—1do
i < Heap[1]
j « Star(i)[h(i)].vertex
w < Star(i)[h(i)].cost
QSstep(/)
(QSstep(/))
IncreaseKey(/)
(IncreaseKey()))
if head([i] # head[j] then
T« TU{[ijl}
count < count + 1
UpdateUnionFind(/, j)

Parenthesized instructions are needed if there are duplicates (each)
edge belongs to two stars).

Kruskal algorithm
0000000000000 e00

The pivot selection

The selection of the pivot is crucial role for the performance of all
algorithms (like QSstep) that need to partition intervals recursively.
QuickSort.

Purpose: completely sort a set of values.

Pivot selection: try to achieve a balanced partition.

SQSK.

Purpose: quickly compute the next candidate edge when required.
Pivot selection: go for an unbalanced partition.

Most part of each star is likely to be useless: the initial left interval
should better be much smaller than the initial right interval.

Kruskal algorithm
0000000000000 0e0

The pivot selection

Heuristic rule: select r elements at random with uniform probability
distribution in [p, ..., g] and take the min cost one as the pivot
element.

The larger r, the more unbalanced the resulting partition is likely to
be.

Rule of thumb: set r to min{(qg— p+ 1)/100,7}.
Set 7 to a larger value in InitSQSK and to smaller values otherwise.

There is room for heuristics, especially self-adaptive heuristics.

Kruskal algorithm
000000000000 000e

Experimental results

QSK: an iteration of Kruskal algorithm is done sometimes during the
execution of QuickSort.

SQSK: an iteration of QuickSort is done sometimes during the
execution of Kruskal algorithm.

QSK is designed to work on a list of edges.
SQSK is designed to work on a set of vertex stars.

Both QSK and SQSK can be faster than Prim algorithm.

Besides size and density, the computing time is also affected by the
clustering degree of the input graph:

Non-clustered: SQSK wins.

Clustered: Prim wins.

	Selection
	Selection

	Partial sorting
	Partial sorting

	Incremental sorting
	Incremental sorting

	Kruskal algorithm

