The minimum cost spanning tree problem

Giovanni Righini

UNIVERSITA DEGLI STUDI DI MILANO

The problem
©0000000

Definitions - 1

Agraph G = (V,€&) is a tree if and only if it is connected and acyclic.
e Connectivity: for each cut, at least one edge belongs to the tree.

e Acyclicity: for each cycle, at least one edge does not belong to
the tree.

Givena g = (V,&) asubset F C € is:
e aforestif it does not contain cycles;
e a connector if (V, F) is connected;
e a spanning tree if (V, F) is a tree;
* a maximal forest if there is no forest containing it.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
O@000000 0000000000000 00000 0000000000000
O000000000000000

Definitions - 2

A graph G = (V, £) has a spanning tree if and only if it is connected.

Given a connected graph G = (V, £), F is a spanning tree if and only
if:

e Fis a maximal forest;

e 7 is a minimal connector;

e Fis aforest with | F| = |[V| — 1 edges;

e Fis a connector with || = |V| — 1 edges.

UNIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

0O0@00000 0000000000000 00000 0000000000000
O000000000000000

Definitions - 3

Given a graph G = (V, £) with k connected components, every
maximal forest in it has [V| — k edges.

It forms a spanning tree in each connected component of G.
Every maximal forest is also a maximum cardinality forest.

Analogously, every connector contains a minimum cardinality
connector.

UNIVERSITA DEGLI STUDI DI MILANO

The problem
00080000

The Minimum Spanning Tree Problem

Let G = (V, &) be a connected graph.
Let c: & — R a cost function.

We define VF C &:

c(F)=) ce

ecF

Problem (Minimum Spanning Tree Problem). Find a spanning tree
of minimum cost in G.

The problem
0000@000

Properties of spanning trees (1)

Property 1. A spanning tree of a graph G = (V, £) has |V| — 1 edges.
Owing to Property 1, we can assume ¢, > 0 for all edges e € €£.

If not, we can add a “large enough” constant to all edge costs. This
does not change the ranking of the feasible solutions, because all
feasible solutions contain the same number of edges.

The problem
00000@00

Properties of spanning trees

Property 2. If T is a spanning tree containing edge e, then T\{e} is
a forest made of two connected components, separated by a unique
cut C(T,e).

Property 3. If T is a spanning tree and u and v are two vertices of
the graph, T contains a unique path P(T, u, v) between them.

Definition. F is a good forest iff it belongs to a minimum cost
spanning tree.

Theorem. Given a good forest 7 and given an edge e ¢ 7, 7 U {e}
is a good forest iff there is a cut C disjoint from F such that e is an
edge with minimum cost in C.

The problem
00000000

Proof

Necessity. Let T* be a minimum cost spanning tree containing
Fu{e}. Then both 7 and F U {e} are good forests.

Let C(T*, e) be the cut disjoint from T*\{e}. Then C(T*, e) is also
disjoint from F.

Consider any f € C(T*,e): T' = T*\{e} U {f} is a spanning tree.
Since T* is optimal, then ¢(T*) < ¢(T’) and then c(e) < c(f).
Then, e is an edge of minimum cost in C(T*, e).

The problem
0000000e

Sufficiency. Let T* be a min cost spanning tree containing 7; then 7
is good. Consider a cut C disjoint from F and e of min cost in C.

If e e T*then F U {e} is good.

If e=[u,v] & T* thenlet P(T*, u,v) be the path in T* between u
and v: P(T*, u, v) contains at least one edge f € C. Then,

T' = T*\{f} U {e} is a spanning tree.

Since c(e) < ¢(f), then ¢(T') < ¢(T*) and T’ is a min cost spanning
tree.

Since F U {e} is contained in T, it is good.

The algorithms
®000000000000

Algorithms

Almost all MSTP algorithms exploit the previous theorem: start with
an empty (good) forest 7 and extend it iteratively with an edge

satisfying the theorem requirement, i.e. an edge of minimum cost in a
cut C disjoint from F.

Different algorithms are obtained by different choices of C. The two
most common algorithms are:

e Jarnik (1930), Kruskal (1956), Prim (1957), Dijkstra (1959): C is
the cut that separates the connected component including a
predefined vertex;

e Kruskal (1956), Loberman e Weinberger (1957), Prim (1957): C

is the cut that separates the two connected components including
the endpoints of the minimum cost edge e in a sorted list.

The algorithms
O®00000000000

Prim algorithm: data-structures

Data-structures of Prim algorithm:

e T: current forest (edge set)

e z:costof T
flag[v]: binary flag indicating whether vertex v is spanned by T
r: special vertex, arbitrarily chosen
cost[v]: minimum cost among the edges connecting v with
verticesin T
pred|v]: the other endpoint of an edge of minimum cost between
vand T

The algorithms
O0@0000000000

Prim algorithm: initialization

// Procedure Init

T+ 0

z+0

forv=1,...,ndo
flag[v] < O

flag(r] < 1

forv=1,...,ndo
cost|v] «+ cJr, V]
pred[v] < r

The algorithms
0008000000000

Prim algorithm

/[Prim algorithm

Init

fork=1,...,n—1do
mincost + oo

forv=1,....ndo
if (flag[v] = 0) A (cost[v] < mincost) then
Vv

mincost + cost[v]
T « TU{[pred[v],V]}
Z < Z + mincost

flag[v] « 1
forv=1,...,ndo
if (flag[v] = 0) A (c[v, v] < cost[v]) then
pred[v] <V

cost|v] « c[v, V]

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 O000@00000000 00000 0000000000000
O000000000000000

Prim algorithm

The complexity is O(n?).

With 2-heaps it is possible to obtain O(mlog n).

With Fibonacci heaps it is possible to obtain O(m + n log n).

UNIVERSITA DEGLI STUDI DI MILANO

The algorithms
O0000®0000000

Kruskal algorithm (1956)

// Kruskal algorithm
T+ 0;z+0
E « Sort(€)
forv=1,...,ndo
List[v] < {v}; head[v] < v; card[v] + 1
while (|T| <n—-1)do
[u,v] < argmin,_c{Ce}; E < E\{[u, v]}
if (head[u] # head|v]) then
T+ Tu{lu,v]};z+ z+clu, V]
if (card|[v] > card[u]) then
Swap(u, v)
L[u] + L[u] U L[v]; card[u] + card[u] + card[v]
forie L[v]do
head|i] < head[u]

The algorithms
O00000e000000

Kruskal algorithm: complexity
Sorting the edges requires O(mlog n).

The edges can be partitioned into n subsets of cardinality
ki Vi=1,...,nby arbitrary selecting one of their endpoints.

The following properties hold:
e ki<nVi=1,...,n
Yl ki=m
Each subset can be sorted in O(k; log k;).
Hence the overall complexity is O(>"7_, ki log k;).
For the first property above, >"7_, kilogki < >_" , kilog n.

For the second property above, 27:1 kilogn = mlog n.

The algorithms
O000000e00000

Kruskal algorithm: complexity

Once n sorted lists have been produced, they can be merged in a
unique sorted list in O(mlog n).

In O(n) a binary heap containing the (partially sorted) heads of the n
lists is built.

For m times the root is extracted from the heap and the heap is
rearranged in O(log n): this takes O(mlog n).

The algorithms
00000000 e0000

Kruskal algorithm: complexity

After sorting, the complexity is O(m + nlog n) and it can be obtained
with linked lists.

A list L is associated with each component of the current forest.
For each vertex v € V, head(v) is the head of the list L, containing v.
Initially head(v):=v and L,:={v} for all vertices.

At each iteration:

e test whether the next edge e = [u, v] in the list would close a
cycle or not;

e if not, update the data-structure.

The algorithms
0000000008000

Kruskal algorithm: complexity

The test is: head(u) = head(v)?

It is executed in O(1) at most m times.

Hence it requires O(m) overall.

When extending the current forest with e = [u, v]:

¢ detectable the shortest list among L, and L, (in O(1)) with a
cardinality counter associated with each list;

® append it to the longest one (in O(1));
e update the cardinality of the longest list (in O(1));
¢ update the head for all vertices in the shortest list.

Property. No vertex can belong to the shortest list more than log n
times, because the size of the shortest list at least doubles every time
its head is updated.

Therefore the head update operation requires at most O(log n) for
each vertex, i.e. O(nlog n) overall.

The algorithms
0000000000800

Boruvka algorithm (1926)

It requires that all edge costs are different from each other and it
allows for a parallel implementation.

// Boruvka algorithm
F«0
while (|7] < n—1) do
F 10
for K € Components(F) do
F' = Fru{argminggs){Ce}}
F+ FUF

Let eq, eo,. .., e the edges inserted into 7’ at a generic iteration with
Co; < Cgp < ... < Cg,-

Foreachi=1,..., k, e;is the minimum cost edge leaving
Fu{ey,e,...,e_1}, because none of {ey, e,...,6i_1} leaves the
i component.

Then F is a good forest as if the edges were inserted sequentially.

The algorithms
0000000000080

Dual greedy algorithm

It deletes edges from a connector instead of inserting them into a
forest.

Definition. A connector is good if it contains at least one minimum
cost spanning tree.

Theorem. Given a good connector K and an edge e € K, K\{e} is a
good connector iff K contains a cycle C such that e is the maximum
cost edge in C.

Kruskal (1956): sort the edges and starting from the connector
K = &, iteratively delete the maximum cost edge which is not a bridge
(i.e. without disconnecting the graph).

Algorithm and data-structures

The problem The algorithms Primal-dual algorithms
0000000000000

00000000 000000000000 e 00000
O000000000000000

More algorithms

Dijkstra algorithm (1960):

Arbitrarily sort the edges and iteratively insert them into a forest
(initially empty).

When an insertion forms a cycle C, delete the maximum cost edge in
C.

Kalaba algorithm (1960):
The same, but starting from an arbitrary spanning tree.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

A mathematical programming model
min z = " CeXe
ecé
s.t. Xe > 1 vScv (1)
ecd(S)
Xe €{0,1} Vee&

A cut §(S) is the subset of edges with one endpoint in S.

Constraints 1 impose connectivity. Acyclicity comes for free from cost
minimization.

UNIVERSITA DEGLI STUDI DI MILANO

Primal-dual algorithms
O®@000

Another mathematical programming model

min z = Z CeXe

ec&
st. Y Xe=n—1 2)
ec&
> Xxe<|S|—1 vScVy (3)
ec£(S)
Xe € {0,1} Vee &

£(S) is the edge subset of the subgraph induced by S.

Constraints (3) impose acyclicity instead of connectivity. Hence we
also need constraint (2) to impose connectivity.

Integrality conditions are redundant.

The maximum value x, can take is 1, because of the acycI|C|ty
constraint with |S| = 2;

The problem The algorithms Primal-dual algorithms
00000000 0000000000000 00800
0000000000000 000

The dual model

ec&
s.t. er =n—1
ecé&
- > Xe>—(IS|-1)
ec&(S)
Xe >0

This linear program has a dual:

max w=— Y (IS| —1)ys +(n—1)yv
Scv

st.— > ystw<ce
ScVv:ec&(S)
¥s=>0
yy free

Algorithm and data-structures

vScVy
Vee &
Vee&
vScVy

UNIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures

00000000 0000000000000 [e]e]e] le} 0000000000000
0000000000000 000

Complementary slackness conditions

Primal C.S.C.:

Xe(Ce + Z Ys—yv)=0 Veekt.

ScV:ec&(S)
Dual C.S.C.:
(O xe—(n—1))=0.
ect
ys(ISI=1=) x)=0 vVScV.
ec&(S)

The initial primal solution x, = 0 Ve € £ is primal infeasible (and
super-optimal): the cardinality constraint is violated.

The initial dual solution ys = yy = 0 VS C V is dual feasible (and
sub-optimal).

Primal-dual algorithms
[e]eJe]e] }

Primal-dual algorithm

Primal-dual interpretation of Kruskal algorithm:

e Dual iteration.
Acyclicity constraints are always kept satisfied.
The only violated primal constraintis >, . xe = n— 1.
The corresponding dual variable yy is increased (dual ascent),
until a dual constraint becomes active; it corresponds to a primal
variable xe.

e Primal iteration.
The primal variable x, enters the basis and the infeasibility of the
cardinality constraint decreases.
Some acyclicity constraints become active: hence some dual
variables can enter the dual basis.
In turn, this allows to increase yy further.

The CSC yv(D_gce Xe — (n— 1)) = 0 corresponds to a violated
equality constraint in the primal problem.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000 00000 0000000000000
@000000000000000

Kruskal algorithm: an example

ONONONBONONO
yv=0.
guzl%.s.c.:

yvlk = (n=1)) =0(0~5) =0,

N X X
I
coo

UNIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000 00000 0000000000000
O®00000000000000

An example: dual iteration 1

N X X
I
coo

@ 6 6 6 O ®
w_ 1100;< 5 — 50.
Dual C.S.C.:

yv(k—=(n—1)) =10(0-5) = —50

UNIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000 00000 0000000000000
OO ®0000000000000

An example: primal iteration 1

10

ONONONONONO
k=1.

Yy = 10.
X566 — 1.

w=-0x1+10x5=50.
z=10. Dual C.S.C.:

yv(k—(n—1)) = 10(1-5) = —40.

UNIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000 00000 0000000000000
O00@000000000000

An example: dual iteration 2

10

ONONONONONO
k=1.

Yy = 13.
X566 — 1.

w=-383x1+13 x5=62.
z=10. Dual C.S.C.:

yv(k—(n—1)) =13(1-5) = -52.

UNIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms

Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000

00000 0000000000000
O000@00000000000

An example: primal iteration 2

13/43 10/40

2 e 6 6 O @
k=2. yv = 13.
Xs6 = X3 = 1. w=-3x1-0x1+
z = 23. +13 x 5 =62.

Dual C.S.C.: .
yv(k—(n—1)) =13(2-5) = =39

URIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms

Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000

00000 0000000000000
O0000@0000000000

An example: dual iteration 3

13/43 10/40

2 e 6 6 O @
k=2, yv = 17.
Xs6 = X3 = 1. w=-7x1—-4x1+
z = 23. +17 x5 =74.

Dual C.S.C.: .
yv(k—(n—=1)) =17(2-5) = =51.

URIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000 00000 0000000000000
O00000e000000000

An observation

Several primal constraints are now
active: several dual variables can
enter the basis:

(2,5} : Xos = 1

{2,3, 5} : Xo3 + Xog = 2
{2,5,6} : Xo5 + X5 = 2
{2,3,5,6} 1 X034 Xo5 4+ X56 = 3

k = 3. Which dual variable should we

is?
Xsg = Xog = Xos = 1. choose to enter the basis*

z = 40.

UNIVERSITA DEGLI STUDI DI MILANO

Primal-dual algorithms
O000000@00000000

An observation

Active dual constraints:

[2,5] : o5 + Vo35 + Yos6 + Yesse + Co5 = Yv
[2,3] : Y23 + Vo35 + Vo356 + Co3 = Yv
[5.6] : yse =+ Yos6 + Y2356 + Cs6 = Vv
For each unit increase of yy (providing value 5 in the dual objective),
we can keep the dual constraints active with a unit increase of:
® yss and yo3 and yos: the costis 1+14+1=3;
® y5s and yo35: the costis 1+2=3;
® yo3 and yose: the costis 1+2=3;
® yo356: the costis 3.

From the viewpoint of the dual active constraints and the dual
objective function, all these possibilities are equivalent.

Primal-dual algorithms
O0000000e0000000

An observation

But from the viewpoint of non-active dual constraints, they are not: if
we choose y»3s6 to enter the basis, no dual constraint corresponding
to any other edge in {2, 3,5, 6} will become active.

Edges reduced costs are:

Ce = Co + Z Ys—Yv.
ScViecg(S)

Reduced costs of all edges “covered” by basic dual variables do not
decrease anymore.

The dual variable y»356 dominates the others; its corresponding primal
constraint 3-oce(2,3,5,61) Xe < 3 dominates those corresponding to
the others: i.e., if we do not select more edges in S = {2,3,5,6}, we
cannot select more edges in any subset of S.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000

00000 0000000000000
000000000 e000000

An example: primal iteration 3

k=3.

y\/:17.
Xs6 = Xo3 = Xo5 = 1. w=-7x1-4x1+

z = 40. +17 x5 =74.

Dual C.S.C.:
yv(k—(n—1)) =17(3-5) = ~34.

URIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000

00000 0000000000000
0000000000800 000

An example: dual iteration 4

k=3.

y\/:25.
X56 = Xo3 = Xo5 = 1. w=-7x1-4x1-8x3+

z = 40. +25 x 5 =90.

Dual C.S.C.
yv(k—(n—1)) = 25(3-5) = =50.

URIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000

00000 0000000000000
00000000000 e0000

An example: primal iteration 4

k =4.

y\/:25.
X56:X23:X25:X14:1. w=-7x1-4x1-8x3+

Z = 65. —0x1+25x5=90.

Dual C.S.C.:
yv(k—(n—1)) = 25(4 - 5) = 25,

URIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms

Primal-dual algorithms
00000000 0000000000000

Algorithm and data-structures

00000 0000000000000
000000000000 e000

An example: dual iteration 5

Xs56 = Xo3 = Xo5 = X14 = 1. w=-7x1-4x1-12x 3+
Z = 65.

—4x1+29 x5 =094
Dual C.S.C.:

yv(k—(n—1)) = 29(4—5) — L29.

URIVERSITA DEGLI STUDI DI MILANO

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000 00000 0000000000000
0000000000000 e00

An example: primal iteration 5

L —yv =-29 (123456)

k = 5 (feasible!). yv =29.
Xo3 = X556 = Xo5 = X14 = X12 = 1. w=-7x1-4x1-12 x 3+
z =94. —4x14+29 x5=94.

Dual C.S.C.:
yv(k—(n—1))=29(5-5) =0

UNIVERSITA DEGLI STUDI DI MILANO

Primal-dual algorithms
0000000000000 0e0

Dual optimal solution

Dual feasibility requires

>_scviece(s) Vst Ce =
yy Veeé&

For each connected
component S, the value that
the corresponding dual
variable ys takes is equal to
the difference between the
minimum edge cost in the cut
4(S) and the maximum edge
cost in the minimum spanning
tree of the induced subgraph
E(S).

—yv=-29 (123456
29

Yozse =12 29

y\/:29
w=-7x1-4x1-12x 3+
—4x14+29 x5=94.

Dual C.S.C.:

yulk=(n=1)=29(5-5) =0 =" .

Primal-dual algorithms
0000000000000 00e

Primal optimal solution

The reduced cost of each edge is
the difference between its cost and
the largest cost along the (unique)
path between its endpoints in the
spanning tree.

Edges with positive reduced cost
do not belong to the minimum cost
spanning tree, because there is a
cycle in which they have the
largest cost.

Owing to the dual ascent
k=5. procedure (monotonic increase of
Xp3 = Xs6 = Xo5 = X14 = X12 = 1. yv), edges are chosen in
z =94 non-decreasing order according to
their costs.

Algorithm and data-structures
©000000000000

The algorithm and the data-structures

Edge Cost x
5,6 10 0
2,3 13 0
2,5 17 0
3,6 20 0
2,6 22 0
1,4 25 0
1,2 29 0

Vertex Head Card. ist 1,5 31 0
4,5 35 0
z=0 k=0

[op &) I~ GO BN \ O I
OOk, WON—
—_ o
OO WN =

Algorithm and data-structures
0®00000000000

Dual iteration 1

Edge Cost x

5,6 10
2,3 13
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
Vertex Head Card. List 1,5 31
4,5 35
z=0 k=0

Edge [5, 6] accepted.
List 6 is appended to list 5.

oOUBRWN =
oA WN =
— — — — —,)
o hwWN =C

Primal iteration 1

Algorithm and data-structures
00®0000000000

Edge Cost «x
5,6 10 1
2,3 13
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
Vertex Head Card. List 1,5 31
1 1 1 1 4,5 35
2 2 T2 z=10 k=1
3 3 1 3
4 4 1 4
5 5 2 56
6 5 0

Dual iteration 2

Vertex Head Card. List
1 1 1 1
2 2 1 2
3 3 1 3
4 4 1 4
5 5 2 56
6 5 0

Algorithm and data-structures
000@000000000

Edge Cost x
5,6 10 1
2,3 13
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=10 k=1

Edge [2, 3] is accepted.
List 3 is appended to list 2.

Algorithm and data-structures
0000®00000000

Primal iteration 2

Edge Cost «x
5,6 10 1
2,3 13 1

2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
Vertex Head Card. List 1,5 31
1 1 1 1 4,5 35
2 2 2 23 z=23 k=2
3 2 0
4 4 1 4
5 5 2 56
6 5 0

Dual iteration 3

Vertex Head Card. List
1 1 1 1
2 2 2 23
3 2 0
4 4 1 4
5 5 2 56
6 5 0

Algorithm and data-structures
00000®0000000

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=23 k=2

Edge [2, 5] is accepted.
List 5 is appended to list 2.

Algorithm and data-structures
0000008000000

Edge Cost «x
5,6 10 1
1

1

2,3 13

2,5 17

3,6 20

2,6 22

1,4 25

1,2 29

Vertex Head Card. List 1,5 31
1 1 4,5 35

2356 z=40 k=3

OO wWN =
[\SIN \CRE S \C I \C

4
0
1 4
0
0

Vertex Head Card. List
1 1 1 1
2 2 4 2356
3 2 0
4 4 1 4
5 2 0
6 2 0

Algorithm and data-structures
0000000800000

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=40 k=3

Edge [3, 6] is rejected.
Both its endpoints belong to list 2.

Vertex Head Card. List
1 1 1 1
2 2 4 2356
3 2 0
4 4 1 4
5 2 0
6 2 0

Algorithm and data-structures
0000000080000

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22
1,4 25
1,2 29
1,5 31
4,5 35

z=40 k=3

Edge [2, 6] is rejected.
Both its endpoints belong to list 2.

Vertex Head Card. List
1 1 1 1
2 2 4 2356
3 2 0
4 4 1 4
5 2 0
6 2 0

Algorithm and data-structures
0000000008000

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22 0
1,4 25
1,2 29
1,5 31
4,5 35

z=40 k=3

Edge [1, 4] is accepted.
List 4 is appended to list 1.

The problem The algorithms Primal-dual algorithms Algorithm and data-structures
00000000 0000000000000 00000 0000000000800
O000000000000000

Primal iteration 4

Edge Cost «x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22 0
1,4 25 1
1,2 29
Vertex Head Card. List 1,5 31
2 14 4,5 35
2356 z=65 k=4

OO wWN =
PN =MNDN =

4
0
0
0
0

Algorithm and data-structures
0000000000080

Dual iteration 5

Edge Cost x
5,6 10 1
2,3 13 1
2,5 17 1
3,6 20 0
2,6 22 0
1,4 25 1
1,2 29
Vertex Head Card. List 1,5 31
2 14 4,5 35
2356 z=65 k=4

Edge [1,2] is accepted.
List 1 is appended to list 2.

OO wWN =
PN =MNDN =

4
0
0
0
0

Algorithm and data-structures
0000000000008

Edge Cost X

5,6 10 1

2,3 13 1

2,5 17 1

3,6 20 0

2,6 22 0

1,4 25 1

1,2 29 1
Vertex Head Card. List 1,5 31
0 4,5 35

235614 =94 k=5

The algorithm terminates: k = 5.
All nodes belong to the same list.

OO wWN =
[\SJN RN \C RN \C RN \C T \V]

6
0
0
0
0

	The problem
	The problem

	The algorithms
	The algorithms

	Primal-dual algorithms
	Mathematical programming models
	Example: Kruskal algorithm

	Algorithm and data-structures
	Algorithm and data-structures

