Minimum cost bipartite matching

Giovanni Righini

Universita degli Studi di Milano

Definitions

Given a graph G = (V, £) a matching is an edge subset M C £ such
that it is not incident to any vertex more than once.

A matching is maximal if and only if there is no other matching
containing it.

A matching has maximum cardinality if and only if it contains the
maximum number of edges of £.

A graph G = (V, £) is bipartite when V is formed by two disjoint
subsets S and T and all edges [/,] € £ have an endpoint in S and
the other in 7.

A bipartite graph G = (S, T, £) is complete when there are all
possible edges between Sand 7,i.e. E=S x T.

The problem

We consider the problem of finding the matching of maximum
cardinality and minimum cost between two vertex subsets S and T
defining a weighted bipartite graph.

Data:
® a bipartite graph G = (S, T, &),
e acost function ¢ : £ — R.

Problem (Minimum Cost Bipartite Matching Problem). Find a
minimum cost matching between S e 7 among all those with
maximum cardinality.

Graph pre-processing

We assume:
e the two partitions are balanced: |S| = |T|=n
e the graph is complete: £ =8 x 7.

Observation. If these conditions do not hold, it is always possible to
reformulate the problem in an equivalent way on a complete balanced
bipartite graph.

Graph pre-processing

Balancing the graph.
If the given bipartite graph is not balanced, we insert dummy vertices
in the partition of smaller cardinality, to make it balanced.

No matching is affected by this operation.

Completing the graph.
If the given graph is not complete, we insert dummy edges with a very
large cost (“Big-M”) to make it complete.

Infeasible matchings are now feasible but they have very large cost.
Maximum cardinality feasible matchings in the original graph
correspond to matchings with the smallest number of dummy edges
in the new graph.

Among them, optimality only depends on the costs of the original
edges.

The reformulated problem

After pre-processing, we can reformulate the problem as follows.

Minimum Cost Bipartite Matching Problem (reformulated). Find a
minimum cost complete matching between the two vertex subsets of
a given weighted bipartite graph.

Every solution is represented by an assignment matrix where S is the
row set and 7 is the column set.

An assignment matrix is a binary square matrix with exactly one entry
equal to 1 for each row and each column.

Linear Assignment Problem. Find a minimum cost assignment in a
given square matrix.

Reformulation as a flow problem

A “trivial” way of solving the problem is to transform it into a min cost
max flow problem.

2>
BES R
o
NG
Sy

Cost=0, Cap=1 Cost=0, Cap=1

Figure: Network flow reformulation.

A mathematical model (ILP)

We use a binary variable x; for each edge [/, /] € &, to indicate
whether the edge is in the solution or not.

minimize z =Y ") " ¢;x;

i€S jeT
st Y x;=1 vies
JET
ZX,'/':'I VjET
ieS
xj€4{0,1} VieS, VjeT.

Does it have the integrality property?

A mathematical model (ILP)

We use a binary variable x; for each edge [/, /] € &, to indicate
whether the edge is in the solution or not.

minimize z =Y ") " ¢;x;

i€S jeT
st Y x;=1 vies
JET
ZX,'/':'I VjET
ieS
xj€4{0,1} VieS, VjeT.

e The constraint matrix is totally unimodular.
® The right-hand sides are integer numbers.
Hence all solutions of the linear relaxation have integer coordinates.

A mathematical model (LP)

Relaxing the integrality constraints, the following model is obtained:

minimize z = ") " ¢;x;

ieS jeT
sty x;=1 vies
JET
ZX,'/':'I VjET
ics
0<x; <1 VieS, VjeT.

Upper bounds x; < 1 are redundant because assignment constraints
and non-negativity constraints imply them.

A mathematical model (LP)

So we are left with the following model:

minimize z = ") " ¢;x;

i€S jeT
sty x;=1 vies
jeT
ZXU =1 Vj eT
ieS
X;>0 VieS, VjeT.

This is a LP problem, hence it has a dual problem and it forms a
strong dual pair with it.

The primal-dual pair

Primal problem:

minimize z = ") " ¢;x;

i€eS jeT
st) x;=1 vies
JeET
ZX,’/':1 VjET
ieS
X,'/'ZO VieS, VjeT.

Write the dual.

The primal-dual pair

Primal problem:

minimize z = Z Z CiiX;j

i€S jeT

st) x;=1 vies
jeT
Z Xij = 1 VieT
ies
X,'/'ZO VieS, VjeT.

Dual problem:
maximize w = Z ui + Z v

ieS JeET

stu+v <g VieSVjeT.

UNIVERSITA DEGLI STUDI DI MILANO

The dual problem

maximize w =» Ui+ Y v

€S JET
stu+v <gj VieSvjeT.

Dual variables u and v are unrestricted in sign.

The dual slack variables (primal reduced costs) are:

E,‘/ZC,‘]—U,‘—V/.

For optimality, complementary slackness conditions impose that:

Cixj=0 VieSVjeT.

Partial assignments and primal feasibility

We call partial assignment an assignment satisfying
d xp<1 vies
JET
Z Xij <1 Vj eT.

ieS

Primal infeasibility is measured by the number of missing
assignments.

CSCs impose that in each primal/dual pair of base solutions we may
have x; > 0 only for edges [/, /] for which ¢; = 0.

We call admissible cells of the assignment matrix those where ¢; = 0.

Primal-dual algorithms

A primal-dual algorithm solves linear programming problems
exploiting duality theory and in particular the CSCs.

The algorithm is initialized with a dual feasible solution and a
corresponding primal solution (in general, infeasible) satisfying the
CSCs.

After every iteration the algorithm keeps a pair of primal (infeasible)
and dual (feasible) solutions, satisfying the CSCs.

The algorithm alternates two types of iterations, and it monotonically
decreases primal infeasibility until it achieves primal feasibility.

e Primal iteration: keeping the current dual feasible solution fixed,
find a primal solution minimizing primal infeasibility among those
satisfying the CSCs;

e Dual iteration: keeping the current primal solution fixed, modify
the dual solution, keeping it feasible and the CSCs satisfied.

RSITA DEGLI STUDI DI MILANO

Hungarian algorithm (Kuhn 1955)

The hungarian algorithm is a primal-dual algorithm.

e Primal iteration: keeping u; and v; fixed, and hence c; fixed,
determine x maximizing the number of assignments (x; = 1),
using only admissible cells;

¢ Dual iteration: update u; and v;, keeping ¢; = 0 where x; = 1
and making some inadmissible cells admissible.

Hungarian algorithm: pseudo-code

Begin
Step 1: Dual initialization of u and v;
Step 2: Primal initialization of x;
while (x is infeasible) do
Step 3.1: Path initialization
Path:=nil,
while (Path = nil) do
while (Path = nil) A (L # 0) do
Step 3.2: Labeling procedure
end while
if Path = nil then
Step 4: Dual iteration: Modify v and v;
end if
end while
Step 5: Primal iteration: Modify x;
end while
End

Hungarian algorithm: visualization

e 0 c |t 2 t3 t#|u
s1 |15 22 13 4 |0
s2 112 21 15 7 |0

e e s3|16 20 22 6 |0

° ° s4| 6 11 8 5|0

() (o) v|]0 0 0 0]0

The values in the bottom-right
e o corners are:
t1 12 3 t4] Mate 7= cx.
s 15 22 13 4 nil lilee
s2 |12 21 15 7 nil
s3 |16 20 22 6 nil w=> U+ v
s4 6 11 8 5 nil IGZS /;
Mate | nil_nil_nil_nil | O | ynitally: y=v=0,5=c,w=0.

Initially: x =0, z=0, Card = 0.

Step 1: Dual initialization

This can be done with a dual ascent procedure.

Begin Step 1

forie Sdo
U,'Z=minj€7-{Cij};

end for

forjc T do
vi=minjes{cj — Ui};

end for

End Step 1

The dual variables are raised one at a
time from 0 up to the minimum value that
makes a dual constraint active.

This guarantees that the dual solution
remains feasible.

Complexity: O(n?).

Visualization of Step 1

(o

t1

t2

t3

—
=

s
s2
s3
s4

15
12
16
6

22
21
20
11

13
15
22

v

0

0

0

oo N S

OO O O O|c

() O,

() ()
(0 O,

O O,

O, ()

t1 t2 t3 t4 | Mate
s 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil

Mate | nil nil nil il 0

x =0, Card = 0.

Visualization of Step 1

—
=

N
NooNac

[olloNoNoNe]

c |t t2
e 0 st |11 18
s3 |10 14
° 0 s4 | 1 6
() () v] 0 o
() ()

t1 2 8 t4 | Mate

s 15 22 13 4 nil
s2 |12 21 15 7 nil

s3 16 20 22 6 nil
s4 6 11 8 5 nil
Mate | nil nil nil nil 0

x =0, Card = 0.

Visualization of Step 1

—
=

N
NooNac

oo oo

c |t t2
e 0 st |11 18
s3 |10 14
° 0 s4 | 1 6
() () v] 0 o
() ()

t1 2 8 t4 | Mate

s 15 22 13 4 nil
s2 |12 21 15 7 nil

s3 16 20 22 6 nil
s4 6 11 8 5 nil
Mate | nil nil nil nil 0

x =0, Card = 0.

Visualization of Step 1

c |t t2 3 t4]| u
s1 |10 12 6 0| 4
s2| 4 8 5 0|7
s3| 9 8 13 0| 6
s4| 0 0 O 0|5

v 1 6 3 0|32

t1 t2 t3 t4 | Mate
s 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil
Mate | nil nil nil il 0

Step 2: Primal initialization

Begin Step 2
fork e SUT do
Mate(k):=nil;
end for
Card = 0;
while (3[/, /] : (cj—u(i)—v(j) = 0)A(Mate(i) = nil)\N(Mate(j) = nil))
do
Xj =1,
Card := Card + 1;
Mate(i) := j; Mate(j) = i
end while
End Step 2

A maximal partial matching is computed, using only admissible cells.
This requires scanning a square (n x n) matrix.

Complexity: O(n?).

Visualization of Step 2

t1 t2 t3 t4 | Mate
s 15 22 13 4 nil
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil
Mate | nil nil nil il 0

x =0, Card = 0.

c |t t2 3 t4]| u
s1 |10 12 6 0| 4
s2| 4 8 5 0|7
s3|9 8 13 0| 6
s4| 0 0 O 0|5

v 1 6 3 0|32

There are 7 admissible cells.

Scanning them in lexicographic
order by rows and columns, edge
[1,4] is chosen first.

Visualization of Step 2

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 nil
Mate | nil nil nil 1 4

x14:1,Card:1.

c |t t2 3 t4]| u
s1 |10 12 6 0 4
s2| 4 8 5 0|7
s3| 9 8 13 0| 6
s4| 0 0 O 0|5

v 1 6 3 0|32

We still have three admissible
cells: edge [4, 1] is chosen next.

Visualization of Step 2

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |t t2 3 t4]| u
s1 |10 12 6 0 4
s2| 4 8 5 0|7
s3| 9 8 13 0| 6
s4| 0O 0 O 0|5

v 1 6 3 0|32

No admissible cells are left on
unmatched rows and columns.
The current partial matching is
maximal.

Primal feasibility test

It consists of counting how many edges have been inserted into the
primal solution (partial matching).

Primal feasibility test: ?7.

Primal feasibility test

It consists of counting how many edges have been inserted into the
primal solution (partial matching).

Primal feasibility test: Card = n.

Step 3: Search for an augmenting path

Step 3 consists of searching for an augmenting path, which is also an
alternating path since the graph is bipartite. This is a path a unit of
flow can follow to go from s to t.

Step 3: Search for an augmenting path

Step 3 consists of searching for an augmenting path, which is also an
alternating path since the graph is bipartite. This is a path a unit of
flow can follow to go from s to t.

Every time an s-f path is found, the cardinality of the current partial
matching can be increased by 1 (primal iteration). To find the s-t path
it may be necessary to execute at most O(n) dual iterations, because
each of them allows to reach one more node in 7.

Step 3: Search for an augmenting path

Step 3 consists of searching for an augmenting path, which is also an
alternating path since the graph is bipartite. This is a path a unit of
flow can follow to go from s to t.

Every time an s-f path is found, the cardinality of the current partial
matching can be increased by 1 (primal iteration). To find the s-t path
it may be necessary to execute at most O(n) dual iterations, because
each of them allows to reach one more node in 7.

The path starts from s; every node in S and 7 that can be reached is
labeled. Label of a node is its predecessor.
L is the set of labels to be used to generate others.

Vector p stores the minimum reduced cost value for each unlabeled
column among those in labeled rows.
Vector = stores the corresponding row.

Step 3.1: Path initialization

Begin Step 3.1
L:=0;
fork e SUT do
Label(k):=nil;
end for
forjc 7 do Complexity: O(n?).
p(j):=00; w(j):=nil;
end for
fori e S : (Mate(i) = nil) do
Label(i):=s;
L:=LU{i};
for j € T : (Label(j) = nil) do
if c(i,j) — u(i) - v(j) < p(j) then
p(j):=c(i. f) — u(i) — v(j); n(j):=i;
end if
end for
end for
End Step 3.1

Visualization of Step 3.1

c |11 t2 t3 4| u
s1|110 12 6 0 | 4
s2 | 4 8 5 0] 7
s3| 9 8 13 0| 6
s4| 0 0 0O 0] 5
v 1 6 3 0|32
p | oo oo oo o0

7 | nil nil nilnil

t1 12 t3 t4 | Mate
7 5 5 13 4 7 ;Ir;hgre are two unmatched nodes
s2 12 21 15 7 nil)
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

Visualization of Step 3.1

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |11 t2 t3 4| u
s1|10 12 6 0 | 4
s2| 4 8 5 0] 7
s3| 9 8 13 0 | 6
s4| 0 0 0O 0] 5

v 1 6 3 0|32

p | 4 8 5 0

m | 82 82 s2 82

Insert L = {s2}.

Visualization of Step 3.1

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |11 t2 t3 4| u
s1|10 12 6 0 | 4
s2 | 4 8 5 0] 7
s3] 9 8 13 0 | 6
s4| 0 0 0O 0] 5

v 1 6 3 0|32
p | 4 8 5 0
m | 82 82 s2 82

Insert: L = {s2, s3}.

Step 3.2: Label propagation

Begin Step 3.2
Extract k from L;
if kK € S then
Step 3.2.A: Propagation from k c Sto 7
else
if (Mate(k) # nil) then
Step 3.2.B: Propagation from k< 7 to S

else
Path = k;
end if
end if
End Step 3.2

Propagation stops when an unmatched node k € T is labeled.

Each node is inserted/extracted in/from L at most once.

Step 3.2.A: Label propagation from S to 7

Begin Step 3.2.A

for j € T : (Label(j) = nil) A (c(k,j) — u(k) — v(j) = 0) do
Label(j):=k;
L= LU{j};

end for

End Step 3.2.A

Propagation from k € S to T occurs along edges that:
e correspond to admissible cells;
® do not belong to the current partial matching.

Complexity: O(n).

Step 3.2.B: Label propagation from 7 to S

Begin Step 3.2.B
if (Label(Mate(k)) = nil) then
Label(Mate(k)):=k;
L := LU {Mate(k)};
for j € T : (Label(j) = nil) do
if c(Mate(k),j) — u(Mate(k)) — v(j) < p(j) then
p(j) = c(Mate(k), j) — u(Mate(k)) — v(j);
7(j) == Mate(k);
end if
end for
end if
End Step 3.2.B

Propagation from k € 7 to S occurs along edges of the partial
matching.

Complexity: O(n).

Visualization of Step 3.2

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |11 t2 t3 4| u
s1|10 12 6 0 | 4
s2 | 4 8 5 0] 7
s3| 9 8 13 0 | 6
s4| 0 0 0O 0] 5

v 1 6 3 0|32
p | 4 8 5 0
m | 82 82 s2 82

Extract: L = {s2, s3}.

Insert: L = {s3, t4}.

Visualization of Step 3.2

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |11 t2 t3 4| u
s1|10 12 6 0 | 4
s2 | 4 8 5 0] 7
s3| 9 8 13 0 | 6
s4| 0 0 0O 0] 5

v 1 6 3 0|32
p | 4 8 5 0
m | 82 82 s2 82

Extract: L = {s3, t4}.
Insert: L = {t4}.

Visualization of Step 3.2

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |11 t2 t3 4| u
s1|110 12 6 0 | 4
s2 | 4 8 5 0] 7
s3| 9 8 13 0 | 6
s4| 0 0 0O 0] 5

v 1 6 3 0|32

p | 4 8 5 0

m | 82 82 s2 82

Extract: L = {t4}.
Insert: L = {s1}.

Visualization of Step 3.2

c |t t2 38 t4| u
s1 10 12 6 0 4
s2| 4 8 5 0|7
s3|l 9 8 13 0| 6
s4/ 0 0 O 0|5
v 1 6 3 0 | 32
pl 4 8 5 0
m | 82 82 s2 82
t1 12 t3 t4 | Mate

s1 |15 22 13 4| 4 E’;t;fﬁtli_{;“}'

s2 12 21 15 7 nil ' '

s3 |16 20 22 6 nil No s-t path has been found.

s4 6 11 8 5 1 Nodes s1, s2, s3, t4 are labeled.

Mate | 4 nil nil 1 10 Nodes s4, t1, t2, t3 are not.

X14 = X41 = 1, Card = 2.

Step 4: Dual iteration

Begin Step 4
d = minjer{p(j) : Label(j) = nil};
for i € S : Label(i) # nil do

u(i) = u(i)+6;

end for

for j € T : Label(j) # nil do
v(j) = v(j) - §;

end for

for j € T : Label(j) = nil do
p() = p(j) — d;

end for

for j € T : (Label(j) = nil) A (p(j) = 0) do
Label(j) = (n(f));
L:=LU{j};

end for

End Step 4

The value § is the minimum
reduced cost in the
sub-matrix of labeled rows
and unlabeled columns.
However, owing to the
vector p, finding § takes
O(n) instead of O(n?).

Updating u takes O(n).
Updating v takes O(n).
Updating p takes O(n).
Re-initializing L takes O(n).

At least one more cell
becomes admissible and it
is used to label one more
node in 7.

Visualization of Step 4

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |11 t2 t3 4| u
s1|110 12 6 0 | 4
s2| 4 8 5 0] 7
s3] 9 8 13 0 | 6
s4| 0 0 0O 0] 5

v 1 6 3 0 | 32

p|l 4 8 5 0

T | s2 s2 s2 s2

We consider edges joining labeled
nodes in S with unlabeled nodes
in 7.

We find § = 4.

Visualization of Step 4

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |1 t2 8 4| u
s1|6 8 2 0 8
s2| 0 4 1 0 | 11
s3| 5 4 9 0|10
s4| 0 0 O 4|5

v | 1 6 3 -4140

p |0 4 1 0
T |82 82 s2 82

Increase uy, up and us by 6.
Decrease v4 by 4.
Decrease p+, p2 and ps by 0.

Cell [4,4] is no longer admissible.
Cell [2,1] becomes admissible.

Label 1 from s2.
Re-initialize: L = {t1}.

Visualization of Step 3.2

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |1 t2 8 4| u
st1| 6 8 2 0 8
s2| 0 4 1 0 | 11
s3| 5 4 9 0|10
s4| 0 0 0O 4|5

v | 1 6 3 -4140

p| 0 O O O

m | s2 s4 s4 s2

Extract: L = {t1}.
Insert: L = {s4}.

Visualization of Step 3.2

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 1
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

c |1 t2 8 4| u
st1| 6 8 2 0 8
s2| 0 4 1 0 | 11
s3| 5 4 9 0|10
s4| 0 0 O 4|5

v | 1 6 3 -4140

p| 0 O O O
m | s2 s4 s4 s2

Extract: L = {s4}.
Insert: L = {12,{3}.

Visualization of Step 3.2

c |1 t2 8 4| u
st1| 6 8 2 0 8
s2| 0 4 1 0 | 11
s3| 5 4 9 0|10
s4| 0 0 O 4|5

v | 1 6 3 -4140

p| 0 O O O
m | s2 s4 s4 s2

t1 12 t3 t4 | Mate
~ 5 5 13 4 7 Extract: L = {2, t3}.
s2 |12 21 15 7 nil ,
s3 16 20 22 6 nil t2 is not matched: an s-t path has
4 6 11 8 5 1 been found.
Mate | 4 nil nil 1 10

X14 = X41 = 1, Card = 2.

Step 5: primal iteration

Begin Step 5
[== Path;
repeat
i := Label(j);
Mate(j) := i; Mate(i) := j;
xj =1,z =2+ ¢y,
Card = Card + 1;
j = Label(i);
if Label(i) # s then
Xj=0;2z:=2z— ¢y
Card = Card — 1;
end if
until (j = s);
End Step 5

The path is reconstructed backward from ¢ to s. It has O(n) edges.

Complexity: O(n).

Visualization of Step 5

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 2
Mate | 4 4 nil 1 21

X14 = X41 = Xgo0 = 1, Card = 3.

c |1 t2 8 4| u
st1| 6 8 2 0 8
s2| 0 4 1 0 | 11
s3| 5 4 9 0|10
s4| 0 0 O 4|5

v | 1 6 3 -4140

p| 0 O O O

m | s2 s4 s4 s2

The predecessor of 12 is s4.

Visualization of Step 5

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 nil
s3 16 20 22 6 nil
s4 6 11 8 5 2
Mate | nil 4 nil 1 15

X14 = X420 = 1, Card = 2.

c |1 t2 8 4| u
st1| 6 8 2 0 8
s2| 0 4 1 0 | 11
s3| 5 4 9 0|10
s4| 0 0 O 4|5

v | 1 6 3 -4140

p| 0 O O O

m | s2 s4 s4 s2

The predecessor of s4 is t1.

Visualization of Step 5

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 1
s3 16 20 22 6 nil
s4 6 11 8 5 2
Mate | 2 4 nil 1 27

X14 = X420 = Xo1 = 1, Card = 3.

c |1 t2 8 4| u
st1| 6 8 2 0 8
s2| 0 4 1 0 | 11
s3| 5 4 9 0|10
s4| 0 0 O 4|5

v | 1 6 3 -4140

p| 0 O O O

m | s2 s4 s4 s2

The predecessor of t1 is s2.

Visualization of Step 5

t1 12 t3 t4 | Mate
s 15 22 13 4 4
s2 12 21 15 7 1
s3 16 20 22 6 nil
s4 6 11 8 5 2
Mate | 2 4 nil 1 27

X14 = X420 = Xo1 = 1, Card = 3.

c |1 t2 8 4| u
st1| 6 8 2 0 8
s2| 0 4 1 0 | 11
s3| 5 4 9 0|10
s4| 0 0 O 4|5

v | 1 6 3 -4140

p| 0 O O O

m | s2 s4 s4 s2

The predecessor of s2 is s.

The primal solution has been
updated.

Card < n.

We are ready for another stage.

Hungarian algorithm: complexity

Begin
Step 1: Dual initialization; Step 1: O(r?).
Step 2: Primal initialization; Step 2: O(r?).
while [1] (x is infeasible) do Loop 1: O(n) times.
Step 3.1: Initialization Step 3.1: O(n).
Path:=nil, Loop 2 (stage): O(n) times.
while [2] (Path = nil) do Loop 3: O(n) times.
while [3] (Path = nil) A (L # () do Step 3.2: O(n) ¥ node, i.e.
Step 3.2: Labeling procedure O(n?) V stage.
end while Step 4: O(n).
if Path = nil then Step 5: O(n).
Step 4: Dual iteration;
end if Overall complexity: O(m).
end while
Step 5: Primal iteration;
end while

End

