The Critical Path Problem

Giovanni Righini

University of Milan

Project management problems

Project management is a typical application for graph optimization algorithms.

In its most general formulation a project management problem consists of arranging a set of activities on a time line, complying with

- minimum duration constraints for each activity,
- precedence constraints between activities,
- time constraints such as release dates, due dates and deadlines,
- limited capacities, limited resources.

Project management with infinite resources

The simplest case does not take limited resources into account.

We are given

- a set J of activities,
- a duration d_i for each activity $j \in \mathcal{J}$;
- a set $\mathcal{P}_i \subseteq \mathcal{J}$ of precedessors for each activity $j \in \mathcal{J}$.

The objective is to decide when to start and end each activity in order to minimize the overall project duration.

A mathematical formulation

The model of this problem uses a pair of variables s_j and e_j to represent the start time and the end time of each activity $j \in \mathcal{J}$.

A variable z indicates the completion time of the project which is assumed w.l.o.g. to start at time 0.

$$\begin{aligned} & \text{minimize } z \\ & \text{s.t. } e_j \geq s_j + d_j & \forall j \in \mathcal{J} \\ & s_j \geq e_i & \forall j \in \mathcal{J}, \forall i \in \mathcal{P}_j \\ & z \geq e_j & \forall j \in \mathcal{J} \end{aligned}$$

This is a linear programming problem, but it can be solved by specialized algorithms instead of general LP methods.

s, e > 0

A graphical representation

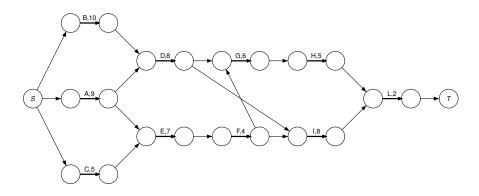
A graphical representation of the problem can be given in this way. Consider a digraph $\mathcal{D} = (\mathcal{N}, \mathcal{A})$ with

- a start node and an end node for each activity $j \in \mathcal{J}$;
- an activity arc from the start node to the end node for each activity j ∈ J;
- a precedence arc from the end node of activity *i* ∈ *J* to the start node of activity *j* ∈ *J* for each pair of activities such that *i* ∈ *P_j*;
- a node S and a node T corresponding with the beginning and the end of the project;
- arcs from S to all start nodes without precedessors;
- arcs from all end nodes without successors to T;
- for each activity arc a weight d_j equal to the duration of the corresponding activity j ∈ J;
- null weights for the precedence arcs.

An example: the data

Activity	Duration	Precedessors	
A	9	-	
В	10	-	
С	5	-	
D	8	A,B	
Е	7	A,C	
F	4	E	
G	6	D,F	
Н	5	G	
1	8	D,F	
L	2	H,I	

An example: the digraph



The digraph with activity arcs (bolded) and precedence arcs.

The Critical Path Method

In Phase 1 the algorithm propagates node labels e from S to T.

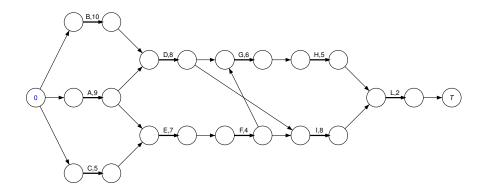
Each label e_v represents the earliest time at which the event corresponding with node $v \in \mathcal{N}$ can occur, provided that the project cannot start before time 0. Hence e_T is the minimum completion time for the project.

$$\forall v \in \mathcal{N} \quad e_v := \max_{u \in \mathcal{N}: (u,v) \in \mathcal{A}} \{e_u + d_{uv}\}.$$

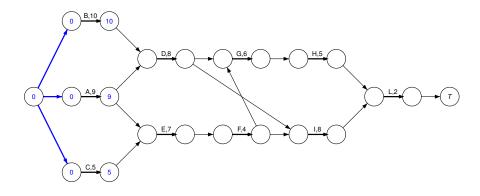
In Phase 2 the algorithm propagates node labels I from T to S.

Each label I_v represents the latest time at which the event corresponding with node $v \in \mathcal{N}$ can occur, provided that the project cannot end after its optimal completion time computed in Phase 1.

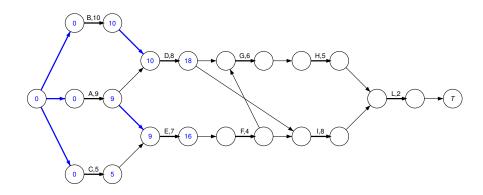
$$\forall v \in \mathcal{N} \quad \frac{I_v}{I_v} := \min_{u \in \mathcal{N}: (v,u) \in \mathcal{A}} \{ \frac{I_u}{I_u} - d_{vu} \}.$$

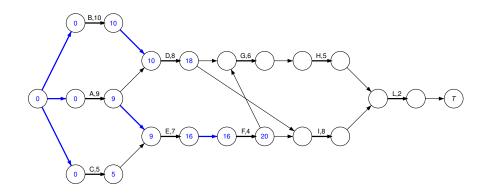


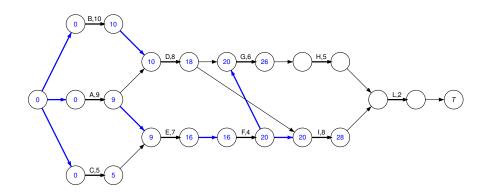
Forward propagation is initialized setting $e_S = 0$.

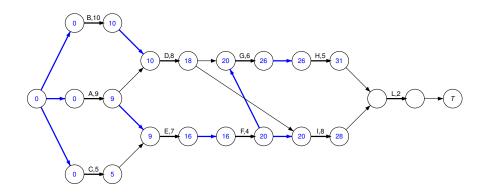


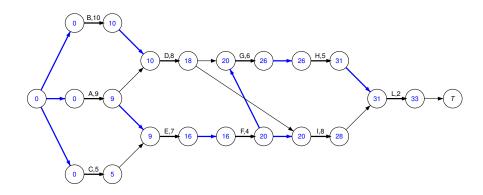
Blue precedence arcs indicate critical predecessors.

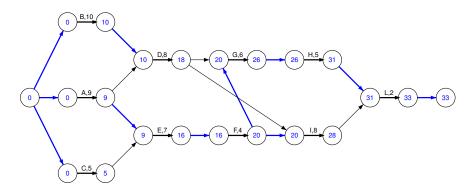




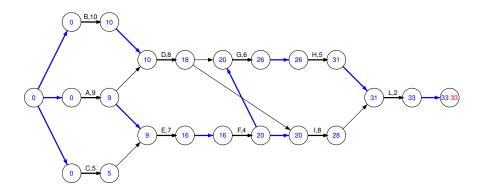




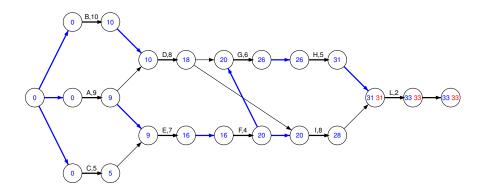




The minimum completion time z^* for the whole project is $e_T = 33$. The **critical path** is made by activities A,E,F,G,H,L. These are **critical activities**: an ϵ delay in their duration results in an ϵ increase of the project duration.



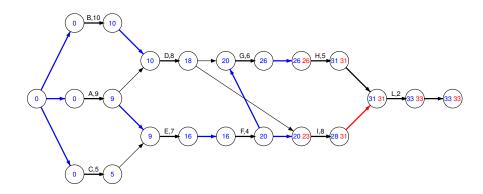
Backward propagation is initialized by setting $I_T = z^*$.

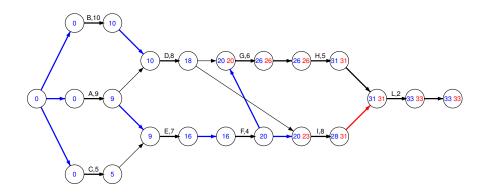


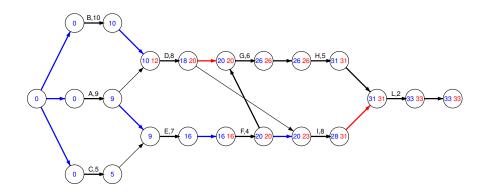
Red precedence arcs indicate critical successors.

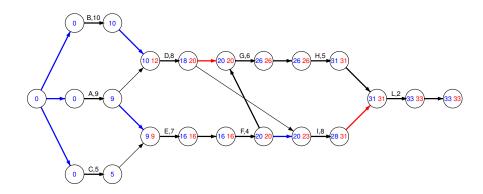
Precedence arcs that should be both blue and red are indicated in

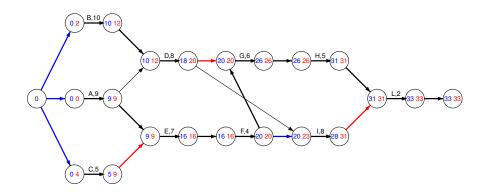
thick black.

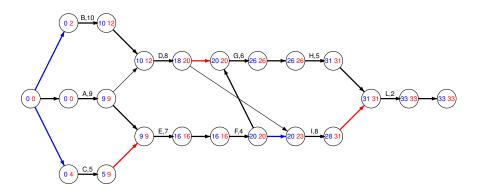












At the end of Phase 2 we must get $I_S = 0$ and the same critical path as in Phase 1.

The values of forward and backward labels along the **critical path** are the same. For the non-critical activities the difference between the labels is the allowed tolerance (slack) in their schedule.

Example: the results

Activity	Duration	Pred.	Earliest	Latest	Earliest	Latest	Slack
			start	start	end	end	
Α	9	-	0	0	9	9	0
В	10	-	0	2	10	12	2
С	5	-	0	4	5	9	4
D	8	A,B	10	12	18	20	2
E	7	A,C	9	9	16	16	0
F	4	Ε	16	16	20	20	0
G	6	D,F	20	20	26	26	0
Н	5	G	26	26	31	31	0
1	8	D,F	20	23	28	31	3
L	2	H,I	31	31	33	33	0

Program Evaluation and Review Technique (PERT)

It is also called *three-point estimation* technique, because each activity i is assumed to have an uncertain duration, described by three values:

- *d*_i*: nominal duration;
- <u>d</u>_i: optimistic duration;
- \overline{d}_i : pessimistic duration.

The uncertain duration d_i of each activity i is represented by a Beta probability distribution with standard deviation $\sigma_i = \frac{\overline{d}_i - \underline{d}_i}{6}$.

With these assumptions, the expected duration \hat{d}_i of each activity i is

$$\hat{d}_i = \frac{\underline{d}_i + 4d_i^* + \overline{d}_i}{6}.$$

Program Evaluation and Review Technique (PERT)

Assuming all activities are independent,

 the expected duration of a sequence of activities is the sum of the expected durations of its activities:

$$\hat{d}(S) = \sum_{i \in S} \hat{d}_i$$

 the variance of a sequence is the sum of the variances of its activities:

$$\sigma^2(S) = \sum_{i \in S} \sigma_i^2$$

Activities that are expected to be critical are identified with CPM: S^* . The expected duration of a whole project (duration of S^*) is also computed:

$$d(S^*) = \hat{d}(S^*) \pm \sigma(S^*),$$

where
$$\sigma(S^*) = \sqrt{\sigma^2(S^*)}$$
.

Uncertainty evaluation

The reliability of the result is estimated by assuming that the project duration is a random variable with normal distribution with expected value $d(S^*)$ and variance $\sigma^2(S^*)$.

In this way we can estimate the probability that the project duration be within an interval of width $I = k\sigma$ around the mean, for any choice of k.

A larger value of k corresponds to a more reliable estimate.

