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Breadth-first search

Given:
e agraph G = (V,€)
® avertexse,
we indicate with Vi the set of all vertices that
¢ are reachable from s along a path made of k edges;
¢ and not reachable from s along any path with less than k edges.
Recursive definition:
)V ={s}
* Vit ={ve WU Vi 3ue Vi ATy, v] € &)
Analogous definitions hold for digraphs.
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Breadth-first search

To compute Vi, 1 it is enough to scan the set of all edges (arcs)
incident to (leaving) the vertices (nodes) in Vx e to insert these
vertices (nodes) into Vi1, if they have not been reached before. A
binary flag associated with each vertex (hode) is enough to check
this.

The complexity of this algorithm is O(m), because each edge (arc) is
scanned at most twice (once).

This BFS algorithm determines the shortest path from s to any other
vertex (node) of the (di-)graph in the special case of unit weight
edges (arcs).
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Pseudo-code
Breadth-First Search (Berge 1958, Moore 1959):

begin
for v:=1 to n do flag[v]:=0; flag[s]:=1;
k:=0;V:= {S};
while Vi # () do
Vit = 0;
for u € Y, do
for [u, v] € 6(u) do
if (flag[v]=0) then
Vit = V1 U{v};
flag[v] := 1;
k=k+1;
end.

The vertices (nodes) not reached when the algorithm terminates do
not belong to the same connected component of s.



Breadth-first search
000e

components

Connected components

Corollary (Shirey, 1969). The connected components of G = (V, £)
can be computed in linear time.
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Depth-First Search (Tarry 1895)

Given:

e adigraph D = (N, A)

® anode se N,
we define Scan(s) the following recursive procedure:
for (s,v) € 67(s) do

for (u,v) €ed(v):u+# sdo

Delete (u, v);
Scan(v);

If all nodes in N are reachable from s, the arcs not deleted by
Scan(s) form an arborescence rooted in s and spanning them.
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Depth-First Search

To implement the Delete operation we can associate a binary flag
“existing (1)/deleted (0)” with each arc.

Pseudo-code of DFS(root): Pseudo-code of Scan(i):
for (i,j) € Ado for (i,j) € 67(i) do
Flag[(i, )] + 1 if Flag(i,j) = 1 then
Scan(root) for (k,j) € 67 (j) do
if Kk £ i then

Flag[(i,j)] «+ O
Scan(j)
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Depth-First Search

A slightly different implementation of DFS requires a binary flag for
each node, meaning “visited (1)/not visited (0)”.

Pseudo-code of DFS(root): Pseudo-code of Scan(i):
fori=1,....ndo Flag[i] «+ 1
Flag[i] + 0 for (i,j) € (i) do
Scan(root) if Flag[j] = 0 then

Scan(j)
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Complexity

If the graph is represented as an adjacency matrix, then DFS takes
O(n?), because all cells of the matrix need to be tested or modified,
including those that do not correspond to existing arcs.

If the graph is represented with out-stars and in-stars, then its
complexity can be reduced to O(m).

To achieve this with the first version, it is necessary that
e either a single record is used to represent each arc and it is
linked in bi-dimensional linked list (rows = in-stars; columns =
out-stars)
e or there is a pair of pointers between the two records
corresponding to the same arc (in the in-star of the head and in
the out-star of the tail).

Each arc is considered at most twice, as a member of an in-star and
of an out-star and the operations take O(1) for each arc.
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(Pre-)topological order
The nodes of a digraph are sorted in topological order if
I<jV(vi,v) €A

Hence a subset A/’ of nodes can be sorted in topological order only if
the induced subgraph (N, A(N")) is acyclic (i.e. it does not contain
circuits).

The nodes of a digraph are sorted in pre-topological order if the
following condition holds:

Vi<Vvi=i<j
dove v; < v; means that j is reachable from / but / is not reachable

from j.

If the digraph is acyclic, then any pre-topological order is also
topological.
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Pre-topological order

Theorem. Given a di-graph D = (N, A) and a node s € N, the nodes
in A/ reachable from s can be sorted in pre-topological order in
O(m'), where m’ is the number of arcs reachable from s.

Proof. In the execution of Scan(s) all nodes reachable from s are
scanned. The order in which their Scan() procedure terminates is the
reverse of their pre-topological order. For each pair of nodes v and v
reachable from s, if there is a path from u to v but not from v to v,
then Scan(v) terminates before Scan(u).

Corollary 1. The nodes of a digraph D(N/,.A) can be sorted in
pre-topological order in linear time.

Proof. Insert a dummy node s into the digraph together with arcs
(s,v) Vv € N and then apply the previous theorem.

Corollary 2. The nodes of an acyclic digraph D(N, A) can be sorted
in topological order in linear time.
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Scan A B F H G E M L C D
End E G H F L M B A D C
Order 10 9 8 7 6 5 4 3 2 1
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Strongly connected components

Theorem (Kosaraju e Sharir, 1981). Given a digraph D = (N, A) its
strongly connected components (s.c.c.) can be computed in linear
time.

Proof. Sort the nodes in pre-topological order: vy, v, ..., v, Let NV;
be the set of nodes from which vy is reachable. Then N is the s.c.c.
vi belongs to: each v; € Ny is reachable from v for the
pre-topological order properties.

For the previous theorem A can be computed in O(|.A1]) time (with
DFS on the reversed arcs) where A is the set of arcs with their head
in \V.

Deleting all nodes in A7 and the arcs in .A; another digraph is
obtained whose nodes are sorted in pre-topological order in the same
sequence as before.

Therefore, by repeatedly applying the procedure, all s.c.c. are
obtained.
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Example

In our example node 1 (originally node C) is the first in the
pre-topological order. Running DFS from 1 with reversed arcs, we
see that there are no predecessors.

Hence Vy = {1}.



Breadth-first search Depth-first search Connected components
0000 0000000000000000000000000000 00@000

Example

Now we consider node 2 and the same happens.

Hence V, = {2}.
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Example

Now we consider node 3 (originally node A). Running DFS from 3
with reversed arcs, we visit some nodes.

QEN,

>

Hence V5 = {3,4,5,6,7}.
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Example

Running DFS from node 8 with reversed arcs, we find no
predecessors.

Scan 8
End 8

Hence V, = {8}.
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Example

Finally we consider node 9 and we run DFS from 9 with reversed
arcs:

X

Scan 9 10
End 10 9

Hence Vs = {9, 10} and the algorithm is over. Five s.c.c. have been
detected.
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