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The auction algorithm (Bertsekas, 1979)

The auction algorithm was conceived for solving the linear
assignment problem (i.e. finding an optimal matching in a bipartite
weighted graph) through parallel computation.

It can be interpreted as a primal-dual algorithm, in which both primal
and dual solutions can worsen in some iteration.

Its functioning resembles a sequential distributed decision process in
which n persons bid for n objects, as in an auction-based market.

Its convergence is based on e-complementary slackness: CSCs
violations are allowed within a given amount.



Primal problem

Data.
e aset P of npersons and a set O of n objects;
* arevenue r; of each object j € O for each person i € P.

Variables: x; € {0, 1}: assignment of object j to person .
Integrality constraint can be relaxed.

Revenue maximization problem:
P) maximize z = Z Z riXi
s.t. Zx,,—1 vie P [pj]

Zx,-j:1 vje O [c]
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Economic interpretation

Assume that each object j € O can be assigned a cost ¢; by the
persons.

The net profit for each person i € P assigned to object j € O'is rj — ¢;.
For any given feasible assignment x,

pi =Y (rj = c)x;.
jeo

For a given vector of costs ¢, the maximum profit obtainable by each
person i is

p; = max{rj — G}



Equilibrium

For a given assignment x and a given vector of costs ¢, a person i is
happy iff he is assigned an object j such that his profit is maximum:

ri — C)X; = ri—Cj}.
,%:3(” )X r]neag{u h

The costs ¢ (dual variables) and the assignments x (primal variables)
are at equilibrium iff all persons are happy.



The dual problem

D) minimize w => " pi+» ¢
i J

st.pi+¢ >y vij o [xi]
p; unrestricted Vi
¢j unrestricted vj.

Since
X
p; = rpeg{nj -G},

the optimal dual value is
W =Y R+ Y =6 + Yo - )
i j j i
and, in general,

w = ZCj+erT1€aC;({fij— Cj}.
j i



Complementary slackness

Primal complementary slackness conditions:
xj(pi+ ¢ —ry) =0 Vie P,jeO.
When object j is assigned to person i
pi=rj—¢ Y(i,j):x;=1.

Otherwise,
pi > rj—¢ Y(i,j): x; =0

is the optimality condition: any alternative assignment would not be
an improvement for any person.



Weak duality

For any feasible assignment, 3, x; = 1 Vj. Hence
¢ =) GXj.
i
Using this substitution:
we) =) G+, mj.ax{f/f -G} =
j i
>N N o+ D (- o)X=
i J i j
= Z Z rixi = z(x).
i

Hence
w(c*) > z(x").



The algorithm

At each iteration, if equilibrium has not been achieved, then at least
one person i € P is not happy.

Select the best and the second best choice for i:

k' = argmax{rj — ¢
gjeo{” i}

2
k' = arg rlnea(;({r,j - ¢}
Let p be the person currently assigned to k.

¢ the assignments to persons i and p are swapped;

e the cost of object k' is raised to the value at which person i is
indifferent between k’ and k”.



Degenerate iterations

The algorithm may cycle forever in some cases, because of
denegerate iterations in which the cost increase is

2
max{ri; — ¢} — max{r;—¢;} = 0.
max(ry - 0} — mix(ry - 6)

To overcome this problem, Bertsekas proposed to resort to
e-optimality.



e-optimality
A solution (x, c) is e-optimal if and only if
D (15— 6)xi = max{rj — ¢} — e (1)
i /
i.e. each person is almost happy. Any e-optimal solution satisfies the
CSC when they are relaxed into
xj(pi+ ¢ —ry) <e Vie P,jeO.

Proof. For all (/,/) such that x; = 0, the inequality is trivially satisfied,
since € > 0. For all (i, k) such that x; = 1, it holds:

° Zj(r,j — ¢j)Xj = rx — ck (feasible assignment);
* p;i < p; = max;{r; — ¢;} (by definition of p;);
Hence (1) implies
lk —Ck > Pj — €
Ppi+ Cx — rik < € U
When € = 0, z* = w* (strong duality for linear programming).



e-optimality
If all persons are almost happy (within ¢ > 0),

Z(fij —Cj)Xj > mjax{f/j — G} —€ VieP.
j

Summing up for all i € P,
ZZ(H‘/ — G)Xj = Zmax{r,-j — ¢} — ne
i .
DD = D maxdry — G+ 306 — e
i i R

Replacing ;cp > ico GiXi With 35 G,

DS x> ijax{r,j —¢}+> ¢ ne.
j i

i jeo



Primal-dual interpretation

ZZ rixj > Z max{r; — cj} + > g —ne

jeoO

From the definitions

=D X

icP jeO
Z max{r,j -G+ Z c,
jeo

it follows
z(x) > w(p) — ne.

Since z* = w* < w(p),
z(X) > Z" — ne,

i.e. the primal solution is ne-optimal.



The modified algorithm

At each iteration, when person i bids for object k', being k" the
second best choice, the cost increase of k' is set to

2
max{r; — ¢} — max{r; — ¢} + ¢
je(;({u i} jeg{u i+ €

so that it strictly positive and infinite loops are prevented.



Termination

Just after bidding for an object k, a person i is almost happy.

It remains almost happy while he keeps holding object k, because the
costs of the other objects monotonically increase and therefore none
of them can become more attractive than object k for person i.

Therefore, persons that are not almost happy must be assigned to
objects that have not received any bid.

Therefore, if all objects have received at least one bid, all persons
must be almost happy and the algorithm stops.

Any object that receives m bids, has a cost increase of me. After a
large enough (but finite) number of iterations, no object can remain
without any bid.

Hence, the algorithm terminates in a finite number of steps.



Scaling

When the algorithm stops, the solution is e-optimal.
If data are integer and ¢ < 1/n, then e-optimality implies optimality.

Alternatively, scaling phases can be done with decreasing values of ¢,
using the final assignment x as the initial assigment for the next one.

No worst-case bound is provided to the number of phases, but
experimental results show very short running times.



