
 

The auction algorithm

Giovanni Righini

University of Milan



 

The auction algorithm (Bertsekas, 1979)

The auction algorithm was conceived for solving the linear

assignment problem (i.e. finding an optimal matching in a bipartite
weighted graph) through parallel computation.

It can be interpreted as a primal-dual algorithm, in which both primal
and dual solutions can worsen in some iteration.

Its functioning resembles a sequential distributed decision process in

which n persons bid for n objects, as in an auction-based market.

Its convergence is based on ǫ-complementary slackness: CSCs

violations are allowed within a given amount.



 

Primal problem

Data.

• a set P of n persons and a set O of n objects;

• a revenue rij of each object j ∈ O for each person i ∈ P.

Variables: xij ∈ {0, 1}: assignment of object j to person i.

Integrality constraint can be relaxed.

Revenue maximization problem:

P) maximize z =
∑

i

∑

j

rijxij

s.t.
∑

j

xij = 1 ∀i ∈ P [pi ]

∑

i

xij = 1 ∀j ∈ O [cj ]

xij ≥ 0 ∀i, j



 

Economic interpretation

Assume that each object j ∈ O can be assigned a cost cj by the
persons.

The net profit for each person i ∈ P assigned to object j ∈ O is rij − cj .

For any given feasible assignment x ,

pi =
∑

j∈O

(rij − cj)xij .

For a given vector of costs c, the maximum profit obtainable by each

person i is

p∗

i = max
j∈O

{rij − cj}.



 

Equilibrium

For a given assignment x and a given vector of costs c, a person i is
happy iff he is assigned an object j such that his profit is maximum:

∑

j∈O

(rij − cj)xij = max
j∈O

{rij − cj}.

The costs c (dual variables) and the assignments x (primal variables)

are at equilibrium iff all persons are happy.



 

The dual problem

D) minimize w =
∑

i

pi +
∑

j

cj

s.t. pi + cj ≥ rij ∀i, j [xij ]

pi unrestricted ∀i

cj unrestricted ∀j.

Since

p∗

i = max
j∈O

{rij − cj},

the optimal dual value is

w∗ =
∑

i

p∗

i +
∑

j

c∗

j =
∑

j

c∗

j +
∑

i

max
j∈O

{rij − c∗

j }

and, in general,

w =
∑

j

cj +
∑

i

max
j∈O

{rij − cj}.



 

Complementary slackness

Primal complementary slackness conditions:

xij(pi + cj − rij) = 0 ∀i ∈ P, j ∈ O.

When object j is assigned to person i

pi = rij − cj ∀(i, j) : xij = 1.

Otherwise,

pi ≥ rij − cj ∀(i, j) : xij = 0

is the optimality condition: any alternative assignment would not be
an improvement for any person.



 

Weak duality

For any feasible assignment,
∑

i xij = 1 ∀j. Hence

cj =
∑

i

cjxij .

Using this substitution:

w(c) =
∑

j

cj +
∑

i

max
j
{rij − cj} ≥

≥
∑

i

∑

j

cjxij +
∑

i

∑

j

(rij − cj)xij =

=
∑

i

∑

j

rijxij = z(x).

Hence
w(c∗) ≥ z(x∗).



 

The algorithm

At each iteration, if equilibrium has not been achieved, then at least
one person i ∈ P is not happy.

Select the best and the second best choice for i:

k ′ = argmax
j∈O

{rij − cj}

k ′′ = arg
2

max
j∈O

{rij − cj}

Let p be the person currently assigned to k ′.

• the assignments to persons i and p are swapped;

• the cost of object k ′ is raised to the value at which person i is

indifferent between k ′ and k ′′.



 

Degenerate iterations

The algorithm may cycle forever in some cases, because of
denegerate iterations in which the cost increase is

max
j∈O

{rij − cj} −
2

max
j∈O

{rij − cj} = 0.

To overcome this problem, Bertsekas proposed to resort to

ǫ-optimality.



 

ǫ-optimality

A solution (x , c) is ǫ-optimal if and only if

∑

j

(rij − cj)xij ≥ max
j
{rij − cj} − ǫ (1)

i.e. each person is almost happy. Any ǫ-optimal solution satisfies the

CSC when they are relaxed into

xij(pi + cj − rij) ≤ ǫ ∀i ∈ P, j ∈ O.

Proof. For all (i, j) such that xij = 0, the inequality is trivially satisfied,

since ǫ ≥ 0. For all (i, k) such that xik = 1, it holds:

•
∑

j(rij − cj)xij = rik − ck (feasible assignment);

• pi ≤ p∗

i = maxj{rij − cj} (by definition of p∗

i );

Hence (1) implies
rik − ck ≥ pi − ǫ

pi + ck − rik ≤ ǫ �

When ǫ = 0, z∗ = w∗ (strong duality for linear programming).



 

ǫ-optimality

If all persons are almost happy (within ǫ ≥ 0),

∑

j

(rij − cj)xij ≥ max
j
{rij − cj} − ǫ ∀i ∈ P. (2)

Summing up for all i ∈ P,

∑

i

∑

j

(rij − cj)xij ≥
∑

i

max
j
{rij − cj} − nǫ

∑

i

∑

j

rijxij ≥
∑

i

max
j
{rij − cj}+

∑

i

∑

j

cjxij − nǫ

Replacing
∑

i∈P

∑
j∈O cjxij with

∑
j∈O cj ,

∑

i

∑

j

rijxij ≥
∑

i

max
j
{rij − cj}+

∑

j∈O

cj − nǫ.



 

Primal-dual interpretation

∑

i

∑

j

rijxij ≥
∑

i

max
j
{rij − cj}+

∑

j∈O

cj − nǫ.

From the definitions

z(x) =
∑

i∈P

∑

j∈O

rijxij

w(p) =
∑

i∈P

max
j∈O

{rij − cj}+
∑

j∈O

cj ,

it follows

z(x) ≥ w(p) − nǫ.

Since z∗ = w∗ ≤ w(p),

z(x) ≥ z∗ − nǫ,

i.e. the primal solution is nǫ-optimal.



 

The modified algorithm

At each iteration, when person i bids for object k ′, being k ′′ the
second best choice, the cost increase of k ′ is set to

max
j∈O

{rij − cj} −
2

max
j∈O

{rij − cj}+ ǫ,

so that it strictly positive and infinite loops are prevented.



 

Termination

Just after bidding for an object k , a person i is almost happy.

It remains almost happy while he keeps holding object k , because the

costs of the other objects monotonically increase and therefore none

of them can become more attractive than object k for person i.

Therefore, persons that are not almost happy must be assigned to

objects that have not received any bid.

Therefore, if all objects have received at least one bid, all persons

must be almost happy and the algorithm stops.

Any object that receives m bids, has a cost increase of mǫ. After a

large enough (but finite) number of iterations, no object can remain

without any bid.

Hence, the algorithm terminates in a finite number of steps.



 

Scaling

When the algorithm stops, the solution is ǫ-optimal.

If data are integer and ǫ < 1/n, then ǫ-optimality implies optimality.

Alternatively, scaling phases can be done with decreasing values of ǫ,
using the final assignment x as the initial assigment for the next one.

No worst-case bound is provided to the number of phases, but

experimental results show very short running times.


