# The Chinese postman problem

Giovanni Righini

University of Milan



#### **Definitions**

Given an undirected, connected, edge-weighted graph  $\mathcal{G}=(\mathcal{V},\mathcal{E})$ , the so-called Chinese Postman Problem is the problem of finding a minimum cost tour in  $\mathcal{G}$ , traversing all its edges at least once.

An Euler graph is defined by two properties:

- it is connected;
- all vertex degrees are even.

An Euler graph always allows for an Euler tour, i.e. a tour traversing each edge exactly once.

Therefore, if  $\mathcal{G}$  is an Euler graph, then the minimum cost is  $\sum_{e \in F} c_e$ .



#### A mathematical model

$$\begin{aligned} & \text{minimize } z = \sum_{e \in \mathcal{E}} c_e x_e \\ & \text{s.t. } \sum_{e \in \delta(i)} x_e = 2 y_i & \forall i \in \mathcal{V} \\ & y_i \in \mathbb{Z}_+ & \forall i \in \mathcal{V} \\ & x_e \geq 1 & \forall e \in \mathcal{E}. \end{aligned}$$

Insert additional copies of some edges in order to trasform  $\ensuremath{\mathcal{G}}$  into an Euler graph.



### The algorithm

If  $\mathcal G$  is connected but it is not an Euler graph, then it has some vertices with odd degree.

Let  $\mathcal{O}$  be the set of vertices with odd degree in  $\mathcal{G}$ .

The cardinality of  $\mathcal{O}$  is certainly even (easy to prove).

To obtain an Euler graph from  $\mathcal{G}$ , it is necessary and sufficient to increase by one unit the degree of all vertices in  $\mathcal{O}$ .

Hence, a minimum cost set of  $|\mathcal{O}|/2$  paths connecting the vertices of  $\mathcal{O}$  in pairs must be found: it is a perfect matching in a complete auxiliary graph  $\mathcal{H}=(\mathcal{O},\mathcal{P})$ , where the cost of each edge in  $\mathcal{P}$  is the cost of a shortest path between its endpoints.



### The algorithm

Hence, the algorithm works as follows:

- 1. Find all vertices with odd degree:  $\mathcal{O}$ .
- 2. Compute the all-pairs shortest paths between them (costs of the edges in  $\mathcal{P}$ ).
- 3. Find a minimum cost perfect matching on the auxiliary graph  $\mathcal{H} = (\mathcal{O}, \mathcal{P})$ .
- 4. Add the edges of the selected shortest paths to the initial edge set  $\mathcal{E}$ , generating an Euler multi-graph (the edge set is a multi-set, where each edge has an associated multiplicity).
- 5. Find an Euler tour on the resulting Euler multi-graph.

All these steps can be done in strictly polynomial time.



### Complexity

Finding all vertices with odd degree can be done in O(m). The cardinality |O| is upper bounded by n.

All-pairs shortest paths on a complete graph with  $|\mathcal{O}|$  vertices can be computed in  $O(|\mathcal{O}|^3)$ , i.e.  $O(n^3)$  (Floyd-Warshall algorithm).

A minimum cost perfect matching in a graph with  $|\mathcal{O}|$  vertices can be computed in  $O(|\mathcal{O}|^3)$ , i.e.  $O(n^3)$  (Edmonds algorithm).

The Euler multi-graph is obtained in  $O(n^2)$ , since O(n) paths are made by O(n) edges each. The multiplicity for each edge is O(n): hence the total multiplicity m' is O(mn).

An Euler tour in an Euler multi-graph with total multiplicity m', can be computed in O(m'), i.e. O(mn) (Hierholzer algorithm).

Overall complexity:  $O(n^3)$ .



## Hierholzer algorithm (1893)

#### Algorithm Hierholzer algorithm

```
Initialization

while (k < m) do

p \leftarrow Select

C \leftarrow FindCycle(p)

InsertList(S, p, C)

Return(S)
```

### Hierholzer algorithm: Initialization

#### Algorithm Initialization

```
for v \in \mathcal{V} do
    degree(v) \leftarrow 0
    \delta(\mathbf{v}) \leftarrow \emptyset
m \leftarrow 0
for e \in \mathcal{E} do
    m \leftarrow m + \mu(e)
    \lambda(e) \leftarrow \mu(e)
    [i,i] \leftarrow e
    \delta(i) \leftarrow \delta(i) \cup \{e\}
    degree(i) \leftarrow degree(i) + 1
    \delta(i) \leftarrow \delta(i) \cup \{e\}
    degree(j) \leftarrow degree(j) + 1
for v \in \mathcal{V} do
    q(v) \leftarrow \delta(v)
S ← {1}
p \leftarrow Head(S)
k \leftarrow 0
```

S: sequence of vertices in the current tour (linked list). p: pointer to current vertex in S. degree(v): residual degree of  $v \in \mathcal{V}$ .  $\delta(v)$ : star of  $v \in \mathcal{V}$ . q(v): current pointer within  $\delta(v)$ .  $\mu(e)$ : multiplicity of  $e \in \mathcal{E}$ .  $\lambda(e)$ : residual multiplicity of  $e \in \mathcal{E}$ .

m: total multiplicity of edges in  $\mathcal{E}$ .

k: n. of edges in the current tour.

Complexity: O(m).

# Hierholzer algorithm: Select

*Select* scans *S* and returns the first vertex with strictly positive residual degree.

#### Algorithm Select

```
while (degree(p.vertex) = 0) do p \leftarrow Next(p) Return(p)
```

Complexity: O(m) overall.



### Hierholzer algorithm: FindCycle

#### Algorithm FindCycle

```
C \leftarrow nil
i \leftarrow p.vertex
repeat
   j \leftarrow FindSuccessor(i)
   Append(C, j)
   degree(i) \leftarrow degree(i) - 1
   degree(i) \leftarrow degree(i) - 1
   e \leftarrow [i, j]
   \lambda(e) \leftarrow \lambda(e) - 1
   k \leftarrow k + 1
   i \leftarrow j
until i = p.vertex
Return(C)
```

Complexity: O(m) calls, O(m) complexity for each call, but O(m) complexity overall.



### Hierholzer algorithm: FindSuccessor

#### Algorithm FindSuccessor(i)

```
while (\lambda(q(i).edge) = 0) do q(i) \leftarrow Next(q(i)) [i,j] \leftarrow q(i).edge Return(j)
```

Complexity: O(m) overall. Each edge  $e \in \delta(i)$  is scanned  $\mu(e)$  times.



## Hierholzer algorithm: InsertList

#### Algorithm InsertList(S, p, C)

$$Next(Tail(C)) \leftarrow Next(p)$$
  
 $Next(p) \leftarrow Head(C)$ 

Complexity: O(1) for each call.



## Hierholzer algorithm: complexity

*Initialization* has complexity O(m).

*Select*: the degree of each vertex is tested  $O(|\delta(i)|)$  times. The total time for tests is O(m).

The step forward is done O(m) times in constant time; the total times for steps is O(m).

FindCycle without FindSuccessor: since each edge is considered  $\mu(e)$  times, the total complexity is O(m).

*FindSuccessor*: each star is scanned once and, then, each edge is considered  $2\mu(e)$  times.

Hence, the total time complexity is O(m).

*InsertList*: it takes constant time. Each cycle includes at least two edges. Then, the n. of cycle insertions is O(m).

Hierholzer algorithm complexity: O(m).



# The Chinese postman problem on digraphs

A similar method works for the directed version of the problem.

A digraph is an Euler digraph if and only if

- it is strongly connected;
- the indegree and the outdegree of each node are equal.

If the given digraph  $\mathcal{D}=(\mathcal{N},\mathcal{A})$  is not an Euler digraph, one must select a minimum cost set of arcs to add to the digraph, to balance its in- and out-degrees.

#### A mathematical model

$$\begin{aligned} & \text{minimize } z = \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} \\ & \text{s.t. } \sum_{(i,j) \in \delta^+(i)} x_{ij} = \sum_{(j,i) \in \delta^-(i)} x_{ji} & \forall i \in \mathcal{N} \\ & x_{ij} \geq 1 & \forall (i,j) \in \mathcal{A} \\ & x_{ij} \in \mathbb{Z}_+ & \forall (i,j) \in \mathcal{A}. \end{aligned}$$

This originates an instance of the minimum cost transportation problem.

### Reformulation as a min cost transportation problem

$$\begin{aligned} & \text{minimize } z' = \sum_{(i,j) \in \mathcal{A}} c'_{ij} x'_{ij} \\ & \text{s.t. } \sum_{(i,j) \in \delta^+(i)} x'_{ij} = s_i \qquad & \forall i \in \mathcal{S} \\ & \sum_{(i,j) \in \delta^-(j)} x'_{ij} = d_j \qquad & \forall j \in \mathcal{T} \\ & x'_{ij} \in \mathbb{Z}_+ \qquad & \forall (i,j) \in \mathcal{S} \times \mathcal{T}. \end{aligned}$$

Origins S: nodes with in-degree larger than the out-degree: the difference is  $s_i \forall i \in S$ .

Destinations  $\mathcal{T}$ : nodes with out-degree larger than the in-degree: the difference is  $d_i \ \forall j \in \mathcal{T}$ .

Cost  $c'_{ii}$ : cost of an i - j shortest path  $\forall (i, j) \in \mathcal{S} \times \mathcal{T}$ .

Integrality requirements on the  $x'_{ij}$  variables can be dropped, thanks to the integrality property (s and d are integer).

Complexity: the same of a min cost flow problem.