The minimum cost transportation problem

Giovanni Righini

University of Milan

UNIVERSITA DEGLI STUDI DI MILANO



Definitions

The minimum cost transportation problem is a special case of the
minimum cost maximum flow problem.

We are given:
® a set of origins, O;
¢ a set of destinations, D;
e an amount of flow o; to be sent from each origin i € O;
¢ an amount of flow d; to be received by each destination j € D;

e a transportation network, connecting each origin i € O with each
destination j € D at a unit cost ¢;.

There are no capacities associated with the arcs between O and D.

o=

€O jeD

We assume

If this does not hold, we add a dummy origin or a dummy destination
where necessary, with zero cost arcs incident in it. ;



A reformulation

By adding a dummy source s connected to each node i € O with an
arc of capacity o; and a dummy sink t connected to each node j € D
with an arc of capacity d;, we can solve a min cost max flow problem
from s to t on the resulting digraph.

This is equivalent to the original problem, because the bottleneck is
the cut separating s (or f) from the rest of the digraph and hence the
max flow has value ;. 0i = >_jcp d-



A formulation

We use a variable x; (continuous and non-negative) to indicate the
amount of flow on each arc (/,j) € A= 0O x D.

A mathematical model of the problem is:

minimize z = Z CiiXij

(if)eA

s.t. Zx,,-:o,- Vie O
j€ED
> xj=q VjeD
ico
xj >0 v(i,j) € A.

It is a linear programming model. Duality theory applies.



The dual problem

P) minimize z= Y ¢;x;

(i))eA
s.t. ZX,'/:O,' Vie O
jeD
> xj=d VjeD
€O
Xj >0 Y(i,j) € A

D) maximize w =>_oiu;+ »_
€O jeD
st ui+Vv <cj v(i,j)e A
Complementary slackness conditions imply:

xj(cj — (Ui +v;)) = 0.



Primal-dual algorithm

Begin

Primal initialization;

Dual initialization;

while 3(/, /) : ui 4 v; > ¢; do
Update primal solution;
Update dual solution;

end while

End

At each iteration the algorithm keeps a primal-dual pair of solutions
satisfying the CSCs.

The primal solution is feasible; the dual solution is (super-)optimal.

When the optimal dual solution is also feasible, the feasible primal
solution is also optimal.



Primal initialization

Begin Primal Initialization

foric Odo
RO(i) = 0;

end for

forj € Ddo
RA(j) = dj;

end for

for (/,j) € Ado
xj = min{R°(i), RY(j)};
RO(i) :== R°(i) — xj;
RA(j) = R(j) — x;3

end for

End Primal Initialization

At each step at least one of the residuals R is set to 0. At least in the
last iteration a row residual and a column residual are simultaneously
set to 0, because o and d are balanced.

The number of arcs with non-zero flow is at most |O| + |D| — 1.
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Visualization of primal initialization
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Visualization of primal initialization
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Visualization of primal initialization
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Visualization of primal initialization
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Visualization of primal initialization
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Visualization of primal initialization
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Visualization of primal initialization
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Visualization of primal initialization
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Visualization of primal initialization
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Dual update
Exploiting CSCs, a dual solution corresponding to the current primal
solution is obtained by solving a system of linear equations:
ui+vi=cj Y(i,j):x;>0.

Since the number of basic x variables is |O| + |D| — 1 and the number
of dual variables is |O| + |D|, the system has infinitely many dual
solutions.

This is consistent with the degeneracy of the primal problem: any
equality constraint can be derived from the others.

Dual update amounts at arbitrarily fixing a dual variable and solving a
system of linear equations, with a triangular matrix of coefficients.

This is done both after primal initialization and after each primal
update step.



Visualization of dual update
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Visualization of dual feasibility test

In our example there are several violated dual constraints: they
correspond to arcs with negative reduced cost.
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We can choose for example the minimum reduced cost.

We want to enforce us+ve=Csp t0 allow Xz taking positive value.



Primal update

The primal solution is changed by sending flow on arc (i, /),
corresponding to a violated dual constraint.

This implies re-balancing the flow on other arcs, in order to maintain
primal feasibility.

Hence a cycle containing (i, /) is identified, such that all the arcs in
the cycle correspond to active dual constraints, i.e. basic primal
variables.

The flow is alternately increased and decreased on the arcs of the
cycle. The bottleneck arc determines the amount of flow to be sent
along the cycle.

After the flow update, the bottleneck arc has zero flow and its
corresponding dual constraint is no longer forced to be active.



Visualization of primal update
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Visualization of primal update
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There is a unique cycle joining s3 with {2
in the flow graph corresponding to the
current primal solution.

Flow must be
® increased on (3,2), (1,3) and (2, 5);
e decreased on (1,2), (2,3) and (3,5).
0= min{X12,X23,X35} = 5.




Visualization of primal update
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Now (2, 3) carries no flow;
it has been replaced by (3, 2).

The cost variation is
0 Caz = 0(C32 — C12+ C13— Co3+ Co5 — C35) =
5(6—12+4—-9+4+3-18) = 5(—27) = —135.

Basic arcs always form a spanning tree on the flow network.



