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1 Introduction 4

We consider the minimum cost spanning tree problem, that is, the problem of finding 5

a minimum cost spanning tree (MST) of a connected weighted graph. A classical 6

algorithm for this problem is due to Kruskal [4]. 7

In its most basic implementation, Kruskal algorithm starts by fully sorting the 8

edge list by nondecreasing edge weights. Then, starting from an empty set, a forest 9

F is grown by scanning the edge list and inserting one edge at a time in F , discarding 10

edges that produce cycles, until a spanning tree is obtained. The resulting time 11

complexity is O(m log n)., where m is the number of edges and n is the number 12

of vertices. 13

Janson et al. [3] proved that the largest weight edge in an MST of a random 14

weighted graph is expected to lie within the 1
2n log n. smallest weight edges. This 15

suggests to save computing time, sorting only the relevant part of the edge list. 16

Following this idea, Paredes and Navarro [7] proposed the QuickKruskal algo- 17

rithm, where edge sorting is interleaved with edge selection. For this purpose, edge 18

sorting is done as in QuickSort, i.e., partitioning the unsorted edge list in two lists 19

by comparing all weights with a suitably chosen pivot element; if the MST is found 20

within the edges of the first list, then the edges in the second list are not sorted. 21

This procedure is recursively executed for each list. From a theoretical viewpoint, 22

the average time complexity of QuickKruskal is O(m+n log2 n). for random graphs 23

with randomly generated weights (Paredes and Navarro, [7]). From an experimental 24

viewpoint, QuickKruskal is substantially faster than Kruskal algorithm. 25

M. Lecchi · G. Righini (�)
Department of Computer Science, University of Milan, Milan, Italy
e-mail: mattia.lecchi@studenti.unimi.it; giovanni.righini@unimi.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
B. Goldengorin (ed.), Theory, Algorithms and Experiments in Applied
Optimization, Springer Optimization and Its Applications 226,
https://doi.org/10.1007/978-3-031-91357-0_9

171



172 M. Lecchi and G. Righini

A further improvement, named FilterKruskal, was proposed by Osipov et al. [6]. 26

When an edge list is recursively partitioned into two parts as in QuickKruskal, after 27

processing the first list and before processing the second one, all edges that would 28

close a cycle in the current forest are filtered out from the second list, thus reducing 29

its size and the computing time needed to sort it. As shown in [6], the average 30

time complexity of the FilterKruskal algorithm for random graphs with randomly 31

generated edge weights is O(m + n log n log m
n
).. 32

In this context, the recursive partition of the edge lists should better be done in 33

an unbalanced way, contrary to QuickSort that achieves the best performance by 34

splitting each list into two parts of equal size. The unbalanced partition is especially 35

useful in the first recursive call, when the whole edge list is partitioned the first 36

time. Following this observation, Righini and Righini [8] presented a variation of 37

the algorithm, called SkewedKruskal, where a random sample is extracted from the 38

complete edge list and the pivot element is suitably chosen among the samples. The 39

size of the sample is �√m�., and the pivot is selected in position �n log n

2
√

m
�. in the sorted 40

list of samples. This corresponds to the expected position of the critical edge, i.e., 41

the largest weight edge in the MST according to the result of Janson et al., which 42

refers to complete graphs with random weights generated according to a uniform 43

distribution of probability. 44

However, for different types of graphs, different choices of the sample size 45

and the pivot position can lead to better results. The purpose of this study is to 46

optimize the time performance of the SkewedKruskal algorithm by estimating how 47

to partition the sorted edge list on the basis of some graph characteristics, so that the 48

MST is likely to be completely contained in one of the two initial edge lists and the 49

size of such a list is minimized. 50

Paper Outline In Sect. 2, we describe two classes of randomly generated weighted 51

graphs we studied, namely, random graphs and KNN graphs. Section 3 describes the 52

main steps that can be followed to estimate the position or the weight of the critical 53

edge starting from an automatic classification of the graph and the estimation of its 54

parameters. Section 4 describes an alternative and more general technique, based 55

on graph density, that does not require to classify the graph. In Sect. 5, we illustrate 56

the results of computational tests and comparisons between different versions of the 57

SkewedKruskal algorithm. 58

2 Randomly Generated Graphs 59

As a preliminary step, in this study, we initially consider two classes of randomly 60

generated graphs, namely, random graphs and k-nearest neighbor (KNN in the 61

remainder) graphs. Hereafter, we describe the details of the graph generation 62

procedure. 63
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Fig. 1 Distribution of the edge weights in a random graph as a function of the clustering index γ .

(logarithmic scale)

Random Graphs In our tests, random graphs are generated according to the 64

Erdős–Rényi model [2]: it allows to generate graphs Gn,ρ ., where n is the number 65

of vertices and 0 < ρ ≤ 1. is the graph density, i.e., the probability of including 66

any edge (self-loops are excluded). The edge weights are generated according to a 67

uniform probability distribution. 68

Besides size and density, we also consider a third parameter, that is, the clustering 69

degree, indicated by γ .. To generate random graphs with different clustering degree, 70

we partition the vertex set into �√n�. disjoint subsets C1, C2, ...C�√n� ., such that 71

�√n� ≤ |Ci | ≤ �√n� ∀i = 1, . . . , �√n�.. We define a parameter 0 < γ ≤ 1. 72

representing the clustering degree. Then, the weight of all edges whose endpoints 73

belong to the same cluster is multiplied by γ ., while the weight of the other edges is 74

divided by γ .. For small values of γ ., the resulting graph is strongly clustered. 75

According to this method to produce clustered random graphs, the number of 76

intra-cluster edges grows as ρn
√

n., while the number of inter-cluster edges grows 77

as ρn2
.. Figure 1 shows the distribution of the edge weights as a function of γ . in 78

random graphs G1000,0.5 . using a logarithmic scale, where the frequency of small 79

weights can be better appreciated although they are relatively few. 80

KNN Graphs A KNN graph is obtained by generating its vertices at random as 81

points in a circle of radius R. Each vertex is adjacent to its k-nearest neighbors, and 82

the edge weights are the Euclidean distances between the endpoints. In our tests, 83

these graphs were generated using K − D .-trees and ball trees by the algorithms 84

illustrated in [1, 5]) and implemented in the Python module sklearn.neighbours. 85

By construction, KNN graphs are clustered, with a clustering degree depending 86

on k. Figure 2 shows the edge weight distribution of KNN graphs with n = 1000. 87

for different values of k. 88
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Fig. 2 Edge weight distribution in KNN graphs for n = 1000. and different values of k

3 Graph Classification 89

In this section, we describe a technique to estimate the position or the weight 90

of the critical edge, starting from an automatic classification of the graph and 91

an estimation of its relevant parameters. In Sect. 3.1, we describe an automatic 92

classifier; in Sect. 3.2, we describe how the relevant parameters can be estimated 93

once the graph has been classified; in Sect. 3.3, we analyze the relationship between 94

the graph parameters and the position or weight of the critical edge; in Sect. 3.4, we 95

consider the problem of suitably selecting a sample size from the edge list to obtain 96

a reliable estimate of the position or the weight of the critical edge; in Sect. 3.5, we 97

consider the selection of the pivot, i.e., the edge weight value that is used to partition 98

the edge list into two parts. 99

3.1 Automatic Classification 100

We set up an automatic classifier to distinguish the two classes of randomly 101

generated graphs shown above. The two classes are characterized by different 102

distributions of edge weights. Therefore, the mean value and the variance of (a 103

sample of) the edge weights are good candidates for an effective classifier. 104

Random Graphs By definition, the distribution of the edge weights is uniform 105

when γ = 1.. Hence, it is expected that the mean value and the variance of a sample 106

subject to min-max scaling be close to the expected value E(X). and the variance 107

Var(X). of a random variable X uniformly distributed between a = 0. and b = 1., 108

i.e., 109

.E(X) = a + b

2
= 1

2

and 110

.Var(X) = (b − a)2

12
= 1

12
.
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Fig. 3 Mean value and variance of edge weights in random graphs for different values of the
clustering degree γ . (n = 2000.)

Fig. 4 Mean and average of the edge weights in KNN graphs for different values of k (n = 1000.)

For clustered graphs, with low value of γ ., deviations from these values are possible. 111

However, the number of intra-cluster (small weight) edges is very small. Figure 3 112

shows the values of the mean and the variance for n = 2000. and different values 113

of γ .. 114

It is apparent that the value of the clustering degree does not significantly affect 115

the mean and the variance. 116

KNN Graphs The mean of the edge weights in KNN graphs is very close to the 117

mean of random graphs, when k is neither very small nor very large. However, the 118

variance is slightly smaller, thus allowing to distinguish the two types of graphs. 119

Figures 4 and 5 show the mean and the variance for n = 1000. and different values 120

of k as well as for k = 400. and different values of n. 121

Similar to random graphs, the mean and the variance are almost independent on 122

γ . also for KNN graphs. 123
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Fig. 5 Mean and average of the edge weights in KNN graphs for different values of n (k = 400.)

Fig. 6 Borders of the trained
classifier

A Classifier From the observations above, it is possible to construct, train, and 124

evaluate an automatic graph classifier, which takes the mean and the variance of (a 125

sample of) the edge weights in input and automatically determines the type of graph. 126

We used a k-nearest neighbor classifier with K = 5.. The model was trained 127

with 120 random graphs and 120 KNN graphs. Its reliability has been tested on 128

200 randomly generated graphs, 100 for each type, taking a sample of 1000 edges. 129

Figure 6 shows the results: each area corresponds to a type of graph after training 130

the classifier. Each point lies in the area of its own type, i.e., all classifications are 131

correct. 132

Selection of the Sample Size To minimize the impact of the classification on the 133

computing time, one wants to use a sample size s as small as possible. Figure 7 134

shows the degradation in the accuracy of the classifier when s decreases. The results 135

have been obtained from 70 graphs for each type, with random size and parameters. 136

Keeping s = 1000., no classification errors were observed. This is the reason why 137

the value s = 1000. was used to train the classifier. 138
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Fig. 7 Percentage error of
the classifier for different
values of the sample size

3.2 Parameter Estimation 139

Random Graphs In a random graph, the size of the graph and its density are 140

immediately observable by counting the number n of vertices and the number m 141

of edges. The clustering degree γ . can be also estimated from the distribution of 142

the edge weights. For this purpose, we analyzed the difference between theoretical 143

quantiles and actual quantiles in the list of edge weights, and we studied its 144

dependency on γ ., n, and ρ .. By a suitable regression on some randomly generated 145

datasets, we could reliably estimate γ ., especially for large values of n and ρ .. 146

However, further tests illustrated in Sect. 3.3 showed that γ . is not a good predictor 147

for the position of the critical edge in random graphs, and this is consistent with 148

the results observed in Sect. 3.1. Therefore, we did not make further efforts to 149

estimate γ .. 150

KNN Graphs The parameter k in KNN graphs plays a similar role to the density 151

ρ . in random graphs, although the distribution of the edge weights in KNN graphs 152

is not uniform as it is in random graphs. It is fair to assume a correlation between 153

k and the number of edges m. This is confirmed by the analysis illustrated in Fig. 8 154

which shows an approximately linear correlation. 155

Hence, a simple way to estimate k is to take a fraction η . of the ratio m
n

.. To 156

calibrate η ., we compute nk
m

. for 50 graphs with n randomly selected between 500 157

and 5000 and k between 50 and 0.9n.. We obtain a mean value η = 1.76258. with a 158

standard deviation of 0.04482.. The average percentage error in the estimate of k is 159

only 0.02455%.. 160

Owing to the slight inflection of the curve when k tends to n, the estimate tends 161

to be worse for large k. However, as observed in the remainder, a precise estimate is 162

required only for small values of k. 163
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Fig. 8 Correlation between
the parameter k and the
number of edges in KNN
graphs

3.3 Critical Edge and Graph Parameters 164

To optimize the time performance of the SkewedKruskal algorithm, the goal is 165

to estimate the position or the weight of the critical edge. Let ŵ . be the critical 166

edge weight, after a min-max scaling procedure which is executed to eliminate the 167

dependency on the range of the weights. Alternatively, one can estimate the critical 168

edge position in the sorted edge list: let n − 1 ≥ p̂ ≤ m. be such position in a 169

sorted list of m edges. This estimate is more indirect, but it does not require any 170

preprocessing to scale the weights. 171

In this section, we analyze the distribution of the values of ŵ . and p̂/m. for 172

different types of randomly generated graphs. This analysis allows to estimate a 173

minimum size of the edge list fraction that is needed to include the MST. 174

Since the position and the weight of the critical edge depend on some parameters 175

of the graphs, we search for the correlations that can be a base for a reliable 176

prediction. 177

Random Graphs We generated random graphs with different values of size n, 178

density ρ ., and clustering degree γ ., and we observed the values of ŵ . and p̂/m.. 179

Dependency on γ . Figure 9 shows the results obtained from 200 random graphs 180

with n = 1000., ρ = 0.5. and different values of γ .. No significant correlation can 181

be observed between p̂/m. and the clustering degree. A weak correlation between ŵ . 182

and the clustering degree is observed only for small values of γ .. 183

Dependency on n Figure 10 shows the results obtained from 200 random graphs 184

with γ = 0.5., ρ = 0.5. and different values of n from 50 to 3000. When n grows, 185

both p̂/m. and ŵ . decrease (both in average and in standard deviation). 186
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Fig. 9 Position p̂/m. and weight ŵ . in random graphs for different values of the clustering degree γ .

Fig. 10 Position p̂/m. and weight ŵ . in random graphs for different values of the size n

Fig. 11 Position p̂/m. and weight ŵ . in random graphs for different values of the density ρ .

Dependency on ρ . Figure 11 shows the results obtained from 200 graphs with n = 187

1000., γ = 0.5. and different values of ρ .. Both the average and the standard deviation 188

of p̂/m. decrease when ρ . increases, and the same is observed for ŵ .. 189
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Fig. 12 Position p̂/m. and weight ŵ . in random KNN graphs for different values of k

Fig. 13 Position p̂/m. and weight ŵ . in random KNN graphs for different values of n.

KNN Graphs We generated KNN graphs with different values of n and k, and we 190

observed the corresponding values of ŵ . and p̂/m.. 191

Dependency on k Figure 12 shows the results obtained from 400 graphs with n = 192

3000. and different values of k. A strong correlation is observed between p̂/m. and 193

k and between ŵ . and k. It should be noted that the connectivity of the graphs, and 194

then the existence of a spanning tree, may be lost when k is too small. 195

Dependency on n Figure 13 shows the results obtained from 200 graphs, 10 for 196

each size, with k = 80. and different values of n from 250 to 5000. Both p̂/m. and 197

ŵ . show a weak correlation with n, since they slightly increase when n increases. 198

Critical Edge Position From the analysis shown above, a possible conclusion is 199

that a reliable estimate of p̂/m. can be based on n and ρ . for random graphs and n and 200

k for KNN graphs. The type of graph at hand can be identified with the automatic 201

classifier illustrated in Sect. 3.1. 202

We trained our models with 50 graphs for each type and different values of the 203

relevant parameters. Then we observed the absolute errors in estimating p̂/m. on 20 204
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Fig. 14 Average and
maximum absolute error in
estimating p̂/m. in different
types of graphs

Fig. 15 Absolute error in
estimating p̂/m. from ŵ .

graphs for each type with random parameters. The results illustrated in Fig. 14 show 205

that p̂/m. can be reliably estimated, since the error is kept below 1.5%. of the number 206

of edges in the graph. In this representation, we do not distinguish between errors in 207

excess and in defect. In the next section, we differentiate, because the two types of 208

error are likely to produce different effects on the SkewedKruskal algorithm. 209

Critical Edge Weight Estimating ŵ . would be even more useful for the purpose of 210

optimizing the SkewedKruskal algorithm, since the value ŵ . could be directly used 211

as a pivot value, to partition the edge list. However, the effect of a wrong choice of 212

the pivot value does not depend on the value itself but rather on its position in the 213

edge list, since its position affects the number of missing MST edges in the left part 214

of the partition at the first level. 215

Figure 15 shows the error in estimating p̂/m. from ŵ .. The largest errors occur 216

with random graphs, especially when γ . is close to 0, owing to the existence of many 217

edges with small weight. 218



182 M. Lecchi and G. Righini

3.4 Tuning the Edge Sample Size 219

Since the SkewedKruskal algorithm is meant as a tool to solve the MST problem 220

for very large graphs, one wants to avoid scanning the whole edge list to select the 221

pivot, especially at the first level of the recursion. Instead, a suitably sized random 222

sample should be used: we indicate its size with s. Clearly, the accuracy in the pivot 223

selection depends on s, generating a trade-off between the amount of computing 224

time devoted to the pivot selection and the total amount of computing time required 225

by the SkewedKruskal algorithm. 226

Starting from an estimate of the position p̂/m., we consider two main techniques 227

to select the pivot. One is the extraction of the edge in position �sp̂/m�. in a sorted 228

random sample of size s. Another is the use of the IntroSelect algorithm to compute 229

the element of the sample in position �sp̂/m�. without sorting it. 230

We remark that this analysis applies to the technique based on the estimate of 231

the critical edge position; when the critical edge weight is estimated, instead, no 232

additional operation is required, because the estimated value ŵ . can be directly used 233

as a pivot. 234

Random Graphs The case of random graphs is the most favorable among the two 235

graph types considered so far, because it is possible to discard a very large fraction 236

of the edges. We considered random graphs with different values of n and ρ .. We did 237

not consider γ . because the results shown in the previous sections suggest that it is 238

not likely to affect the position of the critical edge significantly. 239

Figure 16 shows the results obtained with f our random graphs of different size 240

n and density ρ = 0.5.. Figure 17 shows the results obtained with f our random 241

graphs of different density ρ . and size n = 4000.. 242

The estimates in Fig. 16 are clearly more accurate for larger n. It is interesting to 243

note that accurate estimates on a graph with 2000 vertices require a larger sample 244

than accurate estimates on a graph with 8000 vertices. 245

Density turns out to be relevant: estimates in sparse graphs are unstable, i.e., the 246

variability in the estimate of p̂/m. is larger than in dense graphs, as shown in Fig. 17. 247

KNN Graphs The critical edge position in KNN graphs heavily depends on 248

parameter k. Here, we want to analyze its dependency on the sample size s. 249

Figure 18 shows the results obtained with random KNN graphs of different size 250

and k = 500., while Fig. 19 shows the results obtained with random KNN graphs 251

with different values of k and n = 5000.. 252

The quality of estimates is robust with respect to the size n. When k is low (for 253

instance, k = 50.), the estimate is less accurate. This was expected, because for small 254

k the variance of the critical edge position tends to be large. 255
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Fig. 16 Pivot selection on f our random graphs of different size. The horizontal line represents
the position of the critical edge. The dots represent the estimated position of the critical edge as a
function of the sample size s

3.5 Selection of the Pivot 256

The outcome of the search for the critical edge position reported in Sect. 3.3 shows a 257

significant standard deviation of p̂/m. for all graph types. This suggests that the pivot 258

selection should be done in a rather conservative way to increase the probability that 259

the pivot is chosen in a position beyond that of the critical edge. 260

To search for such a pivot, we generated many graphs with the same parameters, 261

and we observed the maximum values of p̂/m.. Then, with a nonlinear regression 262

model, we tuned a threshold p/m.. To make this estimate even more reliable, we 263

added 20%. of the thresholds, artificially shifting the pivot to larger weight edges. 264

Once computed the threshold value, it is also necessary to revise the cardinality s 265

of the sample. In the remainder, we show some graphical representations, where two 266

horizontal straight lines indicate the threshold p/m. obtained from the regression 267

model, including the artificial shift described above, and the actual value of p̂/m. 268

for the graph, while the dots show the outcome of the estimate of p̂/m. for different 269

values of s. 270

Random Graphs Figure 20 shows that a reliable estimate for p/m. requires a larger 271

size of the random sample compared to the sample size needed to estimate p̂/m.. 272
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Fig. 17 Pivot selection on four random graphs of different density. The horizontal line represents
the position of the critical edge. The dots represent the estimated position of the critical edge as a
function of the sample size s

Similarly, for random graphs of different density shown in Fig. 21, the precision 273

of the threshold estimates turns out to be affected by the density. For low values of 274

ρ ., it is necessary to further increase the random sample size s. 275

In all cases, the estimated conservative threshold p/m. always yields an effective 276

selection of the pivot, since the selected pivot position is systematically beyond the 277

position of the critical edge. 278

KNN Graphs Figure 22 shows the results obtained with KNN graphs with k = 279

400.. As with random graphs, it is necessary to consider a larger sample to estimate 280

the thresholds compared to the sample needed to estimate p̂/m.. Furthermore, for 281

small n, the precision is more sensitive to s than it is for large n, as expected. 282

Figure 23 shows similar results with KNN graphs with different values of k and 283

n = 4000.. The width of the estimated range is heavily dependent on k; the larger 284

the value of k, the better the precision of the estimated thresholds. 285

4 A More General Technique 286

The classifier presented in Sect. 2 allows to identify the two types of randomly 287

generated graphs considered so far; in turn, this allows to use suitable indicators 288

to estimate p̂/m. or ŵ .. However, for the sake of general applicability, one wants to 289
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Fig. 18 Pivot selection in random KNN graphs of different size

be able to estimate p̂/m. or ŵ . for any type of graph and without any prior knowledge 290

about it. For this purpose, we search for some significant correlation between p̂/m. 291

or ŵ . and some general characteristic of graphs, independent of their type. 292

The most important advantage of estimating the critical edge weight is that it 293

is not necessary to extract a random sample and to suitably tune its size s. When 294

the graph is classified and hence some assumptions can be done on its edge weight 295

distribution, one can estimate a range that is likely to contain the critical edge weight 296

ŵ . instead of the critical edge position p̂/m., as illustrated in Sect. 3. On the contrary, 297

generic models like those illustrated in this section cannot predict ŵ ., because the 298

edge weight distribution is unknown. Therefore, in this section, we only consider 299

the problem of estimating p̂/m. and to select a pivot value from it. 300

Standard Deviation of Weight Distribution From the observation of Fig. 6, one 301

can note that the standard deviation of the distribution of the edge weights in random 302

graphs is larger than in KNN graphs. Hence, a search direction is for a possible 303

correlation between such a standard deviation and p̂/m.. To test this hypothesis, 304

we generated random graphs whose weights follow the normal distribution, with 305

different values of the standard deviation. Unfortunately, from the results shown in 306

Fig. 24, no correlation is visible. 307

Density Another potentially useful characteristic is density: in random graphs and 308

KNN graphs, when ρ . and k (respectively) increase, p̂/m. decreases. To search for a 309

possible correlation between p̂/m. and the graph density independent of the weight 310
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Fig. 19 Pivot selection in random KNN graphs with different values of k

distribution, we generated random graphs with 8 different distribution models, 311

including Gaussian, exponential, and gamma. 312

The results shown in Fig. 25 show a rather strong correlation between p̂/m. and 313

the graph density, while the weight distribution turns out to be unlikely to affect 314

p̂/m.. This confirms the observations outlined in Sect. 3.3: the parameters that affect 315

the weights, such as γ . in random graphs, do not significantly affect p̂/m., while the 316

parameters that affect the graph structure, such as k in KNN graphs, also affect the 317

position of the critical edge. 318

Therefore, we defined a nonlinear regression model, trained with 500 randomly 319

generated graphs with different values of n and ρ . and different weight distributions. 320

We used 12 values of ρ . to obtain a good approximation for low density: 6 values are 321

equally spaced in a logarithmic scale between 0 (excluded) and 0.3. (included), while 322

the other 6 values are equally spaced in a linear scale between 0.3. (excluded) and 1 323

(included). Figure 26 shows the quality of the estimate obtained with 20 graphs for 324

each type, generated with random parameters. 325

Sample Size The technique based on the estimate of the critical edge position 326

requires to extract a pivot element in a given position from the edge list. Since the 327

IntroSelect procedure is time-consuming, in spite of its theoretically linear worst- 328

case time complexity, it is advisable to extract the pivot from a random sample of 329

suitable size s. Figure 27 shows the error in the estimate of p̂/m. with different graph 330

types of different size n as a function of the sample size s. 331
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Fig. 20 Critical edge range for different values of the random sample size s (random graphs of
four different size n) Each box represents a single instance of a graph

For all graph types, the method is reliable, and s can be tuned to a relatively small 332

value, compared to the size of the whole edge list. 333

5 Computational Results 334

Computational Environment All computational tests reported in this section have 335

been carried out on an AMD Ryzen 5 4500U processor. Algorithms have been coded 336

in Python, and the learning algorithms were taken from the open-source library 337

Scikit-learn. Input and output files are available from the authors upon request, 338

as well as the code. 339

Versions of the SkewedKruskal Algorithm From the previous analysis, it is 340

possible to design different techniques to drive the SkewedKruskal algorithm. We 341

considered six of them, identified here as follows: 342

• Algorithm 1a: estimate the position of the critical edge, based on graph classifi- 343

cation 344
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Fig. 21 Critical edge range for different values of the random sample size s (random graphs of
four different density values ρ .)

• Algorithm 1b: estimate the maximum position of the critical edge, based on graph 345

classification 346

• Algorithm 2a: estimate the weight of the critical edge, based on graph classifica- 347

tion 348

• Algorithm 2b: estimate the maximum weight of the critical edge, based on graph 349

classification 350

• Algorithm 3a: estimate the position of the critical edge, based on graph density 351

• Algorithm 3b: estimate the maximum position of the critical edge, based on graph 352

density 353

Optimal Size of the Random Sample The methods based on an estimate of p̂/m. 354

require a suitable sizing of a random sample of the edge set. 355

In [8], it was suggested to select a random sample of size s = �√m�. from the 356

edge list. However, in some of the techniques shown so far, the random sample 357

is used not only for extracting the pivot but also for the purpose of classification 358

and parameter estimation. Therefore, a larger value of s could work better. For this 359

reason, we introduce a multiplicative factor α . (to be suitably tuned), so that s = 360

�α√
m�.. 361
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Fig. 22 Critical edge range for different values of the random sample size s (KNN graphs of four
different size n)

5.1 Calibrating the Algorithm by Graph Classification 362

Hereafter, we present the results of some computational tests in which graphs of 363

different types (random graphs, KNN graphs) were generated, they were (correctly) 364

classified, their critical edge position or critical edge maximum position or critical 365

edge weight were estimated, and such an estimate was finally used to drive 366

the SkewedKruskal algorithm, by suitably partitioning the edge list. Hence, this 367

technique, corresponding to Algorithms 1a, 1b, 2a, and 2b, exploits the assumption 368

that the input graphs belong to a restricted and known subset of randomly generated 369

graph types. 370

Random Graphs Figure 28 shows how the computing time of SkewedKruskal 371

depends on the size of the random sample, when the pivot element is selected after 372

estimating its position p̂/m. in the edge list (Algorithm 1a). The tests have been 373

done on random graphs with density ρ = 0.5. and different size n. Each point is the 374

average value from five graphs. 375

The computing time is highly variable: the illustration shows several peaks for 376

some values of α .. We also observed a rather high variance of the computing time 377

for the same value of α .. 378
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Fig. 23 Critical edge range for different values of the random sample size s (KNN graphs of four
different values of k)

Fig. 24 Position of the
critical edge as a function of
the standard deviation of the
weights distribution

When the pivot is selected in a more conservative way (Algorithm 1b), better 379

results are achieved. Figure 29 shows the computing time of SkewedKruskal for the 380

same graphs as in Fig. 28 when the pivot is selected in position p/m., instead of 381

p̂/m.. 382
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Fig. 25 Position of the
critical edge as a function of
graph density

Fig. 26 Errors in estimating
the position of the critical
edge based on the density for
different graph types

Fig. 27 Density-based estimate of the critical edge position
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Fig. 28 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of p̂/m.

(random graphs with
ρ = 0.5.)

Fig. 29 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of p/m.

(random graphs with
ρ = 0.5.)

The observed computing time is smaller in average and also more stable. 383

Concerning the optimal calibration of the sample size, values of α . close to 2.5. 384

yielded the best outcome. 385

Better results were obtained by estimating the maximum value of the critical edge 386

weight instead of the critical edge position (Algorithms 2a and 2b), as illustrated in 387

Fig. 30. 388

KNN Graphs Similar results were obtained with KNN random graphs. Figure 31 389

shows the computing time of SkewedKruskal when the pivot element is selected in 390

position p̂/m. (Algorithm 1a) in random KNN graphs with k = n/10.. 391

The outcome is rather unstable, with some peaks due to graphs where the critical 392

edge position was underestimated. This happened in 15%. of the graphs. 393
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Fig. 30 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of ŵ .

(random graphs with
ρ = 0.5.)

Fig. 31 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of p̂/m.

(KNN random graphs)

As shown in Fig. 32, more stable average computing time is observed when the 394

pivot is selected in position p/m. (Algorithm 1b). However, the average computing 395

time is slightly worse in this case. 396

For this graph type, it is effective to estimate the critical edge weight. However, 397

20 underestimates were observed among 100 graphs when the pivot selection was 398

done according to an estimate of ŵ . (Algorithm 2a). Better results were achieved 399

when the pivot was selected according to an estimate of w . (Algorithm 2b): the 400

number of wrong partitions was almost reduced to zero, as shown in Fig. 33. 401

The computing time is similar to that observed for Algorithm 1b with α ≈ 3., but 402

its dependency on s looks more predictable, as expected: in this case, the random 403

sample of size s is used to classify the graph, not to compute w .. 404



194 M. Lecchi and G. Righini

Fig. 32 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of p/m.

(KNN random graphs)

Fig. 33 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of w .

(KNN random graphs)

5.2 Calibrating the Algorithm by Graph Density 405

When the graph type is unknown and no assumption can be done about it, it is harder 406

to estimate p̂/m., since the distribution of the edges is unknown. For this reason, in 407

Algorithm 3 that is meant to address this more general settings, we use a factor 408

c > 1. to artificially increase the value of p̂/m. estimated from the graph density. To 409

tune c, we did some preliminary tests with random graphs of different type, size, 410

and density. The size of the random sample was set to s = 10
√

m.. Setting c = 1.4., 411

we observed the best results; underestimates occurred in only 5%. of the graphs. 412

Figures 34 and 35 show the computing time for random graphs (ρ = 0.5.) and 413

KNN graphs (k = n
10 .), respectively. 414
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Fig. 34 Computing time of
SkewedKruskal driven by
graph density and an estimate
of cp/m. (random graphs)

Fig. 35 Computing time of
SkewedKruskal driven by
graph density and an estimate
of cp/m. (KNN random
graphs)

Values of α . around f ive allowed to minimize the computing time for all graph 415

types, achieving results similar to those obtained with algorithms based on graph 416

classification. 417

When applying this more general technique based on graph density, we cannot 418

estimate the critical edge weight, because no assumption can be done on the edge 419

weight distribution. Hence, the prediction is based only on the critical edge position. 420

5.3 Comparison Between Algorithms 421

To compare the versions of the SkewedKruskal algorithm, we observe the comput- 422

ing time for different values of the graph types and parameters. Following the results 423

outlined in the previous subsections, the SkewedKruskal algorithm driven by graph 424
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Fig. 36 Computing time
with random graphs of
different size n

Fig. 37 Computing time
with random graphs of
different density ρ .

classification uses the estimate of the maximum position of the critical edge p/m. 425

or the maximum weight of the critical edge w . tuning the sample size with α = 3., 426

while the algorithm driven by graph density uses α = 5.. 427

Random Graphs Figure 36 shows the results with random graphs with ρ = 0.5., 428

γ = 1., and some values of n. 429

All SkewedKruskal variants have definitely smaller computing time compared 430

with Kruskal algorithm, and the gap grows with the size n. The variants based 431

on classification and density are faster and more robust than the original Skewed- 432

Kruskal algorithm, which is sometimes forced to make a recursive call on the second 433

list at the first recursion level due to an underestimation of the critical arc weight. 434

The same observations hold when the size is fixed (n = 5000. in our tests), and 435

computing time is measured on graphs with different density, as shown in Fig. 37. 436

Varying the degree of clustering γ ., for fixed size n = 5000. and density ρ = 0.5., 437
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Fig. 38 Computing time
with random graphs of
different clustering degree γ .

Fig. 39 Computing time
with KNN graphs of different
size

the computing time reported in Fig. 38 is observed. In general, the computing time 438

turns out to be smaller for all variants of SkewedKruskal when γ . is very close to 0, 439

i.e., the degree of clustering is large. For the other values of γ ., the algorithms based 440

on classification and density have almost identical computing time. 441

KNN Graphs The comparison between the algorithms on KNN graphs shows even 442

larger gaps between the computing time taken by SkewedKruskal and that of the 443

new variants we have analyzed. Figure 39 shows the computing time for KNN 444

graphs of different size n and k = n
10 .. 445

As with random graphs, the computing time growth with n looks also more 446

predictable for the new versions compared with the original one. The same 447

observation holds for the results shown in Fig. 40, obtained with KNN graphs with 448

fixed size n = 5000. and different values of k. 449



198 M. Lecchi and G. Righini

Fig. 40 Computing time
with KNN graphs of different
values of k

6 Conclusions 450

In this study, we have applied some techniques based on the analysis of the data of 451

each specific instance of the minimum cost spannning tree problem to optimize the 452

computing time taken by the SkewedKruskal algorithm, a variation of the classical 453

Kruskal algorithm in which the underlying idea is to minimize the edge subset 454

that needs to be examined and sorted to find a minimum spanning tree. This can 455

be viewed as an application of (heuristic) learning algorithms to the performance 456

improvement of (exact) optimization algorithms. 457

The results we have obtained show that the approach is promising; we have 458

analyzed two techniques, one based on the classification of graphs in which one 459

can use models suitably tuned for each specific graph type and the other based on 460

graph density, which can be evaluated in any general case with no assumption on 461

the structure of the graph. 462
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