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1 Introduction

We consider the minimum cost spanning tree problem, that is, the problem of finding
a minimum cost spanning tree (MST) of a connected weighted graph. A classical
algorithm for this problem is due to Kruskal [4].

In its most basic implementation, Kruskal algorithm starts by fully sorting the
edge list by nondecreasing edge weights. Then, starting from an empty set, a forest
F is grown by scanning the edge list and inserting one edge at a time in F', discarding
edges that produce cycles, until a spanning tree is obtained. The resulting time
complexity is O(mlogn), where m is the number of edges and n is the number
of vertices.

Janson et al. [3] proved that the largest weight edge in an MST of a random
weighted graph is expected to lie within the %n logn smallest weight edges. This
suggests to save computing time, sorting only the relevant part of the edge list.

Following this idea, Paredes and Navarro [7] proposed the QuickKruskal algo-
rithm, where edge sorting is interleaved with edge selection. For this purpose, edge
sorting is done as in QuickSort, i.e., partitioning the unsorted edge list in two lists
by comparing all weights with a suitably chosen pivot element; if the MST is found
within the edges of the first list, then the edges in the second list are not sorted.
This procedure is recursively executed for each list. From a theoretical viewpoint,
the average time complexity of QuickKruskal is O (m +n log? n) for random graphs
with randomly generated weights (Paredes and Navarro, [7]). From an experimental
viewpoint, QuickKruskal is substantially faster than Kruskal algorithm.
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A further improvement, named FilterKruskal, was proposed by Osipov et al. [6].
When an edge list is recursively partitioned into two parts as in QuickKruskal, after
processing the first list and before processing the second one, all edges that would
close a cycle in the current forest are filtered out from the second list, thus reducing
its size and the computing time needed to sort it. As shown in [6], the average
time complexity of the FilterKruskal algorithm for random graphs with randomly
generated edge weights is O (m + nlognlog 7).

In this context, the recursive partition of the edge lists should better be done in
an unbalanced way, contrary to QuickSort that achieves the best performance by
splitting each list into two parts of equal size. The unbalanced partition is especially
useful in the first recursive call, when the whole edge list is partitioned the first
time. Following this observation, Righini and Righini [8] presented a variation of
the algorithm, called SkewedKruskal, where a random sample is extracted from the
complete edge list and the pivot element is suitably chosen among the samples. The
size of the sample is [4/m ], and the pivot is selected in position {"Zk’\/%nlﬂ in the sorted
list of samples. This corresponds to the expected position of the critical edge, i.e.,
the largest weight edge in the MST according to the result of Janson et al., which
refers to complete graphs with random weights generated according to a uniform
distribution of probability.

However, for different types of graphs, different choices of the sample size
and the pivot position can lead to better results. The purpose of this study is to
optimize the time performance of the SkewedKruskal algorithm by estimating how
to partition the sorted edge list on the basis of some graph characteristics, so that the
MST is likely to be completely contained in one of the two initial edge lists and the
size of such a list is minimized.

Paper Outline In Sect. 2, we describe two classes of randomly generated weighted
graphs we studied, namely, random graphs and KNN graphs. Section 3 describes the
main steps that can be followed to estimate the position or the weight of the critical
edge starting from an automatic classification of the graph and the estimation of its
parameters. Section 4 describes an alternative and more general technique, based
on graph density, that does not require to classify the graph. In Sect. 5, we illustrate
the results of computational tests and comparisons between different versions of the
SkewedKruskal algorithm.

2 Randomly Generated Graphs

As a preliminary step, in this study, we initially consider two classes of randomly
generated graphs, namely, random graphs and k-nearest neighbor (KNN in the
remainder) graphs. Hereafter, we describe the details of the graph generation
procedure.
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Fig. 1 Distribution of the edge weights in a random graph as a function of the clustering index y

(logarithmic scale)

Random Graphs In our tests, random graphs are generated according to the

Erdds—-Rényi model [2]: it allows to generate graphs Gy, ,, where n is the number

of vertices and 0 < p < 1 is the graph density, i.e., the probability of including

any edge (self-loops are excluded). The edge weights are generated according to a

uniform probability distribution.

Besides size and density, we also consider a third parameter, that is, the clustering
degree, indicated by y. To generate random graphs with different clustering degree,

we partition the vertex set into [/n] disjoint subsets Cy, Ca, ...C[ Sl such that

Vi) < |Ci| < [/n] Vi = 1,...,[+/n]. We define a parameter 0 < y < 1
representing the clustering degree. Then, the weight of all edges whose endpoints
belong to the same cluster is multiplied by y, while the weight of the other edges is

divided by y. For small values of y, the resulting graph is strongly clustered.
According to this method to produce clustered random graphs, the number of
intra-cluster edges grows as pn./n, while the number of inter-cluster edges grows
as pn>. Figure 1 shows the distribution of the edge weights as a function of y in
random graphs G1o00,0.5 using a logarithmic scale, where the frequency of small

weights can be better appreciated although they are relatively few.

KNN Graphs A KNN graph is obtained by generating its vertices at random as
points in a circle of radius R. Each vertex is adjacent to its k-nearest neighbors, and

the edge weights are the Euclidean distances between the endpoints. In our tests,

these graphs were generated using K — D-trees and ball trees by the algorithms

illustrated in [1, 5]) and implemented in the Python module sklearn.neighbours.

By construction, KNN graphs are clustered, with a clustering degree depending
on k. Figure 2 shows the edge weight distribution of KNN graphs with n = 1000

for different values of k.
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Fig. 2 Edge weight distribution in KNN graphs for n = 1000 and different values of k

3 Graph Classification

In this section, we describe a technique to estimate the position or the weight
of the critical edge, starting from an automatic classification of the graph and
an estimation of its relevant parameters. In Sect.3.1, we describe an automatic
classifier; in Sect. 3.2, we describe how the relevant parameters can be estimated
once the graph has been classified; in Sect. 3.3, we analyze the relationship between
the graph parameters and the position or weight of the critical edge; in Sect. 3.4, we
consider the problem of suitably selecting a sample size from the edge list to obtain
a reliable estimate of the position or the weight of the critical edge; in Sect. 3.5, we
consider the selection of the pivot, i.e., the edge weight value that is used to partition
the edge list into two parts.

3.1 Automatic Classification

We set up an automatic classifier to distinguish the two classes of randomly
generated graphs shown above. The two classes are characterized by different
distributions of edge weights. Therefore, the mean value and the variance of (a
sample of) the edge weights are good candidates for an effective classifier.

Random Graphs By definition, the distribution of the edge weights is uniform
when y = 1. Hence, it is expected that the mean value and the variance of a sample
subject to min-max scaling be close to the expected value EE(X) and the variance
Var(X) of a random variable X uniformly distributed between a = 0 and b = 1,
ie.,

a+b_1

B0 =—3 2

and

b-—aP 1

Var(X) = — 12
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Fig. 3 Mean value and variance of edge weights in random graphs for different values of the
clustering degree y (n = 2000)
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Fig. 4 Mean and average of the edge weights in KNN graphs for different values of k£ (n = 1000)

For clustered graphs, with low value of y, deviations from these values are possible. 111
However, the number of intra-cluster (small weight) edges is very small. Figure 3 112
shows the values of the mean and the variance for n = 2000 and different values 113

of y. 114
It is apparent that the value of the clustering degree does not significantly affect 115
the mean and the variance. 116

KNN Graphs The mean of the edge weights in KNN graphs is very close to the 117
mean of random graphs, when k is neither very small nor very large. However, the 118
variance is slightly smaller, thus allowing to distinguish the two types of graphs. 119
Figures 4 and 5 show the mean and the variance for n = 1000 and different values 120
of k as well as for k = 400 and different values of n. 121

Similar to random graphs, the mean and the variance are almost independent on 122
y also for KNN graphs. 123
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Fig. 5 Mean and average of the edge weights in KNN graphs for different values of n (k = 400)
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A Classifier From the observations above, it is possible to construct, train, and 124
evaluate an automatic graph classifier, which takes the mean and the variance of (a 125
sample of) the edge weights in input and automatically determines the type of graph. 126

We used a k-nearest neighbor classifier with K = 5. The model was trained 127
with 120 random graphs and 120 KNN graphs. Its reliability has been tested on 128
200 randomly generated graphs, 100 for each type, taking a sample of 1000 edges. 129
Figure 6 shows the results: each area corresponds to a type of graph after training 130
the classifier. Each point lies in the area of its own type, i.e., all classifications are 131
correct. 132

Selection of the Sample Size To minimize the impact of the classification on the 133
computing time, one wants to use a sample size s as small as possible. Figure 7 134
shows the degradation in the accuracy of the classifier when s decreases. The results 135
have been obtained from 70 graphs for each type, with random size and parameters. 136
Keeping s = 1000, no classification errors were observed. This is the reason why 137
the value s = 1000 was used to train the classifier. 138
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3.2 Parameter Estimation

Random Graphs In a random graph, the size of the graph and its density are
immediately observable by counting the number n of vertices and the number m
of edges. The clustering degree y can be also estimated from the distribution of
the edge weights. For this purpose, we analyzed the difference between theoretical
quantiles and actual quantiles in the list of edge weights, and we studied its
dependency on y, n, and p. By a suitable regression on some randomly generated
datasets, we could reliably estimate y, especially for large values of n and p.
However, further tests illustrated in Sect. 3.3 showed that y is not a good predictor
for the position of the critical edge in random graphs, and this is consistent with
the results observed in Sect.3.1. Therefore, we did not make further efforts to
estimate y.

KNN Graphs The parameter k£ in KNN graphs plays a similar role to the density
p in random graphs, although the distribution of the edge weights in KNN graphs
is not uniform as it is in random graphs. It is fair to assume a correlation between
k and the number of edges m. This is confirmed by the analysis illustrated in Fig. 8
which shows an approximately linear correlation.

Hence, a simple way to estimate k is to take a fraction n of the ratio 7. To
calibrate 1, we compute "’n—k for 50 graphs with n randomly selected between 500

and 5000 and k between 50 and 0.9n. We obtain a mean value n = 1.76258 with a
standard deviation of 0.04482. The average percentage error in the estimate of k is
only 0.02455%.

Owing to the slight inflection of the curve when k tends to n, the estimate tends
to be worse for large k. However, as observed in the remainder, a precise estimate is
required only for small values of k.
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3.3 (Critical Edge and Graph Parameters

To optimize the time performance of the SkewedKruskal algorithm, the goal is
to estimate the position or the weight of the critical edge. Let W be the critical
edge weight, after a min-max scaling procedure which is executed to eliminate the
dependency on the range of the weights. Alternatively, one can estimate the critical
edge position in the sorted edge list: let n — 1 > p < m be such position in a
sorted list of m edges. This estimate is more indirect, but it does not require any
preprocessing to scale the weights.

In this section, we analyze the distribution of the values of w and p/m for
different types of randomly generated graphs. This analysis allows to estimate a
minimum size of the edge list fraction that is needed to include the MST.

Since the position and the weight of the critical edge depend on some parameters
of the graphs, we search for the correlations that can be a base for a reliable
prediction.

Random Graphs We generated random graphs with different values of size n,
density p, and clustering degree y, and we observed the values of w and p/m.

Dependency on y Figure 9 shows the results obtained from 200 random graphs
with n = 1000, p = 0.5 and different values of y. No significant correlation can
be observed between p/m and the clustering degree. A weak correlation between w
and the clustering degree is observed only for small values of y.

Dependency on n Figure 10 shows the results obtained from 200 random graphs
with y = 0.5, p = 0.5 and different values of n from 50 to 3000. When n grows,
both p/m and w decrease (both in average and in standard deviation).
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Fig. 11 Position p/m and weight @ in random graphs for different values of the density p

Dependency on p Figure 11 shows the results obtained from 200 graphs with n =
1000, y = 0.5 and different values of p. Both the average and the standard deviation
of p/m decrease when p increases, and the same is observed for w.

187
188
189



180

1.0

0.8 '

p/m

0.0
0 500 1000 1500 2000 2500 3000

k

60

50

10

<30

20

10

M. Lecchi and G. Righini

500 1000 1500 2000 2500 3000
I

Fig. 12 Position p/m and weight @ in random K NN graphs for different values of k

1.0

p/m

) 1000 2000 3000 4000 5000
n

wl%]

60

50

1000 2000 3000 4000 5000
n

Fig. 13 Position p/m and weight @ in random KN N graphs for different values of n.

KNN Graphs We generated KNN graphs with different values of » and k, and we
observed the corresponding values of w and p/m.

Dependency on k& Figure 12 shows the results obtained from 400 graphs with n =

3000 and different values of k. A strong correlation is observed between p/m and
k and between w and k. It should be noted that the connectivity of the graphs, and

then the existence of a spanning tree, may be lost when k is too small.

Dependency on n Figure 13 shows the results obtained from 200 graphs, 10 for
each size, with k = 80 and different values of n from 250 to 5000. Both p/m and

w show a weak correlation with n, since they slightly increase when n increases.

Critical Edge Position From the analysis shown above, a possible conclusion is

that a reliable estimate of p/m can be based on n and p for random graphs and n and

k for KNN graphs. The type of graph at hand can be identified with the automatic

classifier illustrated in Sect. 3.1.

We trained our models with 50 graphs for each type and different values of the
relevant parameters. Then we observed the absolute errors in estimating p/m on 20
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Fig. 14 Average and
maximum absolute error in
estimating p/m in different
types of graphs

Fig. 15 Absolute error in
estimating p/m from o

graphs for each type with random parameters. The results illustrated in Fig. 14 show
that p/m can be reliably estimated, since the error is kept below 1.5% of the number
of edges in the graph. In this representation, we do not distinguish between errors in
excess and in defect. In the next section, we differentiate, because the two types of
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I Max absolute error
B Mean absolute error
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error are likely to produce different effects on the SkewedKruskal algorithm.

Critical Edge Weight Estimating @ would be even more useful for the purpose of
optimizing the SkewedKruskal algorithm, since the value w could be directly used
as a pivot value, to partition the edge list. However, the effect of a wrong choice of
the pivot value does not depend on the value itself but rather on its position in the
edge list, since its position affects the number of missing MST edges in the left part

of the partition at the first level.

Figure 15 shows the error in estimating p/m from w. The largest errors occur
with random graphs, especially when y is close to 0, owing to the existence of many

edges with small weight.
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3.4 Tuning the Edge Sample Size

Since the SkewedKruskal algorithm is meant as a tool to solve the MST problem
for very large graphs, one wants to avoid scanning the whole edge list to select the
pivot, especially at the first level of the recursion. Instead, a suitably sized random
sample should be used: we indicate its size with s. Clearly, the accuracy in the pivot
selection depends on s, generating a trade-off between the amount of computing
time devoted to the pivot selection and the total amount of computing time required
by the SkewedKruskal algorithm.

Starting from an estimate of the position p/m, we consider two main techniques
to select the pivot. One is the extraction of the edge in position [sp/m] in a sorted
random sample of size s. Another is the use of the IntroSelect algorithm to compute
the element of the sample in position [s p/m] without sorting it.

We remark that this analysis applies to the technique based on the estimate of
the critical edge position; when the critical edge weight is estimated, instead, no
additional operation is required, because the estimated value W can be directly used
as a pivot.

Random Graphs The case of random graphs is the most favorable among the two
graph types considered so far, because it is possible to discard a very large fraction
of the edges. We considered random graphs with different values of n and p. We did
not consider y because the results shown in the previous sections suggest that it is
not likely to affect the position of the critical edge significantly.

Figure 16 shows the results obtained with four random graphs of different size
n and density p = 0.5. Figure 17 shows the results obtained with four random
graphs of different density o and size n = 4000.

The estimates in Fig. 16 are clearly more accurate for larger #. It is interesting to
note that accurate estimates on a graph with 2000 vertices require a larger sample
than accurate estimates on a graph with 8000 vertices.

Density turns out to be relevant: estimates in sparse graphs are unstable, i.e., the
variability in the estimate of p/m is larger than in dense graphs, as shown in Fig. 17.

KNN Graphs The critical edge position in KNN graphs heavily depends on
parameter k. Here, we want to analyze its dependency on the sample size s.

Figure 18 shows the results obtained with random KNN graphs of different size
and k = 500, while Fig. 19 shows the results obtained with random KNN graphs
with different values of k and n = 5000.

The quality of estimates is robust with respect to the size n. When k is low (for
instance, k = 50), the estimate is less accurate. This was expected, because for small
k the variance of the critical edge position tends to be large.
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Fig. 16 Pivot selection on four random graphs of different size. The horizontal line represents
the position of the critical edge. The dots represent the estimated position of the critical edge as a
function of the sample size s

3.5 Selection of the Pivot

The outcome of the search for the critical edge position reported in Sect. 3.3 shows a
significant standard deviation of p/m for all graph types. This suggests that the pivot
selection should be done in a rather conservative way to increase the probability that
the pivot is chosen in a position beyond that of the critical edge.

To search for such a pivot, we generated many graphs with the same parameters,
and we observed the maximum values of p/m. Then, with a nonlinear regression
model, we tuned a threshold p/m. To make this estimate even more reliable, we
added 20% of the thresholds, artificially shifting the pivot to larger weight edges.

Once computed the threshold value, it is also necessary to revise the cardinality s
of the sample. In the remainder, we show some graphical representations, where two
horizontal straight lines indicate the threshold p/m obtained from the regression
model, including the artificial shift described above, and the actual value of p/m
for the graph, while the dots show the outcome of the estimate of p/m for different
values of s.

Random Graphs Figure 20 shows that a reliable estimate for p/m requires a larger
size of the random sample compared to the sample size needed to estimate p/m.
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Fig. 17 Pivot selection on four random graphs of different density. The horizontal line represents
the position of the critical edge. The dots represent the estimated position of the critical edge as a
function of the sample size s

Similarly, for random graphs of different density shown in Fig. 21, the precision
of the threshold estimates turns out to be affected by the density. For low values of
p, it is necessary to further increase the random sample size s.

In all cases, the estimated conservative threshold p/m always yields an effective
selection of the pivot, since the selected pivot position is systematically beyond the
position of the critical edge.

KNN Graphs Figure 22 shows the results obtained with KNN graphs with k =
400. As with random graphs, it is necessary to consider a larger sample to estimate
the thresholds compared to the sample needed to estimate p/m. Furthermore, for
small n, the precision is more sensitive to s than it is for large n, as expected.
Figure 23 shows similar results with KNN graphs with different values of k and
n = 4000. The width of the estimated range is heavily dependent on k; the larger
the value of k, the better the precision of the estimated thresholds.

4 A More General Technique

The classifier presented in Sect.2 allows to identify the two types of randomly
generated graphs considered so far; in turn, this allows to use suitable indicators
to estimate p/m or w. However, for the sake of general applicability, one wants to
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Fig. 18 Pivot selection in random KNN graphs of different size

be able to estimate p/m or w for any type of graph and without any prior knowledge
about it. For this purpose, we search for some significant correlation between p/m
or w and some general characteristic of graphs, independent of their type.

The most important advantage of estimating the critical edge weight is that it
is not necessary to extract a random sample and to suitably tune its size s. When
the graph is classified and hence some assumptions can be done on its edge weight
distribution, one can estimate a range that is likely to contain the critical edge weight
w instead of the critical edge position p/m, as illustrated in Sect. 3. On the contrary,
generic models like those illustrated in this section cannot predict w, because the
edge weight distribution is unknown. Therefore, in this section, we only consider
the problem of estimating p/m and to select a pivot value from it.

Standard Deviation of Weight Distribution From the observation of Fig. 6, one
can note that the standard deviation of the distribution of the edge weights in random
graphs is larger than in KNN graphs. Hence, a search direction is for a possible
correlation between such a standard deviation and p/m. To test this hypothesis,
we generated random graphs whose weights follow the normal distribution, with
different values of the standard deviation. Unfortunately, from the results shown in
Fig. 24, no correlation is visible.

Density Another potentially useful characteristic is density: in random graphs and
KNN graphs, when p and k (respectively) increase, p/m decreases. To search for a
possible correlation between p/m and the graph density independent of the weight
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Fig. 19 Pivot selection in random KNN graphs with different values of &

distribution, we generated random graphs with 8 different distribution models,
including Gaussian, exponential, and gamma.

The results shown in Fig. 25 show a rather strong correlation between p/m and
the graph density, while the weight distribution turns out to be unlikely to affect
p/m. This confirms the observations outlined in Sect. 3.3: the parameters that affect
the weights, such as y in random graphs, do not significantly affect p/m, while the
parameters that affect the graph structure, such as k in KNN graphs, also affect the
position of the critical edge.

Therefore, we defined a nonlinear regression model, trained with 500 randomly
generated graphs with different values of n and p and different weight distributions.
We used 12 values of p to obtain a good approximation for low density: 6 values are
equally spaced in a logarithmic scale between 0 (excluded) and 0.3 (included), while
the other 6 values are equally spaced in a linear scale between 0.3 (excluded) and 1
(included). Figure 26 shows the quality of the estimate obtained with 20 graphs for
each type, generated with random parameters.

Sample Size The technique based on the estimate of the critical edge position
requires to extract a pivot element in a given position from the edge list. Since the
IntroSelect procedure is time-consuming, in spite of its theoretically linear worst-
case time complexity, it is advisable to extract the pivot from a random sample of
suitable size s. Figure 27 shows the error in the estimate of p/m with different graph
types of different size n as a function of the sample size s.
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Fig. 20 Critical edge range for different values of the random sample size s (random graphs of
four different size n) Each box represents a single instance of a graph

For all graph types, the method is reliable, and s can be tuned to a relatively small
value, compared to the size of the whole edge list.

5 Computational Results

Computational Environment All computational tests reported in this section have
been carried out on an AMD Ryzen 5 4500U processor. Algorithms have been coded
in Python, and the learning algorithms were taken from the open-source library
Scikit-learn. Input and output files are available from the authors upon request,
as well as the code.

Versions of the SkewedKruskal Algorithm From the previous analysis, it is
possible to design different techniques to drive the SkewedKruskal algorithm. We
considered six of them, identified here as follows:

* Algorithm la: estimate the position of the critical edge, based on graph classifi-
cation
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Optimal Size of the Random Sample The methods based on an estimate of p/m
require a suitable sizing of a random sample of the edge set.

In [8], it was

suggested to select a random sample of size s = [4/m] from the

edge list. However, in some of the techniques shown so far, the random sample

is used not only

for extracting the pivot but also for the purpose of classification

and parameter estimation. Therefore, a larger value of s could work better. For this

reason, we intro

[ory/m].

duce a multiplicative factor « (to be suitably tuned), so that s =
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Fig. 22 Critical edge range for different values of the random sample size s (KNN graphs of four
different size n)

5.1 Calibrating the Algorithm by Graph Classification 362

Hereafter, we present the results of some computational tests in which graphs of 363
different types (random graphs, KNN graphs) were generated, they were (correctly) 364
classified, their critical edge position or critical edge maximum position or critical 3es
edge weight were estimated, and such an estimate was finally used to drive ses
the SkewedKruskal algorithm, by suitably partitioning the edge list. Hence, this 367
technique, corresponding to Algorithms 1a, 1b, 2a, and 2b, exploits the assumption 368
that the input graphs belong to a restricted and known subset of randomly generated 3eo
graph types. 370

Random Graphs Figure 28 shows how the computing time of SkewedKruskal 371
depends on the size of the random sample, when the pivot element is selected after 372
estimating its position p/m in the edge list (Algorithm 1a). The tests have been 373
done on random graphs with density p = 0.5 and different size n. Each point is the 374
average value from five graphs. 375

The computing time is highly variable: the illustration shows several peaks for 376
some values of o. We also observed a rather high variance of the computing time 377
for the same value of «. 378
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Fig. 23 Critical edge range for different values of the random sample size s (KNN graphs of four
different values of k)
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When the pivot is selected in a more conservative way (Algorithm 1b), better
results are achieved. Figure 29 shows the computing time of SkewedKruskal for the
same graphs as in Fig. 28 when the pivot is selected in position p/m, instead of

p/m.
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Fig. 27 Density-based estimate of the critical edge position
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Fig. 28 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of p/m
(random graphs with

p =0.5)

Fig. 29 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of p/m
(random graphs with

p =0.5)
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The observed computing time is smaller in average and also more stable.
Concerning the optimal calibration of the sample size, values of « close to 2.5

yielded the best outcome.

Better results were obtained by estimating the maximum value of the critical edge

weight instead of the critical edge position (Algorithms 2a and 2b), as illustrated in

Fig. 30.

KNN Graphs Similar results were obtained with KNN random graphs. Figure 31

shows the computing time of SkewedKruskal when the pivot element is selected in

position p/m (Algorithm 1a) in random KNN graphs with k = n/10.

The outcome is rather unstable, with some peaks due to graphs where the critical
edge position was underestimated. This happened in 15% of the graphs.
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As shown in Fig. 32, more stable average computing time is observed when the 304
pivot is selected in position p/m (Algorithm 1b). However, the average computing 395
time is slightly worse in this case. 396

For this graph type, it is effective to estimate the critical edge weight. However, 397
20 underestimates were observed among 100 graphs when the pivot selection was 398
done according to an estimate of w (Algorithm 2a). Better results were achieved 399
when the pivot was selected according to an estimate of w (Algorithm 2b): the 400
number of wrong partitions was almost reduced to zero, as shown in Fig. 33. 401

The computing time is similar to that observed for Algorithm 1b with o &~ 3, but 402
its dependency on s looks more predictable, as expected: in this case, the random 403
sample of size s is used to classify the graph, not to compute w. 404
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Fig. 32 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of p/m
(KNN random graphs)

Fig. 33 Computing time of
SkewedKruskal driven by the
classification of the graph
type and an estimate of w
(KNN random graphs)
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5.2 Calibrating the Algorithm by Graph Density

When the graph type is unknown and no assumption can be done about it, it is harder
to estimate p/m, since the distribution of the edges is unknown. For this reason, in
Algorithm 3 that is meant to address this more general settings, we use a factor
¢ > 1 to artificially increase the value of p/m estimated from the graph density. To
tune ¢, we did some preliminary tests with random graphs of different type, size,
and density. The size of the random sample was set to s = 10,/m. Setting ¢ = 1.4,

we observed the best results; underestimates occurred in only 5% of the graphs.

Figures 34 and 35 show the computing time for random graphs (p = 0.5) and

KNN graphs (k = 15), respectively.
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Values of « around five allowed to minimize the computing time for all graph
types, achieving results similar to those obtained with algorithms based on graph
classification.

When applying this more general technique based on graph density, we cannot
estimate the critical edge weight, because no assumption can be done on the edge
weight distribution. Hence, the prediction is based only on the critical edge position.

5.3 Comparison Between Algorithms

To compare the versions of the SkewedKruskal algorithm, we observe the comput-
ing time for different values of the graph types and parameters. Following the results
outlined in the previous subsections, the SkewedKruskal algorithm driven by graph
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classification uses the estimate of the maximum position of the critical edge p/m
or the maximum weight of the critical edge w tuning the sample size with @ = 3,
while the algorithm driven by graph density uses o = 5.

Random Graphs Figure 36 shows the results with random graphs with p = 0.5,
y = 1, and some values of n.

All SkewedKruskal variants have definitely smaller computing time compared
with Kruskal algorithm, and the gap grows with the size n. The variants based
on classification and density are faster and more robust than the original Skewed-
Kruskal algorithm, which is sometimes forced to make a recursive call on the second
list at the first recursion level due to an underestimation of the critical arc weight.

The same observations hold when the size is fixed (n = 5000 in our tests), and
computing time is measured on graphs with different density, as shown in Fig. 37.
Varying the degree of clustering y, for fixed size n = 5000 and density p = 0.5,
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Fig. 38 Computing time
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the computing time reported in Fig. 38 is observed. In general, the computing time
turns out to be smaller for all variants of SkewedKruskal when y is very close to 0,
i.e., the degree of clustering is large. For the other values of y, the algorithms based
on classification and density have almost identical computing time.

KNN Graphs The comparison between the algorithms on KNN graphs shows even
larger gaps between the computing time taken by SkewedKruskal and that of the
new variants we have analyzed. Figure 39 shows the computing time for KNN
graphs of different size n and k = {.

As with random graphs, the computing time growth with n looks also more
predictable for the new versions compared with the original one. The same
observation holds for the results shown in Fig. 40, obtained with KNN graphs with
fixed size n = 5000 and different values of k.
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6 Conclusions

In this study, we have applied some techniques based on the analysis of the data of
each specific instance of the minimum cost spannning tree problem to optimize the
computing time taken by the SkewedKruskal algorithm, a variation of the classical
Kruskal algorithm in which the underlying idea is to minimize the edge subset
that needs to be examined and sorted to find a minimum spanning tree. This can
be viewed as an application of (heuristic) learning algorithms to the performance
improvement of (exact) optimization algorithms.

The results we have obtained show that the approach is promising; we have
analyzed two techniques, one based on the classification of graphs in which one
can use models suitably tuned for each specific graph type and the other based on
graph density, which can be evaluated in any general case with no assumption on
the structure of the graph.
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