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Bi-objective search is a well-known algorithmic problem, concerned with finding a set of optimal
solutions in a two-dimensional domain. This problem has a wide variety of applications such as
planning in transport systems or optimal control in energy systems. Recently, bi-objective A*-based
search (BOA*) has shown state-of-the-art performance in large networks. This paper develops a bi-
directional and parallel variant of BOA*, enriched with several speed-up heuristics. Our experimental
results on 1,000 benchmark cases show that our bi-directional A* algorithm for bi-objective search
(BOBA*) can optimally solve all of the benchmark cases within the time limit, outperforming the
state of the art BOA*, bi-objective Dijkstra and bi-directional bi-objective Dijkstra by an average
runtime improvement of a factor of five over all of the benchmark instances.
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1 Introduction

Bi-objective search aims at finding a set of non-dominated, Pareto-optimal solutions in a
domain with two objectives [2]. It has a wide range of real-world applications, such as
planning routes for maritime transportation based on both the fuel consumption and the
total risk of the vehicle route [18], or energy efficient paths for electric vehicles with arrival
time considerations [I3]. When the underlying system is a network, the problem is finding a
set of paths between two points that are not dominated by other solution paths.

A comparison of traditional approaches to the bi-objective one-to-all shortest path
problem, such as the label correcting algorithm in [I5], the label setting approach in [6],
and the adaptation of a near shortest path procedure in [I], was presented in [IT]. These
label-based approaches have been extended in several recent papers. A generalisation of
Dijkstra’s algorithm and its bi-directional counterpart (for the one-to-one variant) to the
bi-objective problem was presented in [I2] by utilising the pruning strategies of [5] to avoid
expanding unpromising paths during the search. The results show that the state-of-the-art
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bi-objective Dijkstra algorithm can outperform the bounded label setting approach in [I0]
and the depth-first search-based Pulse algorithm in [5] on large-size instances.

Another recent work on point-to-point bi-objective search is the Bi-Objective A* search
scheme (BOA¥*) in [I7]. BOA* is a standard A* heuristic search that leverages the fast
dominance checking procedure of [9] for multi-objective search. In contrast to eager dominance
checking approaches, as in [12], BOA* lazily postpones dominance checking for newly
generated nodes until their expansion. The experimental results in [I7] on a set of large
instances show that the efficient dominance checking helps BOA* to perform better than
the bi-objective Dijkstra algorithm of [I2] and other best-first search approaches such as
the label-setting multi-objective search NAMOA* of [8] and its improved version with a
dimensionality reduction technique called NAMOA*,, [9].

In this paper, we present Bi-Objective Bi-directional A* (BOBA*), a bi-directional
extension of the BOA* algorithm that is easy to parallelise, uses different objective orders
and includes several new heuristics to speed up the search. Our experiments on a set of 1,000
large test cases from the literature show that BOBA* can solve all of the cases to optimality,
outperforming the state-of-the-art algorithms in both runtime and memory requirement.

2 Background and Notation

For a directed bi-objective graph G = (S, E) with a finite set of states S and a set of edges
E C S5 x S, the point-to-point bi-objective search problem is to find the set of Pareto-optimal
solution paths from start € S to goal € S that are not dominated by any solution for both
objectives. Every edge e € E has two non-negative attributes accessed via the cost function
cost : E — R x RT. A path is a sequence of states s; € S with i € {1,...,n}. The cost
of path p = {s1, $2,83,..., 8, } is then defined as the sum of corresponding attributes on all
the edges constituting the path as cost(p) = Z?;ll cost(s;, s;+1). Following the standard
notation in the heuristic search literature, we define our search objects to be nodes. A node x
is a tuple that contains a state s(x) € S; a value g(z) which measures the cost of a concrete
path from the start state to state s(z); a value f(z) which is an estimate of the cost of a
complete path from start to goal via s(z); and a reference parent(x) which indicates the
parent of node z. We perform a systematic search by expanding nodes in best-first order.
Each expansion operation generates a set of successor nodes, each denoted Succ(s(x)), which
are added into an Open list. The Open list sorts the nodes according to their f-values in an
ascending order, for the purpose of further expansion.

As with other A*-based algorithms, we compute f-values using a consistent and admissible
heuristic function h : § — R* x R* [7]. In other words, f(z) = g(z) + h(s) where h(s) is a
lower bound on the cost of paths from state s to goal. Moreover, in bi-objective search, the
cost function has two components which means that every (boldface) cost function is a tuple,
eg. f = (f1, f2) or h = (hy, hs) and all operations are considered element-wise.

» Definition 1. A heuristic function h is consistent if we have h(s) < cost(s,t) + h(t) for
every edge (s,t) € E. It is also admissible iff h(s) < cost(p) for every s € S and the optimal
path p from state s to the goal state.

» Definition 2. For every pair of nodes (x,y) associated with the same state s(x) = s(y), node
y is dominated by z if we have g1(x) < g1(y) and ga(x) < go(y) or if we have gi(x) = g1(y)
and g2(z) < g2(y). Node x weakly dominates y if g1(x) < 91(y) and g2(z) < g2(y).

Bi-objective A*: The Bi-Objective A* (BOA*) algorithm [I7] first obtains its heuristic
function h using two basic one-to-all searches on the reversed graph. BOA* can then establish
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lower bounds on the cost of complete paths or f-values using the admissible heuristic h.
Although either of the two objectives can potentially play the key role in the bi-objective
setting, standard BOA* usually chooses the first objective in the (f1, f2) order. The search
then expands all the promising nodes based on their cost estimates so as to ensure the node
with the lexicographically smallest f-value is explored first. The algorithm terminates when
there is no node in Open while keeping all the non-dominated nodes associated with the goal
state in the solution set Sol. The main steps of the standard BOA* algorithm can be found
in Algorithm [2] scripted with normal line numbers (without asterisk *) in black.

» Theorem 3. BOA* computes a set of cost-unique Pareto-optimal solution paths [17].

BOA* utilises an efficient strategy to check nodes for their dominance, originally employed
in [9] for multi-objective search. The idea is simple yet powerful. Let us assume A* explores
the graph in the (f1, f2) order, that is, nodes are extracted based on their f;-value in order
(with tie-breaking on fo-values). Meanwhile, z and y are two nodes associated with the same
state or s(z) = s(y) in the Open list where z is going to be expanded first, i.e., we have
fi(x) < f1(y). Since both nodes have used the same heuristic value as hy(s(x)) = hi(s(y))
to determine their cost estimate f;, we can conclude g1(z) < g1(y). Therefore, the second
node will be dominated by the first node if g2(x) < g2(y) as shown in [9] in detail. BOA*
takes advantage of this dimension reduction technique by systematically keeping track of the
go-value of the last non-dominated node using ¢5'"(s(z)) via line [L1| of Algorithm
BOA* can also prune some of the dominated nodes during the expansion with a similar
reasoning via line [28] of Algorithm [2| This is done by comparing the newly generated node of
a state and the last expanded node of the state against their secondary costs go. Furthermore,
BOA* prunes unpromising nodes based on their cost estimate to the goal state, which is
known as pruning by bound. Given g5'"(goal) as the upper bound of the secondary cost,
partial paths will be pruned if the cost estimate of their complete paths to goal on g is
greater than that of the last solution already stored in gi*"(goal). Interested readers are
referred to the standard BOA* algorithm in [17] for the detailed proof discussion.
Challenges: Lazy dominance checking in BOA* slows down the operations in the Open
list and consumes more space. In contrast to the costly linear dominance checking approach
where new nodes are checked against all of the previously generated nodes associated with a
state before their insertion into the Open list, BOA* may add a node for which we have an
unexpanded dominant node in Open. Thus, the search generates more nodes (using extra
memory), and the Open list will inevitably be longer. Moreover, BOA* is only able to search
the graph in one direction and with a specific objective ordering, whereas there can be cases
with better performance on the reverse objective ordering as shown in [I7]. Our preliminary
experiments also reveal that searching backwards (from goal to start) may lead to significant
improvements in the overall runtime. There are also some inefficiencies in BOA* which can
be addressed with extra considerations. As an example, for the simple graph in Figure [2]
BOA* needs to expand all intermediate states for each individual solution, despite the fact
that some of them are not offering any alternative (non-dominated) path to goal (eg. s2).

3 Bi-directional Bi-objective A* Search

Recent improvements in bi-directional heuristic search have introduced new techniques to
reduce the number of necessary node expansions, such as Near-Optimal Bi-directional Search
in [I6] and Dynamic Vertex Cover Bi-directional Search in [I4]. Given the single-objective
nature of the conventional shortest path problem, none of the existing front-to-end or front-
to-front algorithms can practically tackle the bi-objective shortest path problem without
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Algorithm 1 Bi-Objective Bidirectional A* (BOBA*) High-level

Input: A problem instance (G, cost, Sstart, Sgoal)
Output: A set of cost-unique Pareto-optimal solutions
do in parallel
1, uby <+ cost-bounded A* from sstart t0 Sgoar on G in (f1, f2) order
ha,uby < cost-bounded A* from Sgoq; t0 Sstart On Reversed(G) in (f2, f1) order
do in parallel
5, ub] < cost-bounded A* from sgstart to Sgoat 00 G in (f2, f1) order
hi,ubz < cost-bounded A* from $g04: t0 Sstart on Reversed(G) in (f1, f2) order
do in parallel
Sol <~ BOA*.py, for (G, cost, Sstart, Sgoai) With heuristics (h, ub, h') in (f1, f2) order
Sol’ +— BOA*q,1, for (Rev(G), cost, Sgoal, Sstart) With heuristics (h’, ub’, h) in (f2, f1) order
return Sol + Sol’
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incorporating necessary modifications. Moreover, those algorithms are not necessarily efficient
for the bi-objective search as obtaining the solutions’ cost would no longer be possible in O(1).
In the conventional bi-objective setting where both searches work on the same objective,
every state offers a set of non-dominated nodes (partial paths) in each direction, and handling
frontier collisions (obtaining all of the complete start-start joined paths of the state) would be
an exhaustive process which can outweigh the speed-up achieved by expanding fewer nodes.
Our preliminary experiments also confirmed that the conventional front-to-end bi-directional
search with an efficient partial paths coupling approach can potentially generate fewer nodes
but shows poor performance compared to the unidirectional search scheme BOA*.

We now present our contributions to the problem by explaining our Bi-Objective Bi-
directional A* search (BOBA*). BOBA* employs two complementary (enhanced) uni-
directional BOA* to search the solution space in both (forward and backward) directions
with different objective orders ((f1, f2) and (f2, f1)). Therefore, since the algorithm does
not perform partial paths coupling, we do not need to handle frontier collisions. In other
words, each uni-directional BOA* is allowed to explore the entire graph towards the opposite
end for each individual solution. The high level structure of BOBA* is given in Algorithm
BOBA* first obtains the preliminary heuristics and then performs two individual searches that
explore the graph in both directions concurrently. The output will then be the aggregation of
solutions found in each search routine. To avoid searching for the same cost-optimum paths
in both directions, BOBA* always chooses different orders for each direction. Figure Left)
depicts the way Pareto-optimal solutions are found based on two searches in the two orders.
Initial solutions (sol;,;) at both ends are typically the minimum cost paths already obtained
via the heuristic searches for each objective. These cost-optimum paths can also initialise the
global upper bounds (ub;, ubs) needed by the pruning by bound strategies in BOA*. The
upper bounds are updated (always decreasing) during the search every time a valid solution
is found, and sol,s; is the last solution for which we have had f; < uby and fo < ubs.

» Definition 4. For every state s € S, ub(s) is the upper bound on cost of complementary
paths from state s to goal, eg., ubi(s) denotes the upper bound on cost;.

» Definition 5. A path/node/state x is invalid if its estimated costs f(x) are not in the
search global upper bounds (uby,ubs), i.e.,  is invalid if fi(x) > uby or fa(x) > ubs.

3.1 Preliminary Heuristics

BOBA* requires both lower and upper bounds on the costs of complementary paths for each
direction via four individual searches. In each search, we calculate a state’s upper bound
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Figure 1 Left: Objective orders, bounds and Pareto-optimal solutions. Right: Schematic of
states outside or inside of upper bounds. State u is out of bounds for f; and will be discarded in f>
search.

to be the cost of the optimum path using the non-primary objective. For example, the
optimum path to state s for the first objective sets both hi(s) and uba(s) (here uba(s) is the
cost of the path using the second objective). BOA* traditionally uses two runs of Dijkstra’s
algorithm to initialise lower bounds. For difficult cases, this initialisation time is usually
outweighed by the main search time, but there can be simple cases where the total time of
these heuristic searches dominates the main search time, especially in large instances. As a
more efficient initialisation approach, we replace Dijkstra’s algorithm with cost-bounded A*
(or cost-bounded Dijkstra without heuristics), as formally stated in Lemma |§| and shown in

lines of Algorithm

» Lemma 6. The preliminary A* search on f1 (or f2) can terminate before expanding a
state with f1 > uby (or fo > uby).

Proof. Assume that a forward BOA* is intended and, therefore, the corresponding heur-
istics (via two backward searches) are required. If we start with two simple backward
A* searches (one for each objective), each optimum start-goal path gives us two bounds
as (hl(sstart)7Ub2(sstart)) and (hQ(Sstart)7Ubl(sstart))- NOW7 giVeIl hl (sstart) and hQ(Sstart)
as the global lower bounds on f; and fs-values respectively, we will have fi > hi(Sstart)
and fa > ho(Sstart) for every start-goal path. Therefore, any state with a cost estimate of
f1 > ub1(Sstart) in the A* search on the first objective, and similarly fo > ubs(Sstart) in the
search on the second objective, will be dominated by one of the optimum solutions. On
the other hand, since A* expands states in an increasing order of f-values, each heuristic
search can terminate early with the first out-of-bound state, guaranteeing that all paths via
unexplored states are already dominated. |

Algorithm [If shows the parallel computation of all necessary heuristics in BOBA* in two
phases. In the first phase (lines, we can execute our cost-bounded A* using any admissible
heuristic for the primary objective (f; or f2) and with tie-breaking on the secondary objective
(f2 or f1). Note that the upper bounds are unknown prior to the searches in phase one,
i.e., we initially have ub; = ubs = 0o, but we can update our global upper bounds as soon
as we establish the optimal solution in each search. The initialisation step of BOBA* can
be further improved for the heuristic searches in the opposite direction in phase two (lines
. Once the necessary heuristics in one direction have been obtained, the heuristic search
in the opposite direction can use the lower bounds obtained from the first round as more
informed heuristics. That is, the second phase of our cost-bounded A* searches are normally
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executed faster. Moreover, the opposite search in the second round can take advantage of
the reduced search space resulting from the first round, delivering better quality heuristics
without needing to expand already invalidated (out-of-bound) states. Lemma [7| states this
technique more formally.

Example: State v in Figure [1] (right) is within the upper bound of both objectives and
will be expanded in the opposite direction. However, state u is observed out-of-bound for the
first objective (but within the bound of the second objective) and will then be discarded if it
is going to be expanded in the second round of our heuristic searches. Note that violating at
least one objective’s upper bound is enough to mark nodes (or states) invalid.

» Lemma 7. In the preliminary A* search on f1 (or f2), states with an estimated cost of
fa > uby (or f1 > uby) are not part of any solution path.

Proof. States with fo > uby are dominated by the optimum path obtained for the first
objective. This means that unexplored states with an estimated cost of fo > uby are all
invalid. Therefore, the following search on f; can ignore expanding such states knowing that
no non-dominated solution can be found via invalid states. The same reasoning is valid for
the reverse order. <

3.2 Bi-directional Search

BOBA* performs two enhanced BOA* concurrently, one from each direction. Algorithm
shows the details of our first enhanced BOA* algorithm used in BOBA* (forward search
in the (f1, f2) order). Lines scripted in black are from the standard BOA* and the red
lines with an asterisk (*) next to line numbers are our proposed enhancements. To be
consistent with the BOA* notation, we obtain the latest global upper bounds from g.in

min

values, i.e., we have g7 (S40q1) = ube and """ (Ssqrt) = uby. This is because the forward

min

search on (fi1, f2) updates g5"""(Sg0a1) for every solution, whereas the backward search on
(f2, f1) simultaneously updates g7™" (ss¢qr¢). We also add a pruning criterion to discard nodes
violating the primary upper bound g7**"(sssqr¢) in line To achieve the backward search,
we simply reverse the search direction and the objective ordering (see Appendix . For
example, instead of g7 (sg0q1) and hi(s(x)) in Algorithm [2| we will have ¢7""(ss¢qr¢) and
h%(s(z)) respectively (the backward search establishes its f-values using h’). Note that each
search has an independent Open list. Now we describe our contributions to the individual
searches of BOBA* followed by their formal presentation in Lemmas

Early solution update: This strategy allows the search to update the secondary upper
bound and possibly establish a solution before reaching the goal state. This is done via line
of Algorithm [2| by coupling nodes with their complementary shortest path to goal. If
the joined path is valid, the corresponding node is then temporarily added to the solution
set knowing that solution nodes with a state other than sge (or s(x) # sg0q) must be
joined with their complementary shortest path. This strategy can be further improved by
not expanding nodes for which we have a unique non-dominated complementary path. This
heuristic is incorporated in line [22] and is formalised in Lemma

Secondary heuristic tuning: Bi-directional search provides our algorithm with a great
opportunity to further improve the quality of the preliminary heuristics. Since the main
search of BOBA* has more information about non-dominated paths to states and constantly
updates upper bounds, there can be more outliers that our preliminary heuristic searches are
not aware of. Therefore, benefiting from the main property of BOA* (finding non-dominated
nodes in order), we can tune our findings over the preliminary searches and empower the
pruning by bound strategy of the concurrent search in the opposite direction. This tuning
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Algorithm 2 Enhanced forward Bi-Objective A* (BOA*eun) in (f1, f2) objective ordering

Inputs: A problem instance (G, cost, sstart, Sgoar) and heuristics (h, ub, h’)
Output: A set of cost-unique Pareto-optimal solutions

1 Open < (0, Sol <+ 0

2 g7 (s) < g8"(s) < oo for each s € S

3 x < new node with s(z) = sstart

a g(z) <+ (0,0), f(z) + (h1(Sstart), h2(Sstart)), parent(z) < Null

5 Add x to Open

6 while Open # () do

7 Remove a node x with the lexicographically smallest (f1, f2) values from Open
8* if fi(z) > g7 (sstart) then break

9 if ga(z) > g (s(x)) or fa(z) > g5 (540a1) then continue
10% | if gi'"(s(z)) = oo then R)(s(z)) « g1(x)
1| g3 (s(x)) = g2(x)

12 if s(z) = Sgoqs then

13* z 4 last node in Sol

14% if (z # Null and fi(z) = fi(z)) then Remove z from Sol
15 Add z to Sol

16 continue

17+ | if ga(w) +uba(s(z)) < g5 (8g0a1) then

18 93" ($goat) <= g2(x) + uba(s(z))

19* z < last node in Sol

20%* if (z # Null and fi1(z) = fi(z)) then Remove z from Sol
21%* Add z to Sol

22% if hi(s(z)) = ubi(s(x)) then continue

23 for all t € Suce(s(z)) do

24 y < new node with s(y) =t

25 g(y) < g(z) + cost(s(x), 1)

26 f(y) < g(y) + h()

27 parent(y) + z

28 if g2(y) > g5 (t) or f2(y) > 95" (S40a1) then continue
29% if f1 > g{"”"”’(ss,mv,,) then continue

30 Add y to Open

31 return Sol

is done in O(1) time by updating the secondary heuristics of the reverse direction via line
of Algorithm Note that h} denotes the secondary heuristic in the backward search
where BOBA* uses f3 as its primary cost. We discuss the correctness of this technique in
Lemma [0l

Example: We explain these strategies by just running the forward search of BOBA*
for the graph in Figure [2| and iterations in Table In the first iteration, the forward
search explores the node associated with the start state s;. Since the primary (heuristic)
cost-optimum path from s, is initially valid, the search immediately updates its secondary
upper bound via the early solution update strategy by setting gg’”"(sg) = 6 and adds the
node into the Sol set with costs (4,6). During the s, expansion, we notice that the extended
path for state s; is invalid (f2(y) > g5 (sy) or 3+ 3 > 6). Therefore, the partial path
to s; is pruned meaning that sy is no longer reachable via its primary cost optimum path.
Nodes generated for states s, and sz, however, are successfully added to Open. In the second
iteration, the algorithm picks the node associated with sy (with higher priority). Now, since
this is the first time we see sy being expanded, and since future visits will always have
higher costs (via sg with g1 = 5 for example), we can update the lower bound of reaching
sg from s, knowing that all possible shorter paths have already been invalidated. This is
done by updating hf(s2) = 3. Note that from the preliminary heuristics, we already had
R (s2) = 2 (lower bound from s4 to sg). After this update, the backward search would have
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Open list Sol Update
It.  (s(z), g(x), f(x)) found g5""(sy)
1 1(ss, (0,0), (4,3)) (4,6) oo — 6
2 1(s2, (3,4), (5,5)) (5,5) 6 —5
(537 (371)7 (673))
(1,2) T(ss, (3,1), (6,3))
sz, (5,2), (7,3)) (7,3) 5—3
(3,4) o empty
(5’%) | parent arrays | ss | s1| s2 | s3 | sg |
(0,0) | par_state | [Null] | | [ss, s3] | [ss] | |
| par_path_id | [Null] | | [1,1] | [1] | |

Figure 2 Left: An example graph with cost on the edges, and with (state, h, ub) inside the
nodes. Right: Status of the Open list, new solution (Sol) and secondary upper bound g5*"(s4) in
every iteration (It.) for the forward search on the (fi, f2) ordering. Symbol 1 beside nodes denotes
the expanded min-cost node. The second table shows the status of the parent arrays of the states

when the search terminates.

better quality secondary lower bounds and can effectively prune more nodes (the backward
primary heuristic is h%). We skip the backward search for now and continue with our forward
expansions. As coupling the node (associated with s2) with its (complementary) primary
cost-optimum path yields a valid complete path, the search updates its secondary upper
bound and temporarily adds the node to the Sol set with costs (5,5). The search also skips
expanding s, as it does not offer any non-dominated path to s,. In the third iteration, the
node associated with state s3 is picked. This time, s3 is expanded since coupling does not
yield valid path. During the s3 expansion, the search finds s, invalid but adds sz into Open.
In the fourth iteration, the node associated with sy is the only node in Open which reveals
the final solution with costs (7, 3), again with the early solution update strategy. This last
solution also verifies that the temporary solution found in the second iteration is now a valid
non-dominated solution, since the primary cost of the last solution is larger than that of the
second solution (5 < 7).
Now we formally prove the correctness of the presented techniques as follows.

> Lemma 8. At every iteration, if ga(x) + ubz(s(x)) < 95" (Sgoar), the next solution has a
primary cost of fi(x) and a secondary cost of at most ga(x) + ub2(s(x)). Node z is also a
terminal node if hy(s(x)) = uby(s(x)).

Proof. If the joined path is valid (its secondary cost is within the bounds), expanding nodes
on the complementary shortest path will definitely navigate us to s4oq With a valid secondary
cost as they offer the same fi-value. This means we can efficiently update the secondary
upper bound earlier assuming that a potential solution path is already established. Therefore,
valid joined paths determine the primary cost f; of the next solution along with setting a
new upper bound for the secondary cost fs. Furthermore, given the secondary cost as a
tie-breaker in the preliminary heuristic searches, states with hj(s(x)) = ub;(s(z)) would only
offer one complementary path optimum for both objectives. As none of the states on the
complementary path would offer an alternative non-dominated path to sg.q, the search can
save time by not expanding such terminal nodes. Therefore, nodes with hq(s(z)) = uby(s(z))
are terminal nodes if they appear on any solution path. <
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The early solution update strategy above guarantees that the primary cost f; of the next
solution is determined by the joined path, but this does not apply to its secondary cost.
E.g., we might see two consecutive temporary solutions with the same fi-value but different
(sequentially) valid secondary costs. Therefore, the search needs to make sure that the
previously added solution is not dominated by the next potential solution, and if it is
dominated, it must be removed from the non-dominated solution set Sol. We address this
matter in O(1) time by checking our last (temporary) solution against new solutions for
dominance as shown in lines and of Algorithm [2| This pruning is formally stated
in the following Lemma [0

» Lemma 9. Given z and x as the last and new temporary solution nodes respectively, node
z represents a non-dominated solution if fi1(z) < fi(x). The temporary solution node z is
dominated by x if f1(z) = fi(x).

Proof. Since the secondary cost of the new solution x is already checked to be smaller than
that of the last solution z stored in g5""(sgoal), We have fo(z) < g5 (Sgoa1) if $(T) = Sgoal
or g2(z) + ubz(s(z)) < g5 (Sgoar) if $(x) # Sgoa- On the other hand, since z is the new
potential solution and the search explores nodes in an increasing order of f;-values, we must
have fi(z) < fi(z). Therefore, if fi(z) < fi(x), we can see that the temporary solution z is
now a non-dominated solution. Otherwise, if fi(z) = fi(z), the last solution z is dominated
by the new solution x because the new solution offers a lower secondary cost. |

We now show the correctness of the heuristic tuning approach in BOBA*.
» Lemma 10. The secondary heuristic tuning maintains the correctness of A* heuristics.

Proof. BOBA* expands partial paths in the increasing order of f-values. This means the
first expanded node of every state is guaranteed to have the minimum valid primary cost
g1 in each search direction, and all of the following valid nodes will have a larger primary
cost. Moreover, since BOBA* uses different objective ordering for its searches, updated lower
bounds in one direction represent the secondary heuristics of the other direction. Therefore,
we can guarantee that the updated secondary heuristic is still admissible as there will not be
any min-cost path to states better than what their first expanded node presents. Furthermore,
the tuning strategy only updates the secondary heuristics of the opposite search, i.e., b} (s(z))
in the forward and ha(s(x)) in the backward search. Therefore, the preliminary primary
heuristics hy(s(x)) and h5(s(x)) are unchanged and the A* searches are correct. <

Considering the correctness of the enhancements presented above, we now show the correctness
of our BOBA* algorithm.

» Theorem 11. BOBA* returns a set of cost-unique non-dominated solution paths.

Proof. BOBA* executes two enhanced BOA* searches concurrently, each capable of finding
all of the solutions. Therefore, we just need to show the correctness of the stopping criteria.
Each (enhanced) BOA* searches the primary objective’s domain in the increasing order of
f-values and continually shrinks the secondary objective’s domain every time a valid solution
is found. Furthermore, since BOBA* shares the upper bounds between its searches, each
search can terminate with the first node violating the main objective’s upper bound (and
consequently other unexplored nodes with larger f-values in Open) knowing that the rest of
the objective’s domain has already been investigated by the concurrent search (see Figure [1)).
Therefore, the aggregation of the solutions found in each search yields a complete set of
cost-unique non-dominated solutions. <
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4 Practical Considerations

As BOA™* enumerates all non-dominated paths, the size of Open can grow exponentially over
the course of search. Furthermore, the huge number of nodes in difficult cases may result
in major memory issues. For instance, for one particular case in our experiments BOA*
generates two billion nodes. We now present two techniques to handle search nodes more
efficiently.

More efficient Open list: To achieve faster operations in our Open lists, since the
lower and upper bounds on the f-values of the nodes in BOBA* are known prior to its main
searches, we replace the conventional heap-based lists with fixed-size bucket lists without
tie-breaking [3]. In contrast to other problems where the bucket list is regularly resized and
the list is sparsely populated, for the significant number of (cost-bounded) nodes in our
problem we expect to see almost all of the buckets filled. Note that the search may also
expand dominated nodes if they are not extracted in a lexicographical order (i.e., nodes are
sorted based on their primary cost only), but BOBA* can still obtain cost-unique solutions
via the dominance checks incorporated in lines [I920] and [[9}20] of Algorithm [2] as formally
stated in the following Lemma

» Lemma 12. BOBA* is able to obtain cost-unique solutions even without tie-breaking in
its Open lists.

Proof. Let z and x be two solution nodes where f1(z) = fi(x) and z is dominated by .
Without any tie-breaking, the search may temporarily add dominated node z to the solution
set first. In the next iterations, when x is extracted, the search performs a quick dominance
check by comparing the fi-value of the new node x against that of the previous solution z
and substitutes the dominated solution with the new solution z if fi(z) = f1(z), as already
shown in the early solution update strategy and Lemma |§| in detail. Therefore, BOBA*
computes cost-unique non-dominated solutions even without tie-breaking. |

Memory efficient backtracking: Creating nodes is necessary to appropriately navigate
the search to valid solution paths. Each new node occupies a constant amount of memory and
conventionally contains essential information about paths such as costs and also back-pointers
for solution path construction. Considering the difficulty of the problem and the significant
number of generated nodes, we suggest a more memory efficient approach for the solution
path construction in BOBA*. Since BOBA* only expands nodes once, we propose to recycle
the memory used to store heavy processed nodes, while storing their backtracking information
in other compact data structures. This technique results in a major reduction in memory use
as part of the nodes’ information would no longer be required for backtracking. We explain
our compact approach using an example from Figure 2l Assume that in the second iteration
of the algorithm, we want to store the backtracking information of the node corresponding to
s9 with s, as the parent state. To this end, we keep two (initially empty) dynamic arrays for
each state: one to store the parent state of the node par_state, and another to look up the
corresponding path index in the parent state par_path_id. For our example, since the first
path to s is derived from the first non-dominated path of s,, we store this sequence in sy as
par_state[1]=s, and par_path_id[1]=1. Similarly, for the second expansion of s, with s3
as the parent in the fourth iteration, we update sy arrays, this time with par_state[2]=s3
and par_path_id[2]=1. Figure [2 also shows the situation of our parent arrays when the
forward search terminates. As a further optimisation, we can store the index of incoming
edges (which are usually very small integers) instead of parent states. We will investigate
the impacts of this compression on memory usage in the following section.
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5 Empirical Study and Analysis

We compare our BOBA* with recent algorithms designed for the bi-objective search problem.
The selected algorithms are the bi-objective variants of Dijkstra’s algorithm (Dij) and bi-
directional Dijkstra (Bi-Dij) from [I2], and bi-objective A* (BOA*) from [I7]. We use all
seven benchmark instances of [I2] which include 700 random start-goal pairs from the large
road networks in the 9th DIMACS challenge [4] with (distance, time) as objectives. To
further challenge the algorithms, we used the competition’s random pair generator to design
an additional set of 300 test-cases for the larger networks in the DIMACS instances: E,
W and CTR (100 cases each) with up to 15 M nodes and 33 M edges. The details of the
instances can be found in [4].

Implementation: We implemented our BOBA* algorithms based on a parallel frame-
work using two cores in C++ and used the C implementations of the Dij, Bi-Dij and BOA*
algorithms kindly provided to us by their authors. We also fixed the scalability and tie-
breaking issues in the standard BOA* algorithm before running the experiments. All code
was compiled with O3 optimisation settings using the GCC7.4 compiler. Our codes are
publicly availableﬂ We ran the 1,000 experiments on an Intel Xeon E5-2660V3 processor
running at 2.6 GHz and with 128 GB of RAM, under the SUSE Linux 12.4 environment and
with a one-hour timeout.

BOA* analysis: The search in BOA* can be performed in different directions and
objective orders, resulting in four variants. We also consider the virtual best version of the
four, called BOA*es (essentially assuming an oracle that could select the best variant).
Figure [3] is a cactus plot comparing the performance of all BOA* variants including the
virtual best, showing how many instances can be solved in a given time (the plot only shows
the longest running 300 instances). Backward BOA* in the (f, f2) order (in green) is the
weakest variant, but the other variants perform quite similarly, and it is difficult to declare a
clear winner. The performance of the virtual variant BOA*},s; shows that an ideally-tuned
BOA* can be up to two times better than its standard version on average, but is still unable
to solve 15 cases to optimality within the time limit (see Table .

Memory: We investigate the impact of our compact approach for the solution paths
construction in BOBA*. Table [1] compares the memory usage of our proposed compact
approach against the conventional backtracking approach on part of the benchmark instances.
In order to measure the overall space requirement of the main search, we ignore the memory
required for graph construction, shared libraries and heuristics, allocated prior to the search.
The results show that BOBA* can solve all of the instances with both approaches within
the time limit, but the compact approach runs slightly faster and is five times more efficient
on average in terms of memory. For the most difficult case in the experiments, the required
memory of the compact approach can be as low as 21 GB (allocating 15M nodes with
recycling) where the conventional approach needs 96 GB (allocating 1B nodes). Note that
both approaches nearly expand the same number of nodes to solve the cases to optimality.

BOBA* performance: We compare the performance of our parallel BOBA* algorithm
with the state-of-the-art Dij, Bi-Dij and BOA* algorithms from the literature. Table 2| shows
the summary of experimental results for the 100 cases of each instance. For unsolved cases,
we generously assume a runtime of one hour (the timeout). We also report the average
memory usage of the main search of each algorithm over solved cases, ignoring the space
allocated for their initialisation phase. The results in Table [2| show that the standard BOA*

2 https://bitbucket.org/s-ahmadi

11


https://bitbucket.org/s-ahmadi

12

Bi-objective Search with Bi-directional A*

r - - - . Saving Mem. (MB)
F l Runtime of the BOA* variants over instances B
L 1 Inst.  Approach Avg. Max
- | NE  Conv. 307 7618
RIS 4 Compact 61 1186
s ] CAL Conv. 326 5421
e H 1 Compact 62 1009
el I N
g LKS Conv. 5585 54331
g 102 E Compact 955 9411
£ B —— BOA*(f1f2) |]
.é i — BOA*(f1 fz)b . E Conv. 5836 62963
z i e BOA*(fof1) || Compact 999 10895
~ ) —+— BOA*(faf1)? W Conv. 5877 79602
10% 4 BOA*(best) || Compact 925 10498
L | | | I I J
700 750 800 850 900 950 1000 CTR  Conv. 15835 99108
Number of solved instances Compact 2662 21749
Figure 3 Performance of the BOA* variants. Table 1 BOBA* memory usage for the con-

ventional and compact backtracking approaches.

“ Runtime of the algorithms over instances ‘ ‘ ‘ Memory usage of the algorithms over instances ‘
10% |- N 105 |- i
- 3
s .l 12 .l |
) g 1
) f=i
2 =
"g =1
S 1001 <& 10t N
= ]
N =
£ 10-2| D3 15 w0f D3
E —x— Bi-Dij g —x— Bi-Djj
& —+— BOA* S —+— BOA*
—o— BOBA* —6—BOBA*
10—4 b1 ! | ! ] [ 1073 b i 1 ! 1 [
0 200 400 600 800 1,000 0 200 400 600 800 1,000
Number of solved instances Number of solved instances

Figure 4 Cactus plots of algorithms’ performance. Left: Runtime. Right: Search memory usage.

algorithm runs faster, needs less memory compared to both Dij and Bi-Dij algorithms and
solves more instances. However, our new BOBA* outperforms BOA* in all of the instances,
showing an (arithmetic) average speed up of 16 over all of the individual cases. For the
average runtime of all instances, BOBA* is around five times faster than BOA*. We also
compare the algorithms’ performance over the solved instances for both CPU time and
memory usage in Figure 4l As shown for both metrics, BOBA* delivers superior performance
to its competitors by solving all of the instances to optimality within the time limit and with
a maximum memory usage of 21 GB, compared to the nearly full (128 GB) memory usage of
other algorithms in difficult instances. BOBA* also shows a massive speed up in the easy
cases due to its efficient initialisation phase. It can solve 282 cases before BOA* solves its
easiest case. Moreover, the figure shows that BOBA* completes the task eight times more
efficiently in terms of memory than BOA* on average. Note that because of the difficulties
in reporting the memory usage, we allow 1 MB tolerance in our experiments.
Multi-threading: We investigate the impact of multi-threading in BOBA* by running
the (unmodified) algorithm on a single core instead of two cores, allowing decisions on
scheduling of the threads to be made by the operating system. We compare single-core
BOBA*,. with the virtual best variant BOA*} st and our BOBA* with two cores in Table
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Runtime (s) Mem. Runtime (s) Mem.
Alg. |Ins. |[S| Min Avg. Max Avg.|Ins. |S| Min Avg. Max Avg.
BiDij NY 100 0.53 0.92 6.66 21|CAL 98 4.04 168.58 3600.00 1206
Dij 100 0.31 1.47 16.98 75 100 2.73 88.93 1105.57 4283
BOA* 100 011 022 L70 9 100 0.89 2450 53840 893
BOA *pest 100 011 016 065 6 100 0.89 863 187.04 498
BOA*.p, 100 0.01 012  0.67 2 100 002 669 147.44 67
BOBA*, 100 0.01 0.11 0.59 7 100 0.01 6.08 116.10 97
BOBA* 100 0.00 0.08 0.40 2 100 0.00 3.75 64.80 62
BiDij BAY 100 0.61 1.32 11.96 35|LKS 69 6.12 1610.14 3600.00 2597
Dij 100 0.36 2.01 19.71 107 81 4.13 936.23 3600.00 11394
BOA* 100 0.13  0.38 4.10 19 89 1.30 528.12 3600.00 4854
BOA*pest 100 0.13  0.23 1.26 13 100 1.28 224.42 3500.80 9374
BOA*eu, 100 0.0 019 120 3 100 0.02 97.05 1077.96 787
BOBA*, 100 0.01 0.19 1.08 10 100 0.02 129.64 1488.41 1123
BOBA* 100 0.00 0.13 0.86 2 100 0.00 69.68 812.17 955
BiDij COL 100 0.84 6.84 147.55 118|E 64 8.08 1611.10 3600.00 2223
Dij 100 0.52 6.27 111.81 348 82 5.48 1034.61 3600.00 16156
BOA* 100 019 120 2053 77 89 1.72 552.64 3600.00 5299
BOA*pest 100 018 058  7.03 49 98 172 29327 3600.00 8701
BOA*eu, 100 0.01 054 1046 7 100 0.02 110.69 1684.94 850
BOBA*, 100 0.02  0.42 5.50 21 100 0.02 143.08 1818.63 1160
BOBA* 100 0.00 0.34 6.58 6 100 0.00 75.94 952.32 999
BiDij FLA 100 2.11 51.49 1088.49 808 |W 69 14.38 1585.11 3600.00 3476
Dij 100 1.37 52.34 1048.67 2630 74 10.04 1220.44 3600.00 12722
BOA* 100 0.48 6.42 153.07 276 94 3.14 416.94 3600.00 7705
BOA*pegt 100 0.48 3.22  36.32 202 98 3.14 253.85 3600.00 8043
BOA*eu, 100 0.01 205 3447 22 100 0.04 93.16 1792.57 784
BOBA*, 100 0.01 2.06 27.98 43 100 0.04 130.81 1834.67 1134
BOBA* 100 0.00 1.31 19.86 25 100 0.02 70.41 971.67 925
BiDij NE 99 3.31 181.67 3600.00 1367|CTR 48 40.41 2666.66 3600.00 4904
Dij 100 2.18 68.41 1306.04 3281 51 29.29 2163.50 3600.00 16149
BOA* 100 0.73 16.83 332.36 587 77 8.46 1124.03 3600.00 9828
BOA*pegt 100 0.70 10.51 332.01 533 89 8.46 745.16 3600.00 12418
BOA*enn 100 0.02 479  97.25 49 100 0.03 340.50 2953.12 2178
BOBA*,. 100 0.02 5.71 154.51 82 98 0.03 461.07 3600.00 2644
BOBA* 100 0.00 3.41 90.01 61 100 0.02 246.01 2496.95 2662

Table 2 Number of solved cases (]S|), runtime (in seconds) and average memory usage (Mem.)
of algorithms over instances (Ins.). Memory in MB for the main search over solved cases.

The results show a slowdown of around 1.8 compared to parallel BOBA*, but it still
outperforms BOA*},.s, solving more instances and showing an (arithmetic) average speed-up
of six over all of the individual cases. Note that this virtual best version BOA*}, et does not
exist, and the results are based on the best timings obtained via four individual runs of the
standard BOA* algorithm.

Enhanced BOA*: To measure the contributions of our improvements to the uni-
directional bi-objective search, we analyse the performance of the enhanced variant BOA*.,1,
with the speed-up techniques above. This variant is obtained by switching off the backward
search of BOBA*. Based on the results given in Table |2 BOA*,,1, outperforms BOA*},cs in
almost all of the cases and shows a comparable performance to BOBA*., solving a few more
cases in the CTR map and using less memory on average. Comparing the maximum runtime
over instances, we can see that BOBA*,, is faster than BOA*,,;, in half of the instances
(maps NY, BAY, COL, FLA and CAL). Nonetheless, given the results in Table [2, BOBA* is
still superior to BOA*,,1, showing a speed-up factor of 1.5 on average.
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Bucket vs. heap: We found BOBA* with the bucket-based Open list around 1.8 times
faster than BOBA* with heap for the same set of instances on average. Nonetheless, BOBA*
with heap is still 2.2 times faster than standard heap-based BOA* (average over instances).

6 Conclusion

This paper introduced BOBA*, a bi-directional version of the state-of-the-art BOA* algorithm
for bi-objective search. Our new algorithm explores the graph from both (forward and
backward) directions in different objective orders in parallel. We enrich BOBA* with more
efficient approaches for both the initial heuristic procedure and the solution path construction.
We also present several speed up strategies to enhance BOBA’s searches in various scenarios.
Our experiments show that BOBA* outperforms the state-of-the-art algorithms in both
runtime and memory use, solving all of the 1,000 benchmark cases to optimality in one
hour timeout. Furthermore, compared to BOA*, BOBA* is five times faster and needs eight
times less memory on average. Additional experiments reveal that the single-core version of
BOBA* is around 1.8 times slower than the parallel version but still superior to the virtual
best variant of BOA* and shows a comparable performance to BOA* enhanced with the
speed-up strategies of this study.
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A Backward search of BOBA*

Algorithm 3 Enhanced backward Bi-Objective A* (BOA*cnn) in (f2, f1) objective ordering

Inputs: A problem instance (Rev(G), cost, Sgoai, Sstart) and heuristics (h', ub’, h)
Output: A set of cost-unique Pareto-optimal solutions

1 Open’ <, Sol’ < 0
2 giin(s) « g™ (s) < oo for each s € S
3 x < new node with s(z) = sgoai
4 g(z) < (0,0), f(z) + (h1(sgoal); h5(Sg0a1)), parent(x) < Null
5 Add z to Open’
6 while Open’ # () do
7 Remove a node x with the lexicographically smallest (f2, f1) values from Open’
8* if fo(z) > g;”m(sy,,“,l) then break
9 if g1(x) > g™ (s(z)) or fi(x) > g7 (sstart) then continue
10%* if g7 (s(z)) = co then ha(s(z)) + ga(z)
1| g™ (s(x)) < g1(x)
12 if s(z) = sgoa: then
13% 2 + last node in Sol’
14% if (z # Null and f2(z) = f2(z)) then Remove z from Sol’
15 Add x to Sol’
16 continue
17 | if g1(z) + ub) (s(x)) < g7 (sstart) then
18% 91" (sstart) < g1(x) + ubl(s(x))
19% 2 + last node in Sol’
20%* if (z # Null and f2(z) = f2(z)) then Remove z from Sol’
21% Add z to Sol’
22% if h5(s(x)) = ubs(s(z)) then continue
23 for all t € Succ(s(z)) do
24 y < new node with s(y) =t
25 g(y) < g(x) + cost(s(z),t)
26 f(y) < gy) +h'(t)
27 parent(y) < x
2 if 1(y) > g7 (1) o fi(y) > g7 (sstare) then continue
29% if fo > gé’””(s_,],,a[) then continue
30 Add y to Open’

31 return Sol’
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