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We present two new linear algorithms for the single source shortest paths problem. The
worst case running time of the first algorithm is O(m+C log C), where m is the number
of edges of the input network and C is the ratio of the largest and the smallest edge
weight. The pseudo-polynomial character of the time dependence can be overcome by
the fact that Dijkstra’s kind of shortest paths algorithms can be implemented “from
the middle”, when the shortest paths to the source are known in advance for a subset
of the network vertices. This allows the processing of a subset of the edges with the
proposed algorithm and processing of the rest of the edges with any Dijkstra’s kind
algorithm afterwards. Partial implementation of the algorithm enabled the construction
of a second, highly efficient and simple linear algorithm. The proposed algorithm is
efficient for all classes of networks and extremely efficient for networks with small C.
The decision which classes of networks are most suitable for the proposed approach can
be made based on simple parameters. Experimental efficiency analysis shows that this
approach significantly reduces total computing time.
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1. Introduction

The shortest path problem is network N together with the set ψ of pairs of net-
work vertices between which shortest paths are to be evaluated. Depending on the
ψ, different groups of problems can be distinguished. Single Source Shortest Path
problem (SSSPp) is determining the shortest paths from a given source vertex s to
all other vertices, ψs = {(s, v) | v ∈ V }. SSSPp is a core problem among the short-
est paths problems and is one of the oldest fundamental problems in the algorithm
theory. Since 1959 almost all developments concerning this problem have evolved
around the famous Dijkstra’s algorithm (Dijkstra, 1959) (hereinafter Dij-Alg stands
for Dijkstra’s algorithm or some of its modifications). SSSPp appears in countless
practical applications.
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Known results: The original version of Dij-Alg ran in O(m + n2) time, where m
is number of edges and n is number of vertices in a network. So far main efforts
in solving the shortest paths problems have aimed to linearize the quadratic term,
usually by using a priority queue (Johnson, 1975, 1977; Raman, 1996, 1997), a
data structure that maintains a set of elements and supports insert, decrease-key
and extract-min operations. Different implementations of priority queues use heaps
and buckets. Among different heaps, the algorithm of Fredman and Tarjan (1987)
using Fibonacci heap has the best average time dependence O(m + n logn) while
operation times for bucket-based implementations (Ahuja et al., 1990; Cherkasky
et al., 1996; Denardo and Fox, 1979; Dial, 1969) depend on the ratio between the
largest edge weight and the smallest non-zero edge weight, C and in general case
are O(m+n logC). Mikkel Thorup algorithm (1999, 2000) has O(m) time in a word
RAM model and uses the component hierarchy, which is generated with linear-time
pre-processing. The shortest paths problems can also be solved by quantum algo-
rithms (Aghaei et al., 2009), which can do several operations simultaneously due to
their wave-like properties, but must be implemented on special quantum computers.

Physical complexity of algorithms and selection of hardware on which they can
be implemented resulted in the need to find new, simple procedures for solving the
problem in general, or to develop specialized algorithms, which would be efficient
for certain classes of networks. Various speed-up techniques have been proposed
based on some underlying network properties (Lauther, 2004; Sedgewick and Vitter,
1986; Wagner and Willhalm, 2003). Recently, published works are more concerned
with multiple single-source single-target shortest paths computations using natural
hierarchical decompositions or pre-processing (Bast et al., 2007; Goldberg et al.,
2006; Kohler et al., 2005; Mohring et al., 2005; Sanders and Schultes, 2005; Schulz
et al., 2002). A special effort has been invested to evaluate combinations of various
techniques (Bauer and Delling, 2008; Holzer et al., 2005).

Our results: In Dij-Alg, one spends n ∗ O(n) time on choosing a vertex, mini-
mizing distance to the source, so a decrease in the running time bound requires
a speed-up in finding this minimal distance. Almost all papers on SSSPp in last
50 years have moved the field of investigation from the graph theory to the theory
of data structures, trying to find this minimal distance in constant time. Dij-Alg
searches solution space by increasing the distance from the source. This is obtained
by choosing the vertex with the minimum temporary distance from the source in
each step, and this procedure is critical for the efficiency of the algorithm. In this
work, we present a new algorithm for SSSPp, which can be applied on any net-
work with positive edge weights. In the presented algorithm, partitioning of edges
is proposed according to their weights, so search of the solution space is performed
in “wave-fronts” in which temporary distances from the source belong to the same
weight group. The worst case running time of the algorithm is O(m + C logC).
Pseudo-polynomial term C logC, can be replaced with a constant, due to the fact
that Dij-Alg can be implemented “from the middle” in the situations when the
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shortest paths to the source are known in advance for a subset of the network
vertices. Linear procedure for transition to Dij-Alg is presented and statement is
proved that, when data obtained with this procedure are applied in Dij-Alg, its time
of execution is equal to the time it spends on an instance whose size is equal to the
number of unexplored vertices. Thus the algorithms based on this approach are, in
the worst case, as efficient as the best-known algorithms and in some cases they are
much better. Partial implementation of the algorithm enabled the construction of
a second, highly efficient and simple linear algorithm, which outperformed known
algorithms in all tested instances.

The paper is organized as follows. Section 2 gives some definitions and abbre-
viations, which are used in this paper. Section 3 presents the structure of Dij-Alg
and presents partial Dij-Alg and proves the statement that it gives correct shortest
paths from the source to all the network vertices. In Sec. 4, computational complex-
ity of partial Dij-Alg is analyzed. The hypothesis, that its running time is equal to
the running time of the Dij-Alg is used in the instance of order n − K, where K
is the number of vertices for which the shortest paths to the source are known, is
proved. In Sec. 5 statements, which determine the composition and properties of the
proposed partitioning of edges, are proved. Section 6 describes the proposed algo-
rithms and Sec. 7 outlines algorithm’s time complexities. Experimental results are
presented in Sec. 8. Finally, Sec. 9 discusses important advantages of this approach
and performance gains due to special instances of the problem.

In this paper, we have limited our discussion to networks with no negative arc
weights, so presented solutions refer to non-negative single-source shortest path
problem, NSSSPp.

2. Preliminaries

Graph G = (V,E) consists of a finite and non-empty set V of the vertices and a
set of edges E ⊆ {(vi, vj) | vi, vj ∈ V, vi �= vj}. Network N = (G,w) is a graph
G together with a function w, which joins vectors or other functions to its vertices
and/or edges. In the shortest paths problems, w is a real-valued function w : E → R.
Real number w(vi, vj) or w(eij) is a weight of edge, eij = (vi, vj) ∈ V . The ratio
of the largest edge weight wN

max to the smallest non-zero edge weight wN
min in N

is network weight ratio C. Definitions of other standard terms in the graph theory
can be found in a well-known reference given under (Ahuja et al., 1993). Several
abbreviations and definitions of terms less often encountered will be given here.

A path PG of length k in G is a finite sequence of vertices and edges:
v0, e1, v1, e2, . . . , ek, vk, provided that ei(i = 2, 3, . . . , k), starts in vi−1 (which is
an endpoint for ei−1) and ends in vi (which is a starting point for ei+1). Some
nodes may be repeated in a path, but if they are not, the path is elementary. A
path is usually given by the sequence of nodes: v0, v1, . . . , vk, where adjacent vertices
in sequence are adjacent in the path, too. The vertices v0 and vk are linked by PG0k

and are called its end vertices or ends. The distance dG(vi, vj) in G of two vertices
vi and vj is the length of a shortest path PG∗

ij in G; if no such path exists, we set
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dG(vi, vj) = ∞. The first vertex after v in the shortest path is first descendant of
v in G, dsc1(v), the next one is second descendant, dsc2(v) and so on. Likewise,
vertices before v are, first ancestor of v in G, anc1(v), second ancestor anc2(v) and
so on. Denote by Gi

d the sub-graph of G consisting of dsci(v). The eccentricity of
vi is ε(vi) = max dG(vi, vj) over all vj in G. Radius G is r(G) = min εG(v) over all
v in G, and the diameter D(G) = max(εG(v)) over all v in G.

Path from s to t in a network N is a path Pst = PGst, whose weight function
w extends in the following manner:

wst =
∑

e∈Pst

w(e),

where the sum is over all edges in path Pst. A shortest path from s to t in a network
N is path P ∗

st for which the path weight w(Pst) is minimal in comparison to weights
of all paths from s to t. If all cycles in the network have positive weight, P ∗

st is
elementary. In addition it could be inferred that any sub-path of a shortest path is
the shortest path for its end vertices. The distance dN (s, t) inN of two vertices s and
t is w(P ∗

st). The objective of the NSSSPp is to find a set NSSSP = {P ∗
st, ∀ t ∈ V }.

3. Partial use of Dij-Alg

Known SSSPp algorithms for networks with no negative edge weights belong to the
group of very efficient exact algorithms whose main task is to linearize their time
complexity. In such cases, it is very important to define each step in detail as well as
the maximum time they needed to solve a problem instance of size n. The general
structure of Dij-Alg, given by Johnson (1977), was basic for detailed representation
of the Algorithm 1.

Algorithm 1. Dij-Alg for solving (N,ψs) problem

1 INPUT: w(a, b), ∀ (a, b) ∈ E

2 d(v) = ∞ ∀ v �= s

3 d(s) = 0, anc(s) = null

4 TS = {s}, SS = ∅

5 while TS �= ∅ do
6 begin
7 Choose u ∈ TS

8 TS = TS\{u}, SS = SS ∪ {u}
9 for each (u, v) ∈ E and v /∈ SS do

10 if d(v) > d(u) + w(u, v) then
11 begin
12 d(v) = d(u) + w(u, v), anc(v) = u

13 TS = TS ∪ {v}
14 end
15 end
16 OUTPUT: (d(v), anc(v)), ∀ v ∈ V
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In Step 7, u with the minimal d(u) is chosen, when all edge weights are non-
negative. At the end of this procedure:

d(v) = dN (s, v), ∀ v ∈ V, (1)

anc(v) = ancP∗
sv

(v). (2)

Almost all known Dij-Algs differ only in Steps 7 and 13, i.e., in defining the queue
together with certain procedures that insert a new element into the queue, delete
a specified element, and find and delete an element that minimizes priority in the
queue. Critical Steps 7 and 8 are executed n times, i.e., choice of a vertex is per-
formed n times.

For many instances of the SSSPp that arise in practice, the networks have some
underlying properties, such as special topological or geometric structure or special
edge weight distribution, which could be exploited to speed-up the computations.
On the other hand, Dij-Alg is almost perfect, so the question arises whether Dij-
Alg could be applied “from the middle” in the situations when some of the shortest
paths are known in advance or whether they could be computed in a more efficient
way.

Dij-Alg maintains three sets for keeping track of vertices: the solution set (SS)
of vertices for which the shortest distance has been already computed, together
with these distances to source and the ancestors of this vertices, a temporary set
(TS), which holds vertices that have associated currently best distance but have
no determined shortest distance and can be arranged in some heap, and the set of
unexplored vertices (US), i.e., vertices which are not in SS or TS. If a subset {ui}
of the network vertices for which their shortest paths to the source s are known
to exists, there are enough data to construct SS, TS and US in a unique way. SS
consists of {ui} ∪ {s} together with uniquely defined d(ui) and anc(ui). TS holds
neighbors {vj} of vertices in SS, which are not in SS. Temporary distances d(vj)
and ancestors anc(vj) for vertices in TS are computed in the procedure TRANSIT
(Algorithm 2).

Procedure TRANSIT can be incorporated now in the shortest path algorithm
(Algorithm 3).

Theorem 1. The function d(v) obtained by Algorithm 3 gives the distances from
s and the function anc(v) gives the ancestor of v in the shortest path from s to v.

Proof. Through the iterations in Algorithm 3, it holds d(v) ≥ dN (s, v), ∀ v ∈ V .
We prove that through the iterations:

d(v) = dN (s, v), ∀ v ∈ SS. (3)

– At the start of the algorithm SS holds vertices from the input shortest paths,
so (3) is satisfied for any v ∈ SS;

– The execution of TRANSIT, does not change SS;
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Algorithm 2. Procedure TRANSIT

1 INPUT: SS,w(a, b), ∀ (a, b) ∈ E

2 d(v) = ∞ ∀ v /∈ SS

3 TS = ∅

4 for each u ∈ SS

5 for each {(u, v) | ((u, v) ∈ E, v /∈ SS)}
6 begin
7 if d(v) = ∞ then (TS = TS ∪ {v}, go to Step 10)
8 if d(v) > d(u) + w(u, v)
9 begin

10 d(v) = d(u) + w(u, v)
11 anc(v) = u

12 end
13 end
14 end
15 OUTPUT: TS, (d(v), anc(v)), ∀ v ∈ TS

Algorithm 3. Partial-Dij-Alg for solving (N,ψs) problem

1 INPUT: SS,w(a, b), ∀ (a, b) ∈ E

2 apply TRANSIT (SS), obtain TS, (d(v), anc(v)), ∀ v ∈ TS

3 while TS �= ∅ do
4 begin
5 Choose u ∈ TS | d(u) = min(d(t), ∀ t ∈ TS)
6 TS = TS\{u}, SS = SS ∪ {u}
7 for each (u, v) ∈ E and v /∈ SS do
8 if d(v) > d(u) + w(u, v) then
9 begin

10 d(v) = d(u) + w(u, v), anc(v) = u

11 TS = TS ∪ {v}
12 end
13 end
14 OUTPUT: (d(v), anc(v)), ∀ v ∈ V

– The only change of SS in the rest of the algorithm is performed in Step 6:

TS = TS\{u}, SS = SS ∪ {u},
for the u ∈ TS, chosen by:

d(u) = min(d(t), ∀ t ∈ TS), (4)
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so it suffices to show that d(u) = dN (s, u). Suppose u is the first vertex through
the iterations with:

d(u) > dN (s, u). (5)

According to:

d(v) = dN (s, anc(v)) + w(anc(v), v), anc(v) ∈ SS, (6)

and the rule that SS has no loops, this implies that P ∗
su exists with some vertices,

other than u which are not in SS. For the same reason, these vertices must be
the last ones in the sequence of the path vertices. Let P ∗

su = (s, v1, v2, . . . , vk, u)
and let vi be the first vertex in the sequence not in SS. According to the rule
that any sub-path of a shortest path is the shortest path for its end vertices,
we have P ∗

svi
= (s, v1, v2, . . . , vi) and d(vi) = dN (s, vi). Referring to (5), this

implies d(vi) = dN (s, vi) ≤ dN (s, u) < d(u). If vi ∈ TS this contradicts (4). On
the other hand, vi /∈ US, because d(vi) ≥ d(anc(vi)) ≥ d(anc2(vi)) ≥ . . . and
some of the ancestors of vi belong to TS. This completes the proof.

Theorem 1 has two important corollaries: (i) Composition of SS can be arbitrary
and (ii) TS obtained by TRANSIT holds all necessary information for further steps
of partial Dij-Alg.

Dij-Alg expands outwards from source s, expanding steadily the network region
for which distances and the shortest paths are known. This expansion should be
orderly, firstly incorporating the closest vertices and then moving on to those farther
away. Figure 1 presents the structures of SS, TS and US before executing Step 7 in
one of the Algorithm 1 loops. Bold lines represent final shortest paths and normal
lines represent edges, which connect vertices from SS and TS. There are no edges
between two vertices in TS and there are no loops in the sub-graph composed of
the vertices from SS and TS. Other edges are presented as dashed lines.

SSTS US S

Fig. 1. Composition of SS, TS and US in Dij-Alg.
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 TS

 TS

 TS

S  TS

Fig. 2. Composition of SS, TS and US in Partial-Dij-Alg.

On the other hand, when some of shortest paths are known in advance, SS holds
vertices with arbitrary distances to the source. After execution of TRANSIT, every
temporary distance d(v) of the vertices in TS is the smallest one, compared to all
d(u) + w(u, v) distances, where u is anc(v) from SS and where d(u) is the final
smallest distance from u to the source.

Figure 2 presents the composition of TS after execution of TRANSIT when SS
is composed of the paths, which are drawn in bold lines. Some edges are missing
from Fig. 1 because a vertex from TS can be connected with a vertex from SS with
one edge only. On the other hand, for the same reason, some edges from Fig. 2 are
missing in Fig. 1.

Although different, in both cases compositions of SS affect further execution of
algorithm through TS only indirectly. After execution of TRANSIT, for each vertex
v from TS holds:

d(v) = min(dN (s, anc(v)) + w(anc(v), v)), ∀ (anc(v), v) ∈ E | anc(v) ∈ SS,

so anc(v) is the only link, which connects SS and TS. The conclusion is that SS
may contain arbitrary shortest paths from s, if TS is obtained by TRANSIT.

The shortest paths to the source are known for all the vertices in SS. Therefore,
according to the rule that every sub-path of a shortest path is the shortest path
for its end vertices, SS holds all the vertices contained in any shortest path of the
vertices in SS. Thus, use of any shortest path algorithm on these vertices would not
change their distance to the source. Additional data for the vertices in SS, d(ui) and
anc(ui), are the same as those obtained by Dij-Alg. The TS holds all neighbors of SS
vertices, which are not in SS. Additional data for TS — namely, current temporary
distances d(v), v ∈ TS, after execution of TRANSIT, may differ from the temporary
distances d(v) obtained by Dij-Alg, according to (6), only if anc(v) is different in
those two procedures. After completing TRANSIT procedure, partial Dij-Alg starts
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from a TS vertex v that has the minimum d(v), proceeding afterwards in the same
way as any other Dij-Alg, with an exception that it “skips” the vertices which are
already in SS, so, at the end of the partial Dij-Alg, all the d(v) values which are
different in two procedures become equal dN (s, v) values. This completes the proof
that TS obtained by TRANSIT holds all necessary information for further steps of
the partial Dij-Alg.

4. Computational Complexity of Partial Dij-Alg

The time complexity of Algorithm A, as a function which maps natural number n
to the maximal time TA(n) needed by Algorithm A for solving a problem instance
of size n, can be measured several ways. Here we have used the unit time model in
which TA(n) is measured by the number of elementary arithmetic operations that
the algorithm performs. Actually, in a network algorithm, TA is a function of n and
m, where m varies from m ∼ n to m ∼ n2 for connected networks without parallel
edges. Depending on the model of computation, the set of elementary operations
varies, so in the word RAM model which needs array addressing, unit-time word
operations are: Addition, subtraction, comparison and arbitrary shifts, i.e., multi-
plication and division by powers of two. In strong RAM model certain other word
operations take unit time, like ACO operations and multiplication.

In the analysis of the complexity of Dij-Alg and partial Dij-Alg, we shall denote
by TAk the complexity of Algorithm k.

Dij-Alg: Algorithm 1 has loop L1 between Steps 6 and 15 with n iterations and
loop L2, nested in L1, between Steps 10 and 14 which is executed deg(u) times,
where deg(u) is a degree of a vertex u. As a result, the loops cost O(

∑
deg(vi)),

where the sum is over all network vertices, so loop complexity is O(m). Step 1 is
executed n times, while all other Steps except 7, 8, 12 and 13 are O(1), which gives
a total running time of:

O(n ∗O(Steps 7 and 8) +m ∗O(Steps 12 and 13)). (7)

If SS and TS are implemented to allow constant time additions and deletions, for
example as doubly linked lists, Steps 8, 12 and 13 are O(1), so:

TA1(m,n) = O(m+ n ∗O(Step 7)).

Step 7 is crucial and almost all papers on this problem in last 50 years invested
effort to make O(Step 7) constant. Selected vertex u, in some of them (Goldberg,
2001) has not necessarily a current minimal d, but always d(u) is equal to the
correct distance dN (s, u). It was mentioned in the introduction of this paper that of
different heaps, the algorithm of Fredman and Tarjan using Fibonacci heap has the
best average time dependence O(m+ n logn) and that operation times for bucket-
based implementations depend on C and in general case are O(m + n logC). In
general, time dependence can be given as:

TA1(m,n) = O(m + f(n)). (8)
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Partial Dij-Alg: Let GSS(VSS , ESS), |VSS | = nSS , |ESS | = mSS , be a sub-graph
of G induced by V \SS and let EST , |EST | = mST be a set of edges having one vertex
in SS and another in TS. Step 5 in Algorithm 3 implies that u with min(d(u)) was
chosen from TS, like in original Dij-Alg, but, depending on the circumstances, heaps
or buckets can be used in the same way as in any other shortest paths algorithm.
If the procedure considers heaps or buckets, they are set in the same way but for
a smaller number of vertices — specifically, for nSS vertices. In other words, after
executing Algorithm 2, the most suitable algorithm for the shortest paths can be
applied. Thus, the time complexity of Algorithm 3 consists of:

TA3 = TA2 + TPQ + TA1,

where TA2 is the time complexity of TRANSIT, TPQ is the time complexity of
setting priority queue for the rest of the procedure and TA1 represents the time
complexity of the applied Dij-Alg on the unexplored vertices. As there is no restric-
tion on the type of Dij-Alg applied, one can obviously conclude that TA1 stands for
the time complexity of the best Dij-Alg on the specified circumstances.

Theorem 2. Given a network N = (G,w) = ((V,E), w) and a subset of G,SS =
{P ∗

sv}, which contains some of the shortest paths from the source s, shortest paths
P ∗

sv, ∀ v ∈ V can be found in time O(mST +mSS + f(nSS)).

Proof. One can obviously conclude that the number of steps in TRANSIT is pro-
portional to mST . Loops in Steps 4 and 5 are executed for every edge with one
vertex in SS. As the edges with both end vertices in SS are of no further inter-
est for the algorithm, they can be removed in constant time by a pre-processing
procedure, so:

O(TA2(mST , |TS|)) = O(mST ).

After completing TRANSIT, the rest of the procedure is performed indepen-
dently, apart from the vertices currently in SS. As proven above, TS obtained by
TRANSIT holds all necessary information for further steps of the partial Dij-Alg,
thus, from the complexity point of view, the situation is the same as when original
Dij-Alg should be applied to GSS . Additional TPQ(|TS|) needed for creating heaps
or buckets has been, in fact, incorporated in TA1(mSS , nSS) of the applied Dij-Alg.
The only difference is that in partial Dij-Alg, insertion of |TS| vertices into a heap
or a bucket is done in advance. Thus,

TA3(mSS , nSS) = TA2(mST , |TS|) + TPQ(|TS|) + TA1(mSS −mST , nSS)

O(TPQ(|TS|)) = O(|TS|) < O(mST )

O(TA3(mSS , nSS)) = O(mST ) +O(mST ) +O(TA1(mSS −mST , nSS)),
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and, according to (8):

O(TA3(mSS , nSS)) = O(mST +mSS + f(nSS)), (9)

which completes the proof.

5. Partitioning of Network Vertices and Edges

In this section, we describe the partitioning of network vertices into buckets accord-
ing to their distances to the source and the partitioning of network edges accord-
ing to their weights. Our algorithms are based on this bucket implementation and,
depending of the instance of the problem, single or multilevel buckets can be applied.
It is not the aim of this paper to introduce a new data bucketing structure, so further
explanation should use single-level bucketing, noting that the multilevel buckets can
be applied whenever it is necessary.

Denote by Bi a bucket i, i = 1, . . . , k, where k is a positive integer. Each Bi

corresponds to an interval [ai, bi) with ai+1 = bi. Denote by BV a bucket which
contains a set of vertices and by BE a bucket containing a set of edges. Write V =
(BV0∪BV1∪BV2∪· · ·∪BVk), where BV0 = {s} and where ai ≤ dN (s, v) < bi, ∀ v ∈
BVi. Let vi denote the vertex from BVi, v

i+ denotes vertex from BVi+ = (BVi ∪
BVi+1∪· · ·∪BVk) and vi− denotes vertex fromBVi− = (s∪BV1∪BV2∪· · ·∪BVi−1).
Similarly, N i(Gi(V i, Ei), wi) denotes the sub-network of N consisting of vertices vi,
and likewise for other definitions. Let wi+

min denote min(wi+). We consider a vertex
bucket structure having ai = bi−1 and bi = ai + wi+

min, b0 = wN
min. Similarly, write

E = BE1 ∪ BE2 ∪ · · · ∪ BEC , where ai ≤ w(ei) < bi, ∀ ei ∈ BEi, ai = i ∗ wN
min

and bi = (i + 1) ∗ wN
min. Finally, denote by Bi(v) = {va | e(v, va) ∈ BEi} and

Bi(BVk) = {va|e(vx, va) ∈ BEi

∧
vx ∈ BVk}.

The following Theorem 3 characterizes proposed bucketing.

Theorem 3. For the partitioning of the network vertices into buckets s,

BV1, BV2, . . . , BVk, the following holds:

(i) k ≤ ε(s) ∗C;
(ii) SSSP ∩Ei = ∅, i = 1, 2, . . . , k;
(iii) SSSP ∩ (vi−

1 , vi+
2 , vi−

3 ) = ∅, ∀ vi−, ∀ vi+, i = 1, 2, . . . , k.

Proof. (i) For any network holds dN (s, v) ≤ ε(s) ∗ wN
max | ∀ v ∈ V . Consider relax-

ation bi = ai+wN
min, so k = max(dN (s, v))/wN

min ≤ ε(s)∗wN
max/w

N
min = ε(s)∗C.

Obviously, narrower bounds for dN (s, v) and k can be obtained from:

dN (s, v) ≤
ε(s)∑

i=1

w
N(Gi

d,w)
max ;

(ii) Let SSSP ∩ Ei = (vi
1, v

i
2). That implies dN (s, vi

1) + w(vi
1, v

i
2) = dN (s, vi

2) or
dN (s, vi

2) + w(vi
1, v

i
2) = dN (s, vi

1), i.e., w(vi
1, v

i
2) = |dN (s, vi

1) − dN (s, vi
2)| <

bi − ai = wi+
min, which contradicts the bucketing structure;
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(iii) Stands for every shortest path, i.e., value of the distance from the source to the
vertex which is in between two other vertices in the shortest path sequence must
be in between the values of the distances from the source to these vertices, i.e.,
dN (s, vi+

2 ) < dN (s, vi−
1 ) or dN (s, vi+

2 ) < dN (s, vi−
3 ) which, again, contradicts

the proposed bucketing structure.

If, according to the available hardware, division and multiplication by powers
of two are unit time operations and wN

min > 0, any interval [wmin, wmax] can be
reduced to [1, C + 1) and normalized {w̄i} = { wi

wN
min

} and dN (s, v) = { dN(s,v)

wN
min

} can
be considered. In this case, bucket bounds are ai = i and bi = i + 1. Further
explanations will consider these normalized bounds and weights, nothing that the
original bounds and weights can be used with the same procedures, whenever the
normalization is not a linear process. We proceed with Observation 4.

Observation 4. i+ j ≤ dN (s, vi) + w̄(ej) < i+ j + 2, i.e., the first descendant va

of the vertex vi in the shortest path from the source, where e(vi, va) ∈ BEj belongs
to BVi+j or BVi+j+1.

As a corollary of Observation 4, we also derive some properties of the first
ancestor of vi in P ∗

svi .

Corollary 5. Let va = anc1(vi) in P ∗
svi . Then:

(i) if e(va, v
i) ∈ BEj then:

va ∈ (BVi−j or BVi−j−1), for i− j > 1,

va ∈ BV1, for i− j = 1, (10)

va ∈ BV0, for i = j.

(ii) d∗(vi) = dN (s, vj
a) + w̄(e(vj

a, v
i)) = min(dN (s, vi−) + w̄(e(vi−, vi))), ∀ e(vi−,

vi) ∈ E.

In the proposed algorithm the vertex label d∗(vi) will denote the shortest nor-
malized distance from s to vi and d(vi) the temporary shortest normalized distance
through the iterations of the algorithm. According to Observation 4 and Corol-
lary 5, the following Theorem 6 characterizes the main procedure in the proposed
algorithm.

Theorem 6. If all d∗(vi−) are known, and Bi, Bi+1, . . . , Bk contains first neighbors
vi+

x of vi−, satisfying: d(vi+
x ) = min(dN (s, anc(vi+

x ))+w̄(e(anc(vi+
x ), vi+

x ))), ∀ vi− =
anc(vi+

x ), ∀ e(anc(vi+
x ), vi+

x )) ∈ E, within the same bounds as BVi, BVi+1, . . . , BVk,

then Bj = BVj and d(vj) = d∗(vj), where Bj is the first non-empty bucket in the
sequence Bi, Bi+1, . . . , Bk.

Proof. Knowledge of all d∗(vi−) implies that, likewise in Dij-Alg, vj = dsc1(vi−
a )

having lowest dN (s, vi−)+w̄(e(vi−vi+)) determines that e(vi−
a , vj) is in the shortest
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path from the source and that dN (s, vj) is the lowest label value among all vi+. That
further means buckets Bi, Bi+1, . . . , Bj−1 remain empty all the time. Theorem 6
expands the set of the vertices, which can be determined as the shortest paths
vertices, to the whole bucket Bj . According to Theorem 3 (statements (ii) and (iii)),
no shortest path contains more than one vertex from Bj , which completes the
proof.

6. A New Algorithm

A new algorithm, for arbitrary network N with positive edge weights is a labeling
algorithm with the strategy to expand from the source in wave-fronts, instead of
vertex by vertex expansion such as labeling of vertices with Dij-Alg. We assume,
without loss of generality, primarily for the simplicity of explanation that available
hardware performs division and multiplication by powers of two in unit time, so,
during the initialization, algorithm computes normalized {w̄i} for every edge in N .
When wN

min > 0, any interval [wN
min, w

N
max] can be reduced to [1, C + 1).

In this section, two versions of the algorithm are presented, Algorithm 4 with
pre-processing and Algorithm 5 without pre-processing.

Algorithm 4: A linear pre-processing procedures can be constructed for grouping
and rearranging of the adjacency list of N , so Bi(v) contains the first neighbors
of v having normalized edge weights within [i, i + 1), so e(v, va) ∈ BEi, for each
va ∈ Bi(v). In general case, multilevel buckets (Cherkasky et al., 1999) can be
used, but in cases when the edge ratio is satisfactorily small, simple and adaptive
procedures can be constructed. Use of redundant data, such as group of pointers
where ith pointer points to the ith bucket in the adjacency list for every vertex and
auxiliary vertex state array which stores the state of vertex vi on the ith position,
enable obtaining the following in a constant time:

— Creating buckets of arbitrary widths;
— Reaching all elements in a bucket;
— Tracking the position of the specified bucket, like low-level bucket for each neigh-

bor in the adjacency list.

Generally, first j buckets Bj(s), of the source neighbors can be empty, so integer
fneb = j + 1, can be used as the input parameter to speed-up computation.

Algorithm, in each Step i, maintains four sets for keeping track of vertices:

— The solution set SS = {vi−} of vertices for which the shortest distance has been
already computed;

— The final set BVi of vertices whose normalized distances to the source belongs
to [i, i+ 1), which holds vertices that have determined shortest distance;

— The temporary set BVi+1 of vertices, which holds vertices that have associated
currently best distance but have no determined shortest distance;

— Set of unexplored vertices US = {v(i+2)+}.
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Algorithm 4. A new shortest paths algorithm with pre-processing

1 INPUT: w̄(va, vb), ∀ (va, vb) ∈ E; fneb
2 i = fneb

3 BV0 = {s};BVi = Bi(s)
4 SS = BV0 ∪BVi; US = V \SS
5 d(v) = ∞ ∀ v /∈ SS

6 while US �= ∅ do
7 BEGIN
8 i+ = 1
9 for k = 1 to i− fneb do

10 begin
11 for each v ∈ BVi−k |BVi−k �= ∅ do
12 for each u = Bk(v) |u ∈ US do
13 begin
14 if d(u) > d(v) + w̄(v, u) then
15 begin
16 d(u) = d(v) + w̄(v, u), anc(u) = v

17 if d(u) < i+ 2 then BVi = BVi ∪ v
else BVi+1 = BVi+1 ∪ v

18 end 15
19 end 13
20 end 10
21 BVi = BVi ∪Bi(s); change BE width
22 SS = SS ∪BVi;US = US\(BVi ∪BVi+1)
23 END 7
24 OUTPUT: (dN (s, v), anc(v)), ∀ v ∈ V

For the clarity of explanation, algorithm is presented in a simplified form. Main
intent was to present a structure of the algorithm as simple as possible, so some
detailed steps were committed. All steps of the algorithm, which affect the overall
efficiency, will be presented in detail in the next part of the paper, within the scope
of the complexity analysis.

The strategy of the algorithm is that at each iteration the whole BVi, instead
of a single vertex, is transferred to SS. Based on Theorem 6, BVi is populated
in Steps 17 and 21. Step 17 also populates the bucket BVi+1, so, according to
the presented algorithm, situations can occur in which same vertex can be in both
buckets. Thanks to the fact that at any iteration the content of only two buckets can
be changed, there is no need to remove the vertex from BVi+1 when its affiliation
to BVi is determined. Namely, exact content of BVi is important no sooner than
the execution of the Step 22 (when SS is populated, i.e., when all the iterations of
the layer i are terminated). At this step, using auxiliary vector, the exact BVi can
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be obtained in a constant time. It should be noted that in this Step exact content
of BVi+1 is not required.

First six steps of the algorithm populate SS with s and Bi(s), where i is the
index of the first non-empty bucket of the source neighbors. For all other vertices,
d(v) = ∞. The main loop in the algorithm includes Steps 7–23. At the end of
each iteration, a new layer is populated with the vertices with determined shortest
distances from the source. The loop between Steps 10 and 20 passes through the
previously determined buckets and adds edges to the determined shortest paths.
The buckets meet conditions (i) and (ii) of the Corollary 5. Step 21 corresponds
to (10) and Step 22 is shown only for clarity of the algorithm presentation. In reality,
there is no need for storing SS and US, because all the information is already stored
in BV . In the Step 21, the width of edge buckets is increased each time the lowest
level buckets are emptied. As mentioned above, changing the width of buckets is
a unit time operation: k-times wider buckets are obtained when one in k of the
pointers is considered.

Algorithm 5: Unlike the Algorithm 4 that maintains only two buckets, BVi

and BVi+1, Algorithm 5 always maintains C buckets. Specifically, in the ith
iteration, buckets B(BVi) = {B1(BVi), . . . , vBC(BVi)} can be populated, where
Ba(BVi), a = 1, . . . , C, denotes the bucket of vertices u satisfying conditions:

(i) w̄(v, u) ∈ [a, a+ 1), where v ∈ BVi;
(ii) w̄(v, u) has the minimal value among all v from BVi.

A simple procedure ALGPB(BVb) for populating buckets B(BVb), presented
below, is the core of the Algorithm 5. This procedure allows trivial formulation of
Algorithm 5. It was assumed that all vertices have labels, which are either d(v) = ∞
or their normalized temporary distances.

ALGPB(BV b). Procedure for populating buckets B(BVb)

1 INPUT: b;BVb; w̄(vi, vj), ∀ (vi, vj) ∈ BEb+; d(v), ∀ v ∈ V

2 for each v ∈ BVb do
3 for each u | (v, u) ∈ BEb+, u ∈ US do
4 begin
5 if d(u) > d(v) + w̄(v, u) then
6 d(u) = d(v) + w̄(v, u), anc(u) = v

7 a = 
d̄(u)� − b

8 Ba(BVb) = Ba(BVb) ∪ u
9 Vb+a = Vb+a ∪ u

10 end
11 OUTPUT: Vb+1, . . . , Vb+C ; (d(v), anc(v)), ∀ v ∈ B(BVb)
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As in Algorithm 4, some steps are entered here only because of the clarity of
explanation. Actually, storing B(BVb) is not necessary, because all the information
exist in Vb+1, . . . , Vb+C . It should be noted that after execution of ALGPB(BVb),
some buckets Vb+1, . . . , Vb+C can be empty.

Now Algorithm 5, without bucketing of adjacency lists in pre-processing can be
formulated:

Algorithm 5. A new shortest paths algorithm without pre-processing

1 INPUT: w̄(va, vb), ∀ (va, vb) ∈ E

2 i = 0
3 BV0 = {s}
4 SS = BV0;US = V \SS
5 d(v) = ∞ ∀ v /∈ SS

6 while US �= ∅ do
7 perform ALGPB(BVi), change Vi+1, . . . , Vi+C

8 change BE width
9 SS = SS ∪BVi; US = US\BVi

10 i+ +
11 continue 6
12 OUTPUT: (dN (s, v), anc(v)), ∀ v ∈ V

7. Complexity of Proposed Algorithms

As mentioned above, during the initialization, algorithms compute normalized {w̄i}
for every edge in N . If arbitrary shifts are unit-time word operations, the position k
of the most significant bit of the smallest edge weight determines the normalization
value. In that case {w̄i} �= { wi

wN
min

}, but {w̄i} = { wi

2k−1 }. Any interval [wN
min, w

N
max]

can be reduced to [1, C + 1) and although w̄N
min is not necessary equal to one, it is

still in the first bucket [1, 2).
For Algorithm 4, simple O(m) procedure can be constructed for grouping and

rearrangement of adjacency list of a given network. Different pointers can be added
to speed up computation, such as group of pointers where ith pointer points to the
ith bucket in adjacency list for every vertex. The main difference from (Cherkasky
et al., 1996, 1999; Denardo and Fox, 1979; Goldberg, 2001) is that, when once
created, no change in buckets composition (deletion, moving from bucket to bucket)
is performed in presented application.

It is obvious from the listing of Algorithm 4 that each edge is treated at most
once by the procedure. “At most” is based on the statement (ii) of Theorem 3,
i.e., that edges with both vertices from the same bucket are not considered and on
the fact that the first descendants of the source from the lowest level bucket are
transferred to SS in unit time. In the certain instances of the problem just this should
save the significant computational time. As a trivial example, proposed algorithm
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performs shortest paths on complete Euclidian networks, complete networks with
C < 2, networks having deg(s) → n, C < 2 in a constant time.

We now analyze a worst case bound on the running time of the Algorithm 4.
Denote by TAk, the time complexity of the Step k of the algorithm. We have
TA2−4 = O(1), TA5 = O(m). Loop 7–23 iterates through each ith layer and Loop
10–20 iterates through each of the previously populated layers. Condition BVi−k �=
∅ in Step 11 need not be checked due to the auxiliary linked list consisting of
only populated previous layers. If any of previous layers is empty, the procedure
simply skips this iteration. Loop 13–19 iterates trough all u = Bk(v) |u ∈ US. This
is the lowest nested loop so its number of iterations determines the complexity of
the whole algorithm. If Bk(v) is populated, one edge is treated in each iteration,
which fits in TA7−23 = O(m). For efficiency reasons, strategy of the algorithm is
not to move v from Bk(v) when d∗(v) is determined, so the condition u ∈ US must
be checked. However, this does not deny TA7−23 = O(m): If u ∈ US, a edge, not
explored yet is treated, which further means that in each iteration different edges
are treated. All other operations are elementary, so the overall TA4 = O(m).

If Bk(v) is empty, algorithm spends O(1) for each such situation. The algorithm
runs in TA4 = O(m + ϕ) time, where ϕ is the total number of times, empty Bk(v)
is chosen, which is in the worst case C logC. To overcome that additional time,
Algorithm 4 can be modified in the way thatBk(BVi−k) instead ofBk(v), v ∈ BVi−k

is considered in Loop 13–19. Labels of the vertices vi
a from Bk(BVi−k) satisfy the

conditions of Theorem 6: d(vi
a) = min(dN (s, anc(vi

a))+w̄(e(anc(vi
a), vi

a))), anc(vi
a) ∈

BVi−k, ∀ e(anc(vi
a), vi

a)) ∈ E.

The main difference between Algorithms 4 and 5 is that in the ith iteration
all neighbors of vertices from BVi−1 are arranged in buckets. Each edge is treated
at most twice, once for storing its head vertex into bucket and once when that
edge is included or excluded from SS. It implies that a worst case bound on the
running time of the algorithm is still TA5 = O(m + ϕ) where ϕ = O(nC). Using
multilevel buckets a worst case bound on the running time of the algorithm is then
TA5 = O(m+ n logC).

Ability to partially apply Dij-Alg, without loss of overall efficiency, provides
further reduction of TA4 and TA5, namely, one can chose in advance the upper
bound of C which should be treated by the new algorithms. Thus C logC is constant
and the time dependence becomes TA4 = O(m′) and TA5 = O(m′ + n′) = O(m′),
where m′ and n′ refers to vertices and edges which are treated by these algorithms.
According to (9) overall complexity becomes:

T(m,n) = O(m′) +O(m−m′, f(n− n′)) = O(m, f(n− n′)), (11)

where f(n− n′) refers to the best known algorithms for the considered instances.

8. Experimental Results

It can be easily deduced, from the complexity analysis of the proposed algorithms
that for both algorithms the most appropriate network classes are networks with
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small C and, for Algorithm 4, networks with uniform edge weight distributions. The
experimental results on these networks verified an extreme efficiency of the proposed
algorithms. The aim of this experimental analysis was, however, to evaluate the
effectiveness of the algorithms, on the most difficult instances for the proposed
approach. For this purpose, we evaluate the efficiency of our algorithms through
experiments on networks from 9th DMACS Implementation Challenge, Demetrescu
et al. (2006). These well known and mostly used instances include random generated
networks and road networks of Western Europe and United States. Results obtained
on the road networks were analyzed in detail since these instances represent the huge
real-life networks with roughly 20 million vertices. All results relate to Algorithm 5,
noting that all the most important conclusions are also valid for Algorithm 4.

Algorithm 5 was implemented in C++ and compiled with Microsoft Visual C++
2010. All tests were performed on Intel Core 2 Duo 2.2GHz PC with 4GB installed
memory. It should be noted that this hardware is a modest option, both in terms
of speed and in terms of available memory.

Road Networks: The networks representing the USA road networks belong to
the 9th Implementation DIMACS Challenge dataset. Complete USA has 23,947,347
vertices (road intersections) and 58,333,344 directed edges (road segments). Table 1
presents data for USA and eleven sub-networks. Data include maximal out-degree
(odeg), maximal in-degree (ideg), number of bread-first layers when vertex 1 is
chosen as a source vertex (layers), number of vertices (vertices), number of edges
(edges), minimal edge weight (minl) and maximal edge weight (maxl). Column
bfsdist represents maximal distance from the vertex 1, obtained by the bread-first
search. Columns layers and bfsdist show an estimate, which can be easily calculated
for any vertex and can be used as preliminary data.

Presented data refers to travel distances. Travel times are also included in data,
but here presented results are restricted to travel distances, as the conclusions are
common in both cases. Experiment consists of running Algorithm 5 on each network

Table 1. USA road networks from 9th Implementation DIMACS Challenge dataset.

Name Description odeg ideg layers bfsdist vertices edges minl maxl

NY New York City 8 8 619 1,809,021 264,346 733,846 1 36,946
BAY Bay Area 7 7 522 2,870,859 321,270 800,172 1 94,305
COL Colorado 8 8 1,081 9,480,952 435,666 1,057,066 1 137,384
FLA Florida 8 8 1,920 12,716,366 1,070,376 2,712,798 1 214,013
NW Northwest USA 9 9 1,959 15,475,876 1,207,945 2,840,208 1 128,569
NE Northeast USA 9 9 1,108 4,644,388 1,524,453 3,897,636 1 63,247
CAL California and Nevada 8 8 1,895 19,587,992 1,890,815 4,657,742 1 215,354
LKS Great Lakes 8 8 3,240 22,956,713 2,758,119 6,885,658 1 138,911
E Eastern USA 9 9 2,878 14,272,708 3,598,623 8,778,114 1 200,760
W Western USA 9 9 3,137 29,429,749 6,262,104 15,248,146 1 368,855
CTR Central USA 9 9 3,826 30,916,841 14,081,816 34,292,496 1 214,013
USA USA 9 9 6,261 55,395,482 23,947,347 58,333,344 1 368,855
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Table 2. Number of source vertices for different districts.

NY BAY COL FLA NW NE CAL LKS E W CTR

532 438 323 131 116 92 74 51 39 22 10

Table 3. Obtained results for Algorithm 5.

Name vertices edges maxl dimacs alg5 mb

NY 264,346 733,846 36,946 585 162 6
BAY 321,270 800,172 94,305 600 203 7
COL 435,666 1,057,066 137,384 813 366 5
FLA 1,070,376 2,712,798 214,013 2,142 755 6
NW 1,207,945 2,840,208 128,569 2,455 855 6
NE 1,524,453 3,897,636 63,247 3,566 855 8
CAL 1,890,815 4,657,742 215,354 4,343 1,297 8
LKS 2,758,119 6,885,658 138,911 6,605 1,812 7
E 3,598,623 8,778,114 200,760 9,459 2,341 8
W 6,262,104 15,248,146 368,855 17,838 4,074 9
CTR 14,081,816 34,292,496 214,013 49,355 11,820 11
USA 23,947,347 58,333,344 368,855 83,365 18,547 12

from Table 1. In each case sources are taken from the list, given with the data set.
Number of different source vertices for each network is presented in Table 2.

Table 3 presents results obtained by Algorithm 5 (alg5) together with results
obtained by the reference DIMACS NSSP solver in column dimacs (solver use an
efficient implementation of Goldberg’s algorithm (2001)). For each network, we
report the average time per source processing in milliseconds. Column mb presents
maximal bucket occupancy through the iterations of Algorithm 5.

A significant advantage of Algorithm 4 was expected, since Algorithm 5 works
almost like bread-first search with higher consumption of memory than Dij-Alg.
What is an important practical result is that on all tested instances, both on road
networks and random networks, no memory problems were reported. It must be
noted that coding of Algorithm 5 for this experiments did not include any kind of
multilevel bucketing, so the influence of ϕ in O(m + ϕ) was actually ϕ = O(nC),
noting that the impact of O(nC) on the total elapsed time was negligible. Table 4
shows the comparison of total elapsed times and times spent on the execution of ϕ
part of the Algorithm 5. Figure 3 graphically presents comparison of results from
Table 3.

USA road networks are very convenient to demonstrate two other practical
advantages of the proposed approach. First is partial use of Dij-Alg and second
is the approximate application of algorithms. Analyzing the edge weight distribu-
tion of the road networks, one can notice that for any network it can be defined an
subset of edges, with more than 80% of the total number of edges, such that ratio
of the longest and the shortest edge from this subset is significantly less than total
weight ratio. For example, for NY, there are 689,524 edges (94% of the total number
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Table 4. Impact of ϕ on elapsed time.

Name alg5 ϕ %

NY 162 5 2.95
BAY 203 7 3.54
COL 366 24 6.58
FLA 755 39 5.14
NW 855 40 4.67
NE 855 12 1.39
CAL 1,297 51 3.94
LKS 1,812 58 3.22
E 2,341 38 1.61
W 4,074 78 1.92
CTR 11,820 82 0.69
USA 18,547 143 0.77

Fig. 3. Comparison of DIMACS and Algorithm 5 on USA road networks.

of NY edges), having weights between 300 and 6,000 (ratio 20). Also, there are
695,388 edges having weights between 1 and 6,000, i.e., almost all edges are shorter
than 6,000 and only a few are between 6,000 and 36,946. This directly implies the
application of Partial-Dij-Alg, if available hardware resources are critical.

The approximate application of algorithm can be shown also on NY example.
Algorithm user who wants information about the certain distance, needs that infor-
mation within limited accuracy, for example, if the distance is 1,000km, an error of
100m is usually negligible in practice. Maximal edge length (road segment) for NY
is 36,946. The following procedure was carried out: All edge weights were divided
by 100, and all normalized weights, less than one were rounded to one. Algorithm 5
was then applied on such modified network, having C = 370, instead C = 36,946.
At the end, approximate distances have been replaced with the real ones in obtained
distance tree. Complete procedure was more than two times faster than the original
one. What is more interesting, all the obtained distances were exactly the same as
the distances obtained by the original version. This procedure was carried out on
all others road instances and only a few distances had slightly modified values.
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Random Networks: DIMACS Challenge dataset includes procedures for creat-
ing random networks. We conducted experiments on both the suggested families,
Random graphs and Grid graphs. All networks are sparse, as for dense networks
arc scans dominate the running time. There are two main differences between these
random classes; one is the range of the edge weight values and another number of
labeled vertices at a point during the execution. For the Random graphs, the aver-
age number of labeled vertices at a point of a shortest path computation is large.
Vertices of the Grid graphs form a two-dimensional x × y grid. Square grids have
x = y and moderate number of labeled vertices at any time during an execution
of Dij-Alg, while Long grids have y fixed to a small constant and x growing with
the number of vertices. On these grids, the number of labeled vertices is small. For
each of these three families, two problem sub-families were considered. For the first,
n-family, n grows and C = n. Values of n are n = 2i, i = 10, . . . , 21, while for the
second, C family, n is fixed, n = 220 and C grows, C = 4i, i = 0, . . . , 15. Table 5
presents data for Random4-n family having m = 4n.

This family is very suitable for the proposed algorithms. All graphs from this
family has less than 20 bread-first layers, so obtained results are among the best
known reported results on similar hardware quality. Corresponding C family is
presented in Table 6.

Thanks to a negligible impact of O(nC) on a total elapsed time, slope of elapsed
time as a function of C is very small.

Although the results for grid families were quite satisfactory, the proposed algo-
rithm is definitely not the best choice for this class of networks. This conclusion
is based on the fact that these families are very specialized, and for them, specific
algorithms can be constructed. Algorithms 4 and 5 are general-purpose algorithms,
so they do not exploit specific properties of specialized networks.

Conclusion derived from the random experimental results was the same as for
the USA road networks: Even for the largest networks, no lack of memory occurred.
It should be noted that a large number of networks from tested families had zero

Table 5. Execution times of Algorithm 5 on Random4-n families.

Name vertices arcs minl maxl t[ms] mb

Random4-n.10.0.gr 1,024 4,096 0 1,024 1 6
Random4-n.11.0.gr 2,048 8,192 0 2,048 1 7
Random4-n.12.0.gr 4,096 16,384 0 4,096 1 7
Random4-n.13.0.gr 8,192 32,768 1 8,192 2 6
Random4-n.14.0.gr 16,384 65,536 0 16,384 7 7
Random4-n.15.0.gr 32,768 131,072 0 32,768 17 8
Random4-n.16.0.gr 65,536 262,144 0 65,536 37 9
Random4-n.17.0.gr 131,072 524,288 0 131,072 89 7
Random4-n.18.0.gr 262,144 1,048,576 0 262,143 204 8
Random4-n.19.0.gr 524,288 2,097,152 0 524,288 366 7
Random4-n.20.0.gr 1,048,576 4,194,304 0 1,048,576 932 8
Random4-n.21.0.gr 2,097,152 8,388,608 0 2,097,152 1,983 9
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Table 6. Execution times of Algorithm 5 on Random4-C families.

Name vertices arcs minl maxl t[ms] mb

Random4-C.1.0.gr 1,048,576 4,194,304 0 4 562 190,420
Random4-C.2.0.gr 1,048,576 4,194,304 0 16 573 51,735
Random4-C.3.0.gr 1,048,576 4,194,304 0 64 602 13,320
Random4-C.4.0.gr 1,048,576 4,194,304 0 256 613 3,420
Random4-C.5.0.gr 1,048,576 4,194,304 0 1,024 632 912
Random4-C.6.0.gr 1,048,576 4,194,304 0 4,096 646 253
Random4-C.7.0.gr 1,048,576 4,194,304 0 16,384 689 76
Random4-C.8.0.gr 1,048,576 4,194,304 0 65,536 769 34
Random4-C.9.0.gr 1,048,576 4,194,304 0 262,144 833 15
Random4-C.10.0.gr 1,048,576 4,194,304 0 1,048,576 932 8
Random4-C.11.0.gr 1,048,576 4,194,304 0 4,194,304 1,004 5
Random4-C.12.0.gr 1,048,576 4,194,304 5 16,777,213 991 6
Random4-C.13.0.gr 1,048,576 4,194,304 22 67,108,809 1,338 3
Random4-C.14.0.gr 1,048,576 4,194,304 44 268,435,449 1,064 5
Random4-C.15.0.gr 1,048,576 4,194,304 143 1,073,741,424 1,038 5

weight edges, which could be treated by separate procedures in order to improve
efficiency.

9. Concluding Remarks

Rapid development of computer hardware has made it possible to efficiently pro-
cess huge databases on the cheapest personal computers. Every day, CPU memory
is getting cheaper and the processing time more expensive. In such circumstances,
some standard ways of evaluating algorithms become unsuitable for practical appli-
cations. Also, worst case analysis is an excellent tool for the theoretical comparison
of algorithms, but only objectively derived experimental analysis can respond to
the comparison of algorithms having equal worst case complexity. This imposes an
importance hierarchy of fulfilling the parameters of the experimental test. In practi-
cal applications of algorithms this order would be: (1) time efficiency, (2) simplicity
of algorithm formulation and (3) maximum size of instances that can be processed
on the available hardware, noting that the increase in CPU time caused by the
larger memory addressing is included in (1). Experimental results presented in the
previous section have shown that the proposed algorithms can counteract the known
algorithms in all these parameters.

The most important contribution of the paper is contained in the Eq. (11), which
is the result of two ideas: Expansion in wave-fronts from the source and the partial
use of Dij-Alg. This equation shows that the proposed algorithm can be, depending
on the processed instance, more efficient than the best existing algorithms. Although
the idea of the partial use of Dij-Alg is very simple and on the level of an easy
exercise, there is no article in the literature in which this idea was exploited.

Presented algorithms apply a different approach from the majority of the known
algorithms. Beside the algorithm expansion in wave-fronts from the source, there are
three main differences between this approach and approach which is applied in most
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of the known shortest paths algorithms. First, for Algorithm 4, the main bucketing
is performed on edges instead on temporary distances from the source, using the
benefits that the range of edge weights is much narrower than the range of the
temporary vertex distances to the source, so the number of buckets is significantly
decreased. Second, for both algorithms, there is no need to move nodes from bucket
to bucket, because a vertex for any reason does not have to be deleted from its
bucket. Finally, for the certain instances of the problem, only subset of the edges
can be considered, so one can decide in advance which range of values should be
treated by the procedure and, possibly, if the time requirements are a dominant
factor, use redundant data to speed-up computation. The possibility that only a
subset of edges can be selected by the proposed algorithm and the ability to partially
apply Dij-Alg without loss of overall efficiency, allows us to make a hybrid algorithm
which contains proposed algorithm and any, most convenient Dij-Alg as its parent
algorithms.

It is easy to conclude which classes of networks and what source properties
are most suitable for the proposed algorithms. In the first, groups are networks
with low weight ratio of its edges. Network parameters, like weight ratio for the
whole network, weight distribution, weight ratio of k-neighbors or composition of the
intervals obtained by edge groupings, can be easily obtained in pre-processing and
used for making decisions about the composition of the subset of the network edges
which should be treated by the algorithm. Another network characteristic, suitable
for this application, refers to a graph parameters such as diameter, density, array of
vertex degrees and source parameters, such as eccentricity, degree and cardinality of
k-neighbors. All these parameters indicate that the most favorable condition for the
Algorithm 4 is when a significant number of examined vertices exist in a relatively
small number of graph layers. Finally, for the uniform edge weight distributions,
Algorithm 4 is extremely efficient. For the arbitrary distributions, the value ϕ from
TA = O(m+ϕ) can be obtained in pre-processing and the decisions for the further
steps of the algorithm can be taken, i.e., use of the proposed algorithm on the entire
network or processing only the subset of the given network with proposed algorithm
and processing the rest of the edges with any Dij-Alg afterwards.
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