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Definitions

Optimization problems with discrete variables do not have a unique
formulation.

Different formulations can be compared with one another.

A possible comparison criterion is the integrality gap, i.e. a measure
of the distance between the optimal value of the problem and the

optimal value of its continuous relaxation.

Here we consider integer linear problems, so that the feasible region
of their continuous relaxation is a polyhedron.

Different formulations may yield different polyhedra when the

integrality constraints are relaxed.
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Ideal formulations

The ideal formulation has null integrality gap, i.e. its continuous
relaxation is a linear programming problem with integer optimal

solution.

The polyhedron describing the feasible region of the continuous
relaxation of the ideal formulation is the convex hull of the integer

feasible solutions.

It is very useful to characterize ideal formulations of integer linear
programming problems, because when we know an ideal formulation

we can solve the problem by the simplex algorithm (or any other

algorithm for solving LPs) instead of having recourse to sophisticated
and time-consuming techniques such as cutting planes,

branch-and-bound etc.



Total unimodularity

Integrality of base solutions

Consider a linear program:

zLP = min cT x

s.t. Ax = b

x ≥ 0

where A and b are integer.

Consider now any base B. Basic variables have values

x∗ = B−1b

These values can be fractional only if the matrix B−1 has some

fractional entry.
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The inverse matrix

The inverse of the base matrix B is

B−1 =
1

det(B)





a11 . . . a1m

. . . . . . . . .

am1 . . . amm





T

where aij = (−1)i+jdet(Mij ) and Mij is the sub-matrix of B obtained by

deleting row i and column j.

Since B is integer, aij can be fractional only if det(B) is different from
±1.
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Unimodularity

Definition. An integer matrix A(n × m) with m ≤ n is unimodular if
any square submatrix B(m × m) is such that det(B) ∈ {−1, 0, 1}.

The feasible region of a linear program

zLP = min cT x

s.t. Ax = b

x ≥ 0,

where A is unimodular and b is integer, is a polyhedron with integer

vertices.
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Standard form

Consider a LP set in standard form

zLP = min cT x

s.t. Ax − Is = b

x , s ≥ 0.

The constraint coefficients matrix is [A, −I].

A canonical form is obtained by selecting m basic variables

(columns). They can be either x or s variables. Hence the base
sub-matrix B has the structure

B =

[

A′ −I′

A′′ 0

]

where I′ is an identity sub-matrix. Then:

det(B) = ±det(A′′).
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Total unimodularity

Definition. An integer matrix A is totally unimodular (TUM) if any
square sub-matrix B (of any size) is such that det(B) ∈ {−1, 0, 1}.

The feasible region of a linear program

zLP = min cT x

s.t. Ax ≥ b

x ≥ 0,

where A is totally unimodular and b is integer, is a polyhedron with

integer vertices.
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Characterization

A necessary condition for a matrix A to be TUM is to contain only
entries in {−1, 0, 1}.

A sufficient condition for a matrix A to be TUM is the following:

1. every column has at most 2 non-zero entries;

2. there exists a partition (R1,R2) of the rows of A such that each

column with two non-zero elements has these elements in
different partitions if and only if they have the same sign.
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An example

+ + +
R1 - -

-

+ - +

R2 - -
+

A sample matrix satisfying the sufficient condition.
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Proof

We prove that det(Q) ∈ {−1, 0, 1} for all square submatrices Q of A.

The proof is by induction on the size k of matrix Q.

If k = 1, then Q = [aij ]. Since aij ∈ {−1, 0, 1}, Q is trivially TUM.

Assume that Q′ is TUM for any square sub-matrix Q′ of A of a given

size k ′ ≥ 1.
Consider a submatrix Q of A of size k = k ′ + 1.

Only three cases can occur:

• Case I: Q has at least one column of null entries;

• Case II: Q has no columns with null entries, but it has at least

one column with a single non-zero entry;

• Case III: every column of Q has two non-zero entries.
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Proof

Case I. In this case det(Q) = 0.

Case II. In this case Q can be put in this form (by suitable

permutations of rows and columns):

Q =









±1 ∗ . . . ∗
0

. . . Q′

0









det(Q) = ±det(Q′)

Since det(Q′) ∈ {−1, 0, 1}, then det(Q) ∈ {−1, 0, 1}.
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Proof

Case III. In this case det(Q) = 0, because the rows are not linearly
independent.

+ +

R1 -

-

- +
R2 -

+

∑

i∈R1

aij −
∑

i∈R2

aij = 0 ∀j.
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