Linear programming and duality theory

Giovanni Righini

Linear Programming (LP)

A linear program is defined by

- linear constraints,
- a linear objective function.

Its variables are continuous and they can be

- · free (unrestricted in sign),
- non-negative (constrained to be non-negative).

LP: general form

In its general form, it reads like this:

P) minimize
$$z = c^T x$$

subject to $a'x \ge b'$
 $a''x = b''$
 $x' \ge 0$
 x'' free

We can always get rid of the free variables by replacing each of them with the difference of two non-negative variables.

We can always get rid of linear equalities by variable elimination.

LP: inequalities form

In its inequalities form, a linear program reads like this:

P) minimize
$$z = c^T x$$

subject to $ax \ge b$
 $x \ge 0$

Every solution of the problem is a point in an n-dimensional space, where n is the number of variables.

Solutions are *feasible* if the comply with all the constraints and the non-negativity restrictions. Otherwise they are *infeasible*.

The set of feasible solutions is the *feasible region* of the linear program.

Constraints: geometrical interpretation

The constraints set of a linear program is made of linear inequalities.

In the variables space

- linear equalities correspond to hyperplanes;
- linear inequalities correspond to halfspaces.

The feasible region is a system of linear inequalities; it corresponds to the *intersection of halfspaces*, i.e. to a *polyhedron*.

Half spaces are convex; hence their intersection is also convex: polyhedra are convex.

Theorem (Minkowsky and Weil). Every point in a polyhedron can be obtained as a convex combination of its extreme points and its extreme rays.

Polyhedra: three cases

Given a polyhedron one of these three cases occurs:

- the polyhedron is not empty and it is bounded (polytope);
- the polyhedron is not empty and it is not bounded;
- the polyhedron is empty.

Case 1: polytope

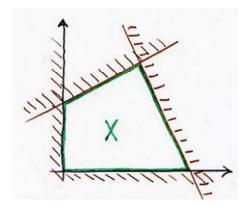


Figure: A polytope is defined by its extreme points.

Case 2: unbounded polyhedron

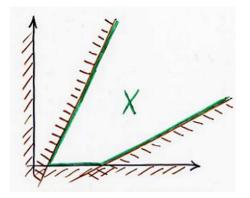


Figure: An unbounded polyhedron is defined by its extreme points and its extreme rays.

Case 3: empty polyhedron

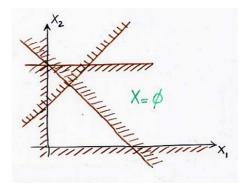


Figure: An empty polyhedron contains no points at all.

Objective function: geometrical interpretation

The objective function of a linear program is represented by parallel hyperplanes, such that points on the same hyperplane have the same value.

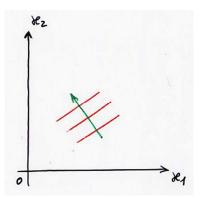


Figure: minimize $z = 2x_1 - 3x_2$

Linear programs: three cases

Given a linear program *P*, one of these three cases occurs (and the simplex algorithm detects it in a finite number of steps):

- P has a finite optimal solution;
- P is unbounded;
- P is infeasible.

Case 1: finite optimal solution

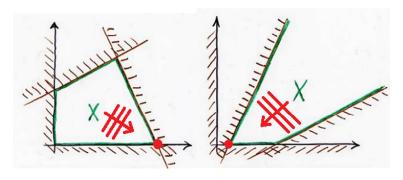


Figure: Two cases in which the linear program has a finite optimal solution.

Case 2: unbounded problem

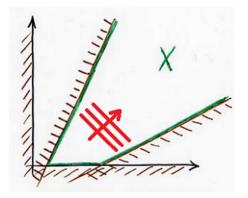


Figure: The linear program is unbounded if the direction of the objective function is in the cone defined by the extreme rays.

Case 3: infeasible problem

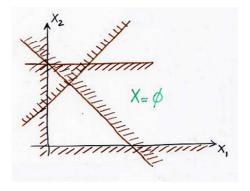


Figure: Empty polyhedron: the linear program in infeasible, independently of the objective function.

LP: standard form

A linear program is in its standard form, when all inequalities have been turned into equalities by explicitly inserting non-negative *slack variables* or *surplus variables*.

Inequalities form:

P) minimize
$$z = c^T x$$

subject to $a'x \ge b'$
 $a''x \le b''$
 $x \ge 0$.

m inequality constraints *n* non-negative variables.

Standard form:

P) minimize
$$z = c^T x$$

subject to $a'x - x^{surplus} = b'$
 $a''x + x^{slack} = b''$
 $x \cdot x^{surplus} \cdot x^{slack} > 0$

m equality constraints n + m non-negative variables.

The number of inequalities is the same in the two models.

Bases

A *base* is a subset of *m* linearly independent columns of the constraint matrix.

The *m* variables corresponding to the columns of the base are *basic*.

The other *n* variables are *non-basic*.

If the value of the non-basic variables is fixed, we are left with a non-degenerate system of m linear equalities and m variables, which provides a unique solution x.

If $x \ge 0$, then it is feasible. Otherwise it is infeasible.

Base solutions

An inequality constraint is active iff its slack/surplus variable is null.

If we fix n (non-basic) variables to 0, we define a solution x in which n constraints are active. The points of intersection of n constraints in an n-dimensional variable space are called *base solutions*. They can be feasible or infeasible.

All the extreme points of the polyhedron are feasible base solutions.

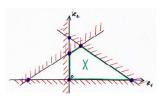


Figure: An example with n = 2, m = 2. There are 6 base solutions: 4 are feasible, 2 are infeasible.

Linear Programming (LP) duality

Every linear program P has a dual linear program D.

P)
$$\min z = c'^T x' + c''^T x''$$
 D) $\max w = b'^T y' + b''^T y''$ s.t. $a'x' + a''x'' \ge b'$ $[y']$ s.t. $a'^T y' + d'^T y'' \le c'$ $[x']$ $a''^T y' + d''^T y'' = c''$ $[x'']$ $x' \ge 0$ y'' free

The fundamental theorem of LP duality

Given a primal-dual pair, one of these four cases occurs (and the simplex algorithm detects it in a finite number of steps):

- both P and D have a finite optimal solution;
- P is unbounded and D is infeasible;
- D is unbounded and P is infeasible;
- both P and D are infeasible.

Weak duality theorem

Weak duality theorem.

For each feasible solution x of P and for each feasible solution y of D, $z(x) \ge w(y)$.

Corollary 1.

If P is unbounded, then D is infeasible.

Corollary 2.

If x is feasible for P and y is feasible for D and z(x) = w(y), then both x and y are also optimal.

Strong duality theorem

Strong duality theorem.

If there exist a feasible and optimal solution x^* for P and a feasible and optimal solution y^* for D, then $z(x^*) = w(y^*)$.

Complementary slackness theorem

Complementary slackness theorem.

Given a feasible solution x for P and a feasible solution y for D, necessary and sufficient condition for them to be optimal is:

Primal complementary slackness conditions (they are n):

$$x'(c'-a'^{T}y'-d'^{T}y'')=0$$

Dual complementary slackness conditions (they are m):

$$y'(a'x'+a''x''-b')=0.$$

They only refer to inequality constraints, because those corresponding to equality constraints are always trivially satisfied.

Primal-dual algorithms

A primal-dual algorithm solves linear programming problems exploiting duality theory and in particular the CSCs.

The algorithm is initialized with a dual feasible solution and a corresponding primal solution (in general, infeasible) satisfying the CSCs.

After every iteration the algorithm keeps a pair of primal (infeasible) and dual (feasible) solutions, satisfying the CSCs.

The algorithm alternates two types of iterations, and it monotonically decreases primal infeasibility until it achieves primal feasibility.

- Primal iteration: keeping the current dual feasible solution fixed, find a primal solution minimizing primal infeasibility among those satisfying the CSCs;
- Dual iteration: keeping the current primal solution fixed, modify the dual solution, keeping it feasible and the CSCs satisfied.