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Abstract. Periodic global updates of dual variables have been shown to yield a substantial

speed advantage in implementations of push-relabel algorithms for the maximum 
ow and min-

imum cost 
ow problems. In this paper, we show that in the context of the bipartite matching

and assignment problems, global updates yield a theoretical improvement as well. For bipar-

tite matching, a push-relabel algorithm that uses global updates runs in O

�

p

nm

log(n

2

=m)

log n

�

time (matching the best bound known) and performs worse by a factor of

p

n without the up-

dates. A similar result holds for the assignment problem, for which an algorithm that assumes

integer costs in the range [�C; : : : ; C ] and that runs in time O

�

p

nm log(nC)

�

(matching the

best cost-scaling bound known) is presented.

Date: September 4, 1996.

Andrew V. Goldberg was supported in part by ONR Young Investigator Award N00014-91-J-1855 and NSF

Grant CCR-9307045.

Robert Kennedy was supported by the above mentioned ONR and NSF grants.

Current addresses:

Andrew V. Goldberg, NEC Research Institute, inc., Princeton, NJ 08540, USA, avg@research.nj.nec.com.

Robert Kennedy, Silicon Graphics, Inc., 2011 North Shoreline Blvd., MS 10U-178, Mountain View, CA 94043,

USA, robert@theory.stanford.edu.



GLOBAL PRICE UPDATES HELP 1

1. Introduction.

The push-relabel method [10, 13] is the best currently known way for solving the maximum


ow problem [1, 2, 19]. This method extends to the minimum cost 
ow problem using cost-

scaling [10, 14], and an implementation of this technique has proven very competitive on a wide

class of problems [11]. In both contexts, the idea of periodic global updates of node distances

or prices has been critical to obtaining the best running times in practice.

Several algorithms for the bipartite matching problem run in O(

p

nm) time.

1

Hopcroft and

Karp [15] �rst proposed an algorithm that achieves this bound. Karzanov [17, 16] and Even

and Tarjan [5] proved that the blocking 
ow algorithm of Dinitz [4] runs in this time when

applied to the bipartite matching problem. Two-phase algorithms based on a combination of

the push-relabel method [13] and the augmenting path method [7] were proposed in [12, 20].

Feder and Motwani [6] give a \graph compression" technique that combines with the algo-

rithm of Dinitz to yield an O

�

p

nm

log(n

2

=m)

log n

�

algorithm. This is the best time bound known

for the problem.

The most relevant theoretical results on the assignment problem are as follows. The best

currently known strongly polynomial time bound of O

�

n(m + n logn)

�

is achieved by the

classical Hungarian method of Kuhn [18]. Under the assumption that the input costs are

integers in the range [�C; : : : ; C ], Gabow and Tarjan [9] use cost-scaling and blocking 
ow

techniques to obtain an O

�

p

nm log(nC)

�

time algorithm. An algorithm using an idea similar

to global updates with the same running time appeared in [8]. Two-phase algorithms with

the same running time appeared in [12, 20]. The �rst phase of these algorithms is based

on the push-relabel method and the second phase is based on the successive augmentation

approach. Our algorithm for the assignment problem runs in O

�

p

nm log(nC)

�

, and like the

other algorithms with this time bound, it is based on cost-scaling, assumes the input costs are

integers, and is not strongly polynomial.

We show that algorithms based on the push-relabel method with global updates match the

best bounds for the bipartite matching and assignment problems. Our results are based on

new selection strategies: the minimum distance strategy in the bipartite matching case and

minimum price change in the assignment problem case. We also prove that the algorithms

perform signi�cantly worse without global updates. Similar results can be obtained for maxi-

mum and minimum cost 
ows in networks with unit capacities. Our results are a step toward

a theoretical justi�cation of the use of global update heuristics in practice.

This paper is organized as follows. Section 2 gives de�nitions relevant to bipartite matching

and maximum 
ow. Section 3 outlines the push-relabel method for maximum 
ow and shows

its application to bipartite matching. In Section 4, we present an O(

p

nm) time bound for

the bipartite matching algorithm with global updates, and in Section 5 we show how to apply

1

Here n and m denote the number of nodes and edges, respectively.
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Feder and Motwani's techniques to improve the algorithm's performance to O

�

p

nm

log(n

2

=m)

log n

�

.

Section 6 shows that without global updates, the bipartite matching algorithm performs poorly.

Section 7 gives de�nitions relevant to the assignment problem and minimum cost 
ow. In

Section 8, we describe the cost-scaling push-relabel method for minimum cost 
ow and apply

the method to the assignment problem. Sections 9 and 10 generalize the bipartite matching

results to the assignment problem. In Section 11, we give our conclusions and suggest directions

for further research.

2. Bipartite Matching and Maximum Flow

Let G = (V = X [ Y;E) be an undirected bipartite graph, let n = jV j + 2 (the additive

constant being for notational convenience in the reduction to come), and let m = jEj. A

matching in G is a subset of edges M � E that have no node in common. The cardinality

of the matching is jM j. The bipartite matching problem is to �nd a maximum cardinality

matching.

The conventions we assume for the maximum 
ow problem are as follows: Let G = (fs; tg[

V;E) be a digraph with an integer-valued capacity u(a) associated with each arc

2

a 2 E. We

assume that a 2 E ) a

R

2 E (where a

R

denotes the reverse of arc a). A pseudo
ow is a

function f : E ! R satisfying the following for each a 2 E:

� f(a) = �f(a

R

) (
ow antisymmetry constraints);

� f(a) � u(a) (capacity constraints).

The antisymmetry constraints are for notational convenience only, and we will often take

advantage of this fact by mentioning only those arcs with nonnegative 
ow; in every case, the

antisymmetry constraints are satis�ed simply by setting the reverse arc's 
ow to the appropriate

value. For a pseudo
ow f and a node v, the excess 
ow into v, denoted e

f

(v); is de�ned by

e

f

(v) =

P

(u;v)2E

f(u; v). A pre
ow is a pseudo
ow with the property that the excess of every

node except s is nonnegative. A node v 6= t with e

f

(v) > 0 is called active.

A 
ow is a pseudo
ow f such that, for each node v 2 V , e

f

(v) = 0. Observe that a pre
ow

f is a 
ow if and only if there are no active nodes. The maximum 
ow problem is to �nd a


ow maximizing e

f

(t).

3. The Push-Relabel Method for Bipartite Matching

We reduce the bipartite matching problem to the maximum 
ow problem in a standard way.

For brevity, we mention only the \forward" arcs in the 
ow network; to each such arc we give

unit capacity. The \reverse" arcs have capacity zero. Given an instance G =

�

V = X [ Y;E

�

2

Sometimes we refer to an arc a by its endpoints, e.g., (v; w). This is ambiguous if there are multiple arcs

from v to w. An alternative is to refer to v as the tail of a and to w as the head of a, which is precise but

inconvenient.
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s t

Given Matching Instance

Bipartite Matching Instance Corresponding Maximum Flow Instance

(Reverse arcs not shown)

Figure 1. Reduction from Bipartite Matching to Maximum Flow

of the bipartite matching problem, we construct an instance

�

G = (fs; tg [ V;E); u

�

of the

maximum 
ow problem by

� setting V = V ;

� for each node v 2 X placing arc (s; v) in E;

� for each node v 2 Y placing arc (v; t) in E;

� for each edge fv; wg 2 E with v 2 X and w 2 Y placing arc (v; w) in E

A graph obtained by this reduction is called a matching network. Note that if G is a matching

network, then for any integral pseudo
ow f and for any arc a 2 E, u(a); f(a) 2 f0; 1g. Indeed,

any integral 
ow in G can be interpreted conveniently as a matching in G: the matching is

exactly the edges corresponding to those arcs a 2 X � Y with f(a) = 1. It is a well-known

fact [7] that a maximum 
ow in G corresponds to a maximum matching in G.

For a given pseudo
ow f , the residual capacity of an arc a 2 E is u

f

(a) = u(a) � f(a).

The set of residual arcs E

f

contains the arcs a 2 E with f(a) < u(a). The residual graph

G

f

= (V;E

f

) is the graph induced by the residual arcs. The augmented residual graph G

=

f

has the same nodes and arcs as G, but is associated with the capacity function u

f

. The point

of de�ning G

=

f

is so we can meaningfully discuss pseudo
ows that obey the residual capacity

constraints. Since the residual graph lacks arcs a with u

f

(a) = 0, it can lack reverse arcs that

are assumed by the de�nition of a pseudo
ow.
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push(v; w).

send a unit of 
ow from v to w.

end.

relabel(v).

replace d(v) by min

(v;w)2E

f

�

d(w) + 1

	

end.

Figure 2. The push and relabel operations

A distance labeling is a function d : V ! Z

+

. We say a distance labeling d is valid with

respect to a pseudo
ow f if d(t) = 0, d(s) = n, and for every arc (v; w) 2 E

f

, d(v) � d(w) + 1.

Those residual arcs (v; w) with the property that d(v) = d(w) + 1 are called admissible arcs,

and the admissible graph G

A

= (V;E

A

) is the graph induced by the admissible arcs. It is

straightforward to see that G

A

is acyclic for any valid distance labeling.

We begin with a high-level description of the generic push-relabel algorithm for maximum


ow specialized to the case of matching networks. The algorithm starts with the zero 
ow,

then sets f(s; v) = 1 for every v 2 X. For an initial distance labeling, the algorithm sets

d(s) = n and d(t) = 0, and for every v 2 V , sets d(v) = 0. Then the algorithm applies push

and relabel operations in any order until the current pseudo
ow is a 
ow. The push and relabel

operations, described below, preserve the properties that the current pseudo
ow f is a pre
ow

and that the current distance labeling d is valid with respect to f .

The push operation applies to an admissible arc (v; w) whose tail node v is active. It consists

of \pushing" a unit of 
ow along the arc, i.e., increasing f(v; w) by one, increasing e

f

(w) by

one, and decreasing e

f

(v) by one. The relabel operation applies to an active node v that is not

the tail of any admissible arc. It consists of changing v's distance label so that v is the tail of

at least one admissible arc, i.e., setting d(v) to the largest value that preserves the validity of

the distance labeling. See Figure 2.

Our analysis of the push-relabel method is based on the following facts. See [13] for details;

note that arcs in a matching network have unit capacities and thus push(v; w) saturates the

arc (v; w).

� For all nodes v, we have 0 � d(v) � 2n.

� Distance labels do not decrease during the computation.

� relabel (v) increases d(v).

� The number of relabel operations during the computation is O(n) per node.

� The work involved in relabel operations is O(nm).

� If a node v is relabeled t times during a computation segment, then the number of pushes

from v is at most (t+ 1)� degree(v).
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� The number of push operations during the computation is O(nm).

The above facts imply that any push-relabel algorithm runs in O(nm) time given that the

work involved in selecting the next operation to apply does not exceed the work involved in

applying these operations. This can be easily achieved using the following simple data structure

(see [13] for details). We maintain a current arc for every node. Initially the �rst arc in the

node's arc list is current. When pushing 
ow excess out of a node v, we push it on v's current

arc if the arc is admissible, or advance the current arc to the next arc on the arc list. When

there are no more arcs on the list, we relabel v and set v's current arc to the �rst arc on v's

arc list.

4. Global Updates and the Minimum Distance Discharge Algorithm

In this section, we specify an ordering of the push and relabel operations that yields certain

desirable properties. We also introduce the idea of a global distance update and show that the

algorithm resulting from our operation ordering and global update strategy runs in O(

p

nm)

time.

For any nodes v; w, let d

w

(v) denote the breadth-�rst-search distance from v to w in the

(directed) residual graph of the current pre
ow. If w is unreachable from v in the resid-

ual graph, d

w

(v) is in�nite. Setting d(v) = min

�

d

t

(v); n + d

s

(v)

	

for every node v 2 V is

called a global update operation. This operation also sets the current arc of every node to the

node's �rst arc. Such an operation can be accomplished with O(m) work that amounts to

two breadth-�rst-search computations. Validity of the resulting distance labeling is a straight-

forward consequence of the de�nition. Note that a global update cannot decrease any node's

distance label [13].

The ordering of operations we use is called Minimum Distance Discharge; it consists of re-

peatedly choosing an active node whose distance label is minimum among all active nodes and,

if there is an admissible arc leaving that node, pushing a unit of 
ow along the admissible arc,

otherwise relabeling the node. For the sake of e�cient implementation and easy generalization

to the weighted case, we formulate this selection strategy in a slightly di�erent (but equivalent)

way and use this formulation to guide the implementation and analysis. The intuition is that

we select a unit of excess at an active node with minimum distance label, and process that

unit of excess until a relabeling occurs or the excess reaches s or t. In the event of a relabeling,

the new distance label may be small enough to guarantee that the same excess still has the

minimum label; if so, we avoid the work associated with �nding the next excess to process.

This scheme's important properties generalize to the weighted case, and it allows us to show

easily that the work done in active node selection is not too great.

We implement this selection rule by maintaining a collection of buckets, b

0

; : : : ; b

2n

; each b

i

contains the active nodes with distance label i, except possibly one which is currently being
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processed. During the execution, we maintain �, the index of the bucket from which we selected

the most recent unit of excess. When we relabel a node, if the new distance label is no more

than �, we know that node still has minimum distance label among the active nodes, so we

continue processing the same unit of excess.

In addition, we perform periodic global updates. The �rst global update is performed im-

mediately after the pre
ow is initialized. After each push and relabel operation, the algorithm

checks the following two conditions and performs a global update if both conditions hold:

� Since the most recent update, at least one unit of excess has reached s or t; and

� Since the most recent update, the algorithm has done at least m work in push and relabel

operations.

Immediately after each global update, we rebuild the buckets in O(n) time and set � to zero.

The following lemma shows that the algorithm does little extra work in selecting nodes to

process.

Lemma 4.1. Between two consecutive global updates, the algorithm does O(n) work in exam-

ining empty buckets.

Proof: Immediate, because � decreases only when it is set to zero after an update, and there

are 2n+ 1 = O(n) buckets.

We will denote by �(f; d) (or simply �) the minimum distance label of an active node with

respect to the pseudo
ow f and the distance labeling d. We let �

max

denote the maximum

value reached by � during the algorithm so far. Note that �

max

is often equal to �; we use the

separate names mainly to emphasize that � is maintained by the implementation, while �

max

is an abstract quantity with relevance to the analysis regardless of the implementation details.

Figure 3 represents the structure underlying our analysis of the MinimumDistance Discharge

algorithm. (Strictly speaking, the �gure shows only half of the analysis; the part when �

max

> n

is essentially similar.) The horizontal axis corresponds to the value of �

max

which increases

as the algorithm proceeds, and the vertical axis corresponds to the distance label of the node

currently being processed. Our analysis hinges on a parameter k in the range 2 � k � n, to

be chosen later. We divide the execution of the algorithm into four stages: In the �rst two

stages, excesses are moved to t; in the �nal two stages, excesses that cannot reach t return to

s. We analyze the �rst stage of each pair using the following lemma.

Lemma 4.2. The Minimum Distance Discharge algorithm expends O(km) work during the

periods when �

max

2 [0; k] and �

max

2 [n; n+ k].

Proof: First, note that if �

max

falls in the �rst interval of interest, � must lie in that interval

as well. This relationship also holds for the second interval after a global update is performed,

since �

max

� n implies that no excess can reach t. Because the work from the beginning of
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= k

Figure 3. Accounting for work when 0 � �

max

� n.

the second interval until the price update is performed is O(m), it is enough to show that the

time spent by the algorithm during periods when � 2 [0; k] and � 2 [n; n + k] is in O(km).

Note that the periods de�ned in terms of � may not represent contiguous intervals during the

execution of the algorithm.

Each node can be relabeled at most k+1 times when � 2 [0; k], and similarly for � 2 [n; n+k].

Hence the relabelings and pushes require O(km) work. The observations that a global update

requires O(m) work and during each period there are O(k) global updates complete the proof.

To study the behavior of the algorithm during the remainder of its execution, we exploit the

structure of matching networks by appealing to a combinatorial lemma. The following lemma

is a special case of a well-known decomposition theorem [7] (see also [5]). The proof depends

mainly on the fact that for a matching network G, the in-degree of v 2 X in G

f

is 1 � e

f

(v)

and the out-degree of w 2 Y in G

f

is 1 + e

f

(w) for any integral pseudo
ow f .

Lemma 4.3. Any integral pseudo
ow f in the augmented residual graph of an integral 
ow

g in a matching network can be decomposed into cycles and simple paths that are pairwise

node-disjoint except at the endpoints of the paths, such that each element in the decomposition

carries one unit of 
ow. Each path is from a node v with e

f

(v) < 0 (v can be t) to a node w

with e

f

(w) > 0 (w can be s).
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Lemma 4.3 allows us to show that when �

max

is outside the intervals covered by Lemma 4.2,

the amount of excess the algorithm must process is small.

Given a pre
ow f , we de�ne the residual 
ow value to be the total excess that can reach t

in G

f

.

Lemma 4.4. If �

max

� k > 2, the residual 
ow value is at most n=(k� 1) if G is a matching

network.

Proof: Note that the residual 
ow value never increases during an execution of the algorithm,

and consider the pair (f; d) such that �(f; d) � k for the �rst time during the execution. Let

f

�

be a maximum 
ow in G, and let f

0

= f

�

� f . Now �f

0

is a pseudo
ow in G

=

f

�

, and

therefore can be decomposed into cycles and paths as in Lemma 4.3. Such a decomposition

of �f

0

induces the obvious decomposition on f

0

with all the paths and cycles reversed and

excesses negated. Because � � k and d is a valid distance labeling with respect to f , any

path in G

f

from an active node to t must contain at least k + 1 nodes. In particular, the

excess-to-t paths in the decomposition of f

0

contain at least k + 1 nodes each, and are node-

disjoint except for their endpoints. Since G contains only n nodes, there can be no more than

(n � 2)=(k � 1) < n=(k � 1) such paths. Since f

�

is a maximum 
ow, the amount of excess

that can reach t in G

f

is no more than n=(k � 1).

The proof of the next lemma is similar.

Lemma 4.5. If �

max

� n+k > n+2 during an execution of the Minimum Distance Discharge

algorithm with global updates on a matching network, the total excess at nodes in V is at most

n=(k � 1).

The following lemma shows an important property of the rules we use to trigger global

update operations, namely that during a period when the algorithm does �(m) work at least

one unit of excess is guaranteed to reach s or t.

Lemma 4.6. Between any two consecutive global update operations, the algorithm does �(m)

work.

Proof: According to the two conditions that trigger a global update, it su�ces to show that

immediately after an update, the work done in moving a unit of excess to s or t is O(m). For

every node v, at least one of d

s

(v), d

t

(v) is �nite. Therefore, immediately after a global update,

at least one admissible arc leaves every node except s and t, by de�nition of the global update

operation. Recall that the admissible graph is acyclic, so the �rst unit of excess processed

by the algorithm immediately after a global update arrives at t or at s before any relabeling

occurs, and does so along a simple path. Consider the path taken by the 
ow unit to s or

t. The work performed while moving the unit along the path is proportional to the length
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of the path plus the number of times current arcs of nodes on the path are advanced. This

O(n+m) = O(m) work is performed before the the �rst condition for a global update is met.

Following an amount of additional work bounded above bym+O(n), plus work proportional

to that for a push or relabel operation, another global update operation will be triggered.

Clearly a push or relabel takes O(m) work and the lemma follows.

We are ready to prove the main result of this section.

Theorem 4.7. The Minimum Distance Discharge algorithm with global updates computes a

maximum 
ow in a matching network (and hence a maximum cardinality bipartite matching)

in O(

p

nm) time.

Proof: By Lemma 4.2, the total work done by the algorithm when �

max

2 [0; k] and �

max

2

[n; n+ k] is O(km). By Lemmas 4.4 and 4.5, the amount of excess processed when �

max

falls

outside these bounds is at most 2n=(k � 1). From Lemma 4.6 we conclude that the work

done in processing this excess is O(nm=k). Hence the time bound for the Minimum Distance

Discharge algorithm is O

�

km+ nm=k

�

. Choosing k = �(

p

n ) to balance the two terms, we see

that the Minimum Distance Discharge algorithm with global updates runs in O(

p

nm) time.

5. Improved Performance through Graph Compression

Feder and Motwani [6] give an algorithm that runs in o(

p

nm) time and produces a com-

pressed representation G

�

= (V [W;E

�

) of a bipartite graph in which all adjacency information

is preserved, but that has asymptotically fewer edges if the original graph G = (V ;E) is dense.

This graph consists of all the original nodes of X and Y , as well as a set of additional nodes

W . An edge fx; yg appears in E if and only if either fx; yg 2 E

�

or G

�

contains a length-two

path from x to y through some node of W .

The following theorem is slightly specialized from Feder and Motwani's Theorem 3.1 [6],

which details the performance of their algorithm Compress:

Theorem 5.1. Let � 2 (0; 1) and let G = (V = X[Y;E) be an undirected bipartite graph with

jXj = jY j = n and jEj = m � n

2��

. Then algorithm Compress computes a compressed repre-

sentation G

�

= (V [W;E

�

) of G with m

�

= jE

�

j = O

�

m�

�1

log(n

2

=m)

log n

�

in time O(mn

�

log

2

n).

The number of nodes in W is O(mn

��1

).

In particular, we choose a constant � < 1=2; then the compressed representation is computed

in time o(

p

nm) and has m

�

= O

�

m

log(n

2

=m)

log n

�

edges.

Given a compressed representation G

�

of G, we can compute a 
ow network G

�

in which

there is a correspondence between 
ows in G

�

and matchings in G. The only di�erences from
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the reduction of Section 3 are that each edge fx;wg with x 2 X and w 2 W gives an arc

(x;w), and each edge fw; yg with w 2 W and y 2 Y gives an arc (w; y). As in Section 3,

we have a relationship between matchings in the original graph G and 
ows in G

�

, but now

the correspondence is not one-to-one as it was before. Nevertheless, it remains true here that

given a 
ow f with e

f

(t) = c in G

�

, we can �nd a matching of cardinality c in G using only

O(n) time in a straightforward way.

The performance improvement we gain comes by using the graph compression step as pre-

processing: we will show that the Minimum Distance Discharge algorithm with global updates

runs in time O(

p

nm

�

) on the 
ow network G

�

corresponding to the compressed representation

G

�

of a bipartite graph G. In other words, the speedup results only from the reduced number

of edges, not from changes within the Minimum Distance Discharge algorithm.

To prove the performance bound, we must generalize certain lemmas from Section 4 to

networks with the structure of compressed representations. Let n

�

= n+ jW j be the number

of nodes in the maximum 
ow problem derived from the compressed representation of the

input graph. Lemma 4.2 is independent of the input network's structure, as are Lemma 4.6

and Lemma 4.1. These three lemmas give us their conclusions for compressed representations

where we substitute n

�

for n and m

�

for m in their statements and proofs. An analogue to

Lemma 4.3 holds in a 
ow network derived from a compressed representation; this will extend

Lemmas 4.4 and 4.5, allowing us to conclude the improved time bound.

Lemma 5.2. Any integral pseudo
ow f in the augmented residual graph of an integral 
ow

g in the 
ow graph of a compressed representation can be decomposed into cycles and simple

paths that are pairwise node-disjoint at nodes of X and Y except at the endpoints of the paths,

such that each element of the decomposition carries one unit of 
ow. Each path is from a node

v with e

f

(v) < 0 (v can be t) to a node w with e

f

(w) > 0 (w can be s).

Proof: As with matching networks, the in-degree of v 2 X is 1� e

f

(v) and the out-degree of

y 2 Y is 1 + e

f

(y), so the standard proof of Lemma 4.3 extends to this case.

The following lemma is analogous to Lemma 4.4.

Lemma 5.3. If �

max

� k > 2, the residual 
ow value is at most 2n=(k � 2) if G

�

is a

compressed representation.

Proof: As in the case of Lemma 4.4, except that here an excess-to-t path in the decomposition

of f

0

must contain at least k=2 nodes of V . Since V contains only n nodes, there can be no

more than 2n=(k� 2) such paths, and so because f

�

is a maximum 
ow, the amount of excess

that can reach t in G

�

f

is no more than 2n=(k � 2).

The following lemma is analogous to Lemma 4.5, and its proof is similar to the proof of

Lemma 5.3.
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Lemma 5.4. If �

max

� n

�

+k > n

�

+2 during an execution of the Minimum Distance Discharge

algorithm with global updates on a compressed representation, the total excess at nodes in V [W

is at most 2n=(k � 2).

Using the same reasoning as in Theorem 4.7, we have:

Theorem 5.5. The Minimum Distance Discharge algorithm with global updates computes a

maximum 
ow in the network corresponding to a compressed representation with m

�

edges in

O(

p

nm

�

) time.

To complete our time bound for the bipartite matching problem we must dispense with some

technical restrictions in Theorem 5.1, namely the requirements that jXj = jY j = n and that

m � n

2��

. The former condition is easily met by adding nodes to whichever of X, Y is the

smaller set, so their cardinalities are equal. These \dummy" nodes are incident to no edges.

As for the remaining condition, observe that our time bound does not su�er if we simply forego

the compression step and apply the result of Section 4 in the case where m < n

2��

. To see

this, recall that we chose � < 1=2, and note that 1 � m < n

2��

implies

log(n

2

=m)

log n

= �(1). So

we have:

Theorem 5.6. The Minimum Distance Discharge algorithm with graph compression and global

updates computes a maximum cardinality bipartite matching in O

�

p

nm

log(n

2

=m)

log n

�

time.

This bound matches that of Feder and Motwani for Dinitz's algorithm.

6. Minimum Distance Discharge Algorithm without Global Updates

In this section we describe a family of graphs on which the Minimum Distance Discharge

algorithm without global updates requires 
(nm) time (for values of m between �(n) and

�(n

2

)). This shows that the updates improve the worst-case running time of the algorithm.

The goal of our construction is to admit an execution of the algorithm in which each relabeling

changes a node's distance label by O(1). Under this condition the execution will have to

perform 
(n

2

) relabelings, and these relabelings will require 
(nm) time.

Given ~n 2 Z and ~m 2 [1; ~n

2

=4], we construct a graph G as follows: G is the complete

bipartite graph with V = X [ Y , where

X =

(

1; 2; : : : ;

&

~n+

p

~n

2

� 4 ~m

2

')

and Y =

(

1; 2; : : : ;

$

~n�

p

~n

2

� 4 ~m

2

%)

:

It is straightforward to check that this graph has n = ~n + O(1) nodes and m = ~m + O(~n)

edges. Note that jXj > jY j.

Figure 4 describes an execution of the Minimum Distance Discharge algorithm on G, the

matching network derived from G, that requires 
(nm) time. With more complicated but
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1. Initialization establishes jX j units of excess, one at each node of X ;

2. Nodes of X are relabeled one-by-one, so all v 2 X have d(v) = 1;

3. While e

f

(t) < jY j,

3.1. a unit of excess moves from some node v 2 X to some node w 2 Y with d(w) = 0;

3.2. w is relabeled so that d(w) = 1;

3.3. The unit of excess moves from w to t, increasing e

f

(t) by one.

4. A single node, x

1

with e

f

(x

1

) = 1, is relabeled so that d(x

1

) = 2.

5. ` 1.

6. While ` � n,

Remark: All nodes v 2 V now have d(v) = ` with the exception of the one node x

`

2 X ,

which has d(x

`

) = `+ 1 and e

f

(x

`

) = 1; all excesses are at nodes of X ;

6.1. All nodes with excess, except the single node x

`

, are relabeled one-by-one so that all v 2 X

with e

f

(v) = 1 have d(v) = `+ 1;

6.2. While some node y 2 Y has d(y) = `,

6.2.1. A unit of excess is pushed from a node in X to y;

6.2.2. y is relabeled so d(y) = `+ 1;

6.2.3. The unit of excess at y is pushed to a node x 2 X with d(x) = `;

6.2.4. x is relabeled so that if some node in Y still has distance label `,

d(x) = `+ 1;

otherwise

d(x) = `+ 2 and x

`+1

 x;

6.3. ` `+ 1;

7. Excesses are pushed one-by-one from nodes in X (labeled n+ 1) to s.

Figure 4. The Minimum Distance Discharge execution on bad examples.

unilluminating analysis, it is possible to show that every execution of the Minimum Distance

Discharge algorithm on G requires 
(nm) time.

It is straightforward to verify that in the execution outlined, all processing takes place at

active nodes whose distance labels are minimum among the active nodes. The algorithm

performs poorly because during the execution, no relabeling changes a distance label by more

than two. Hence the execution uses �(nm) work in the course of its �(n

2

) relabelings, and we

have the following theorem:

Theorem 6.1. For any function m(n) in the range n � m(n) < n

2

=4, there exists an in�nite

family of instances of the bipartite matching problem having �(n) nodes and �

�

m(n)

�

edges

on which the Minimum Distance Discharge algorithm without global updates runs in 


�

nm(n)

�

time.

7. Minimum Cost Circulation and Assignment Problems

Given a weight function c : E ! R and a set of edges M , we de�ne the weight of M to be

the sum of weights of edges in M . The assignment problem is to �nd a maximum cardinality

matching of minimum weight. We assume that the costs are integers in the range [ 0; : : : ; C ]
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where C � 1. (Note that we can always make the costs nonnegative by adding an appropriate

number to all arc costs.)

For the minimum cost circulation problem, we adopt the following framework. We are given

a graph G = (V;E), with an integer-valued capacity function as before. In addition to the

capacity function, we are given an integer-valued cost c(a) for each arc a 2 E.

We assume c(a) = �c(a

R

) for every arc a. A circulation is a pseudo
ow f with the property

that e

f

(v) = 0 for every node v 2 V . (The absence of a distinguished source and sink accounts

for the di�erence in nomenclature between a circulation and a 
ow.) We will say that a node

v with e

f

(v) < 0 has a de�cit.

The cost of a pseudo
ow f is given by c(f) =

P

f(a)>0

c(a)f(a). The minimum cost circu-

lation problem is to �nd a circulation of minimum cost.

8. The Push-Relabel Method for the Assignment Problem

We reduce the assignment problem to the minimum cost circulation problem as follows. As in

the unweighted case, we mention only \forward" arcs, each of which we give unit capacity. The

\reverse" arcs have zero capacity and obey cost antisymmetry. Given an instance

�

G = (V =

X [ Y;E); c

�

of the assignment problem, we construct an instance

�

G = (fs; tg [ V;E); u; c

�

of

the minimum cost circulation problem by

� creating special nodes s and t, and setting V = V [ fs; tg;

� for each node v 2 X placing arc (s; v) in E and de�ning c(s; v) = �nC;

� for each node v 2 Y placing arc (v; t) in E and de�ning c(v; t) = 0;

� for each edge fv; wg 2 E with v 2 X placing arc (v; w) in E and de�ning c(v; w) = c(v; w);

� placing n=2 arcs (t; s) in E and de�ning c(t; s) = 0.

If G is obtained by this reduction, we can interpret an integral circulation in G as a matching

in G just as we did in the bipartite matching case. Further, it is easy to verify that a minimum

cost circulation in G corresponds to a maximum matching of minimum weight in G.

A price function is a function p : V ! R. For a given price function p, the reduced cost of

an arc (v; w) is c

p

(v; w) = c(v; w) + p(v)� p(w).

Let U = X [ ftg. Note that all arcs in E have one endpoint in U and one endpoint in its

complement. De�ne E

U

to be the set of arcs whose tail node is in U .

For a constant � � 0, a pseudo
ow f is said to be �-optimal with respect to a price function

p if, for every residual arc a 2 E

f

, we have

�

a 2 E

U

) c

p

(a) � 0;

a =2 E

U

) c

p

(a) � �2�:

A pseudo
ow f is �-optimal if f is �-optimal with respect to some price function p. If the arc

costs are integers and � < 1=n, any �-optimal circulation is optimal.
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Given Assignment Instance

t s

Assignment Problem Instance Corresponding Minimum Cost Circulation Instance

Given Costs

Large Negative Costs

Zero Costs

Figure 5. Reduction from Assignment to Minimum Cost Circulation

For a given f and p, an arc a 2 E

f

is admissible i�

�

a 2 E

U

and c

p

(a) < � or

a =2 E

U

and c

p

(a) < ��:

The admissible graph G

A

= (V;E

A

) is the graph induced by the admissible arcs.

These asymmetric de�nitions of �-optimality and admissibility are natural in the context of

the assignment problem. They have the bene�t that the complementary slackness conditions

are violated on O(n) arcs (corresponding to the matched arcs). For the symmetric de�nition,

complementary slackness can be violated on 
(m) arcs.

First we give a high-level description of the successive approximation algorithm (see Fig-

ure 6). The algorithm starts with � = C, f(a) = 0 for all a 2 E, and p(v) = 0 for all v 2 V . At

the beginning of every iteration, the algorithm divides � by a constant factor � and saturates

all arcs a with c

p

(a) < 0. The iteration modi�es f and p so that f is a circulation that is

(�=�)-optimal with respect to p. When � < 1=n, f is optimal and the algorithm terminates.

The number of iterations of the algorithm is 1 + blog

�

(nC)c.

Reducing � is the task of the subroutine re�ne. The input to re�ne is �, f , and p such

that (except in the �rst iteration) circulation f is �-optimal with respect to p. The output

from re�ne is �

0

= �=�, a circulation f , and a price function p such that f is �

0

-optimal with

respect to p. At the �rst iteration, the zero 
ow is not C-optimal with respect to the zero
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procedure min-cost(V;E; u; c);

[initialization]

� C ; 8v, p(v) 0; 8a, f(a) 0;

[loop]

while � � 1=n do

(�; f; p) re�ne(�; f; p);

return(f);

end.

Figure 6. The cost-scaling algorithm.

procedure refine(�; f; p);

[initialization]

� �=�;

8a 2 E with c

p

(a) < 0, f(a) u(a);

[loop]

while f is not a circulation

apply a push or a relabel operation;

return(�; f; p);

end.

Figure 7. The generic re�ne subroutine.

price function, but because every simple path in the residual graph has cost of at least �nC,

standard results about re�ne remain true.

The generic re�ne subroutine (described in Figure 7) begins by decreasing the value of �,

and setting f to saturate all residual arcs with negative reduced cost.

This converts f into an �-optimal pseudo
ow (indeed, into a 0-optimal pseudo
ow). Then the

subroutine converts f into an �-optimal circulation by applying a sequence of push and relabel

operations, each of which preserves �-optimality. The generic algorithm does not specify the

order in which these operations are applied. Next, we describe the push and relabel operations

for the unit-capacity case.

As in the maximum 
ow case, a push operation applies to an admissible arc (v; w) whose

tail node v is active, and consists of pushing one unit of 
ow from v to w. A relabel operation

applies to an active node v that is not the tail of any admissible arc. The operation sets p(v) to

the smallest value allowed by the �-optimality constraints, namely max

(v;w)2E

f

�

p(w)�c(v; w)

	

if v 2 U , or max

(v;w)2E

f

�

p(w)� c(v; w) � 2�

	

otherwise.

The analysis of cost-scaling push-relabel algorithms is based on the following facts [12, 14].

During a scaling iteration
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push(v; w).

send a unit of 
ow from v to w.

end.

relabel(v).

if v 2 U

then replace p(v) by max

(v;w)2E

f

�

p(w) � c(v; w)

	

else replace p(v) by max

(v;w)2E

f

�

p(w) � c(v; w)� 2�

	

end.

Figure 8. The push and relabel operations

� no node price increases;

� every relabeling decreases a node price by at least �;

� for any v 2 V , p(v) decreases by O(n�).

9. Global Updates and the Minimum Change Discharge Algorithm

In this section, we generalize the ideas of minimum distance discharge and global updates to

the context of the minimum cost circulation problem and analyze the algorithm that embodies

these generalizations.

We analyze a single execution of re�ne, and to simplify our notation, we make some as-

sumptions that do not a�ect the results. We assume that the price function is identically zero

at the beginning of the iteration. Our analysis goes through without this assumption, but the

required condition can be achieved at no increased asymptotic cost by replacing the arc costs

with their reduced costs and setting the node prices to zero in the �rst step of re�ne.

Under the assumption that each iteration begins with the zero price function, the price

change of a node v during an iteration is �(v) = b�p(v)=�c. By analogy to the matching case,

we de�ne �(f; p) = min

e

f

(v)>0

�

�(v)

	

, and let �

max

denote the maximum value attained by

�(f; p) so far in this iteration. The minimum change discharge strategy consists of repeatedly

selecting a unit of excess at an active node v with �(v) = � and processing that unit until it

cancels some de�cit or a relabeling occurs. We implement this strategy as in the unweighted

case. Observe that no node's price changes by more than 2�n� during re�ne, so a collection of

2�n + 1 buckets b

0

; : : : ; b

2�n

is su�cient to keep every active node v in b

�(v)

. As before, the

algorithm maintains the index � of the lowest-numbered nonempty bucket and avoids bucket

access except immediately after a de�cit is canceled or a relabeling of a node v sets �(v) > �.

In the weighted context, a global update takes the form of setting each node price so that

G

A

is acyclic, there is a path in G

A

from every excess to some de�cit (a node v with e

f

(v) < 0)

and every node reachable in G

A

from a node with excess lies on such a path. This amounts to

a modi�ed shortest-paths computation, and can be done in O(m) time using ideas from Dial's
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processing;

O(nm=k) time

other processing;

O(n

2

=k) time

-

� = k

6

�

max

= k

Figure 9. Accounting for work in the Minimum Change Discharge algorithm

work [3]. At every re�ne, the �rst global update is performed immediately after saturating all

residual arcs with negative reduced cost. After each push and relabel operation, the algorithm

checks the following two conditions and performs a global update if both conditions hold:

� Since the most recent update, at least one unit of excess has canceled some de�cit; and

� Since the most recent update, the algorithm has done at least m work in push and relabel

operations.

We developed global updates from an implementation heuristic for the minimum cost circu-

lation problem [11], but in retrospect they prove similar in the assignment context to the

one-processor Hungarian Search technique developed in [8].

Immediately after each global update, the algorithm rebuilds the buckets in O(n) time and

sets � to zero. As in the unweighted case, we have the following easy bound on the extra work

done by the algorithm in selecting nodes to process:

Lemma 9.1. Between two consecutive global updates, the algorithm does O(n) work in exam-

ining empty buckets.

Figure 9 represents the main ideas behind our analysis of an iteration of the Minimum

Change Discharge algorithm. The diagram di�ers from Figure 3 because we must account for

pushes and relabelings that occur at nodes with large values of � when �

max

is small. Such

operations could not arise in the matching algorithm, but are possible here.
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We begin our analysis with a lemma that is essentially similar to Lemma 4.2.

Lemma 9.2. The algorithm does O(km) work in the course of relabel operations on nodes v

obeying �(v) � k and push operations from those nodes.

Proof: A node v can be relabeled at most k + 1 times while �(v) � k, so the relabelings of

such nodes and the pushes from them require O(km) work.

To analyze our algorithm for the assignment problem, we must overcome two main di�culties

that were not present in the matching case. First, we can do push and relabel operations at

nodes whose price changes are large even when �

max

is small; this work is not bounded by

Lemma 9.2 and we must account for it. Second, our analysis of the period when �

max

is large

in the unweighted case does not generalize because it is not true that �(v) gives a bound on

the breadth-�rst-search distance from v to a de�cit in the residual graph.

Lemma 9.4 is crucial in resolving both of these issues, and to prove it we use the following

standard result which is analogous to Lemma 4.3.

Lemma 9.3. Given a matching network G and an integral circulation g, any integral pseudo-


ow f in G

g

can be decomposed into

� cycles and

� paths, each from a node u with e

f

(u) < 0 to a node v with e

f

(v) > 0,

where all the elements of the decomposition are pairwise node-disjoint except at s, t, and the

endpoints of the paths, and each element carries one unit of 
ow.

We denote a path from node u to node v in such a decomposition by (u; v).

The following lemma is similar in spirit to those in [8] and [12], although the single-phase

push-relabel framework of our algorithm changes the structure of the proof. Let E(f) denote

the total excess in pseudo
ow f , i.e.,

P

e

f

(v)>0

e

f

(v). When no confusion will arise, we simply

use E to denote the total excess in the current pseudo
ow. The lemma depends on the (��)-

optimality of the circulation produced by the previous iteration of re�ne, so it holds only in

the second and subsequent scaling iterations. Because the zero circulation is not C-optimal

with respect to the zero price function, we need di�erent phrasing to accomplish the same task

in the �rst iteration. The di�erences are mainly technical, so the �rst-iteration lemmas and

their proofs are con�ned to Appendix A.

Lemma 9.4. At any point during an execution of re�ne other than the �rst, E � �

max

�

2

�

(5 + �)n� 1

�

.

Proof: Let c denote the (reduced) arc cost function at the beginning of this execution of re�ne,

and let G = (V;E) denote the augmented residual graph at the same instant. For simplicity
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in the following analysis, we view a pseudo
ow as an entity in this graph G. Let f

0

, p

0

be the

current pseudo
ow and price function, and let f , p be the pseudo
ow and price function at

the most recent point during the execution of re�ne when �(f; p) = �

max

. Since E(f) � E(f

0

)

and �(f; p) � �(f

0

; p

0

), it is enough to prove the lemma for f , p. We have

E(f)� �

max

�

X

e

f

(v)>0

�(v)e

f

(v):

From the de�nition of �, then,

E(f)� �

max

� � � �

X

e

f

(v)>0

p(v)e

f

(v):

We will complete our proof by showing that

�

X

e

f

(v)>0

p(v)e

f

(v) = c

p

(f)� c(f)

and then deriving an upper bound on this quantity.

By the de�nition of the reduced costs,

c

p

(f)� c(f) =

X

f(v;w)>0

�

p(v)� p(w)

�

f(v; w):

Letting P be a decomposition of f into paths and cycles according to Lemma 9.3 and noting

that cycles make no contribution to the sum, we can rewrite this expression as

X

(u;v)2P

(p(u)� p(v)):

Since nodes u with e

f

(u) < 0 are never relabeled, p(u) = 0 for such a node, and we have

c

p

(f)� c(f) = �

X

(u;v)2P

p(v):

Because the decomposition P must account for all of f 's excesses and de�cits, we can rewrite

c

p

(f)� c(f) = �

X

e

f

(v)>0

p(v)e

f

(v):

Now we derive an upper bound on c

p

(f) � c(f). It is straightforward to verify that for

any matching network G and integral circulation g, the residual graph G

g

has exactly n arcs

a =2 E

U

, and so from the fact that the execution of re�ne begins with the augmented residual

graph of an (��)-optimal circulation, we deduce that there are at most n negative-cost arcs

in E. Because each of these arcs has cost at least �2��, we have c(f) � �2�n�. Hence

c

p

(f)� c(f) � c

p

(f) + 2�n�.

Now consider c

p

(f). Clearly, f(a) > 0 =) a

R

2 E

f

, and �-optimality of f with respect

to p says that a

R

2 E

f

=) c

p

(a

R

) � �2�. Since c

p

(a

R

) = �c

p

(a), we have f(a) > 0 =)

c

p

(a) � 2�. Recalling our decomposition P into cycles and paths from de�cits to excesses,

observe that c

p

(f) =

P

P2P

c

p

(P ). Let �(P ) denote the interior of a path P , i.e., the path
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minus its endpoints and initial and �nal arcs, and let @(P ) denote the set containing the initial

and �nal arcs of P . If P is a cycle, �(P ) = P and @(P ) = ;. We can write

c

p

(f) =

X

P2P

c

p

�

�(P )

�

+

X

P2P

c

p

�

@(P )

�

:

The total number of arcs not incident to s or t in the cycles and path interiors is at most n

by node-disjointness, and the number of arcs incident to s or t is at most 2n � 1. Also, the

total excess is never more than n, so the initial and �nal arcs of the paths number no more

than 2n. And because each arc carrying positive 
ow has reduced cost at most 2�, we have

c

p

(f) � (n+ 2n� 1 + 2n)2� = (5n� 1)2�.

Therefore, c

p

(f)� c(f) � 2

�

(5 + �)n� 1

�

�, and we have E(f)� �

max

� 2

�

(5 + �)n� 1

�

.

Corollary 9.5. �

max

� k implies E = O(n=k).

We use the following lemma to show that when �

max

is small, we do a limited amount of

work at nodes whose price changes are large.

Lemma 9.6. While �

max

� k, the amount of work done in relabelings at nodes v with �(v) > k

and pushes from those nodes is O(n

2

=k).

Proof: For convenience, we say a node that gets relabeled under the conditions of the lemma

is a bad node. We process a given node v either because we selected a unit of excess at v, or

because the most recent operation was a push from one of v's neighbors to v. If a unit of v's

excess is selected, we have �(v) � �

max

(indeed without global updates, �(v) = �

max

) which

implies �(v) � k, so v cannot be a bad node. In the second case, the unit of excess just pushed

to v will remain at v until �

max

� �(v) because the condition �(v) > � will cause excess at

a di�erent node to be selected immediately after v is relabeled. We cannot select v's excess

until �

max

� �(v), and at such a time, Corollary 9.5 shows that the total excess remaining is

O(n=k). Since each relabeling of a bad node leaves a unit of excess that must remain at that

node until �

max

� k, the number of relabelings of bad nodes is O(n=k). Because every node

has degree at most n, the work done in pushes and relabelings at bad nodes is O(n

2

=k).

Recall that the algorithm initiates global update only after a unit of excess has canceled

some de�cit since the last global update. The next lemma, analogous to Lemma 4.6, shows

that this rule cannot introduce too great a delay.

Lemma 9.7. Between any two consecutive global update operations, the algorithm does �(m)

work.

Proof: As in the unweighted case, it su�ces to show that the algorithm does O(m) work in

canceling a de�cit immediately after a global update operation, and O(m) work in selecting

nodes to process. The de�nition of a global update operation su�ces to ensure that a unit of
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excess reaches some de�cit immediately after a global update and before any relabeling occurs,

and Lemma 9.1 shows that the extra work done between global updates in selecting nodes to

process is O(n).

Lemma 9.2 and Lemma 9.6 show that the algorithm takes O(km+n

2

=k) time when �

max

� k.

Corollary 9.5 says that when �

max

� k, the total excess remaining is O(n=k), and Lemma 9.7

shows that O(m) work su�ces to cancel each unit of excess remaining. Therefore the total work

in an execution of re�ne is O

�

km+ n

2

=k+ nm=k

�

, and choosing k = �(

p

n ) gives a O(

p

nm)

time bound on an execution of re�ne. The overall time bound follows from the O(log(nC))

bound on the number of scaling iterations, giving the following theorem:

Theorem 9.8. The Minimum Change Discharge algorithm with global updates computes a

minimum cost circulation in a matching network in O

�

p

nm log(nC)

�

time.

Graph compression methods [6] do not apply to graphs with weights because the compressed

graph preserves only adjacency information and cannot encode arbitrary edge weights. Hence

the Feder-Motwani techniques cannot improve performance in the assignment problem context.

10. Minimum Change Discharge Algorithm without Global Updates

We present a family of assignment instances on which we show re�ne without global updates

performs 
(nm) work in the �rst scaling iteration, under the minimum change discharge

selection rule. Hence this family of matching networks su�ces to show that global updates

account for an asymptotic di�erence in running time.

The family of assignment instances on which we show re�ne without global updates takes


(nm) time is structurally the same as the family of bad examples we used in the unweighted

case, except that they are have two additional nodes and one additional edge. The costs of the

edges present in the unweighted example are zero, and there are two extra nodes connected

only to each other, sharing an edge with cost �. These two nodes and the edge between

them are present only to establish the initial value of � and the costs of arcs introduced in the

reduction, and are ignored in our description of the execution.

At the beginning of the �rst scaling iteration, � = �. The iteration starts by setting � = 1.

From this point on the execution is similar to the execution of the MinimumDistance Discharge

algorithm given in Section 6, but the details di�er because of the asymmetric de�nitions of

�-optimality and admissibility we use in the weighted case.

Figure 10 details an execution of the Minimum Change Discharge algorithm without global

updates. As in the unweighted case, every relabeling changes a node price by at most two, and

the algorithm does 
(n

2

) relabelings. Consequently, the relabelings require 
(nm) work, and

we have the following theorem:
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1. Initialization establishes jX j units of excess, one at each node of X .

2. While some node w 2 Y has no excess,

2.1. a unit of excess moves from a node of X to w;

2.2. w is relabeled so that p(w) = �2.

Remark: Now every node of Y has one unit of excess.

3. Active nodes in X are relabeled one-by-one so that each has price �2.

4. A unit of excess moves from the most recently relabeled node of X to a node of Y , then to t, and

on to cancel a unit of de�cit at s.

5. While more than one node of Y has excess,

5.1. A unit of excess moves to t and thence to s from a node of Y ;

6. The remaining unit of excess at a node of Y moves to a node v 2 X with p(v) = 0, and v is

relabeled so that p(v) = �2.

7. ` 1.

8. While ` � �n=2� 1,

Remark: All excesses are at nodes of X , and these nodes have price �2`; all other nodes in

X have price �2`+ 2; all nodes in Y have price �2`.

8.1. A unit of excess is selected, and while some node x 2 X has p(x) = �2`+ 2,

� the selected unit moves from some active node v to w, a neighbor of x in G

f

(for a given

x there is a unique such w);

� the unit of excess moves from w to x;

� x is relabeled so p(x) = �2`.

Remark: Now all nodes in X [ Y have price �2`; all excesses are at nodes of X .

8.2. While some node w 2 Y has p(w) = �2` and some node v 2 X has e

f

(v) = 1,

� a unit of excess moves from v to w;

� w is relabeled so p(w) = �2`� 2.

Remark: The following loop is executed only if jX j < 2jY j. All active nodes in Y have price

�2`� 2, and all other nodes in Y have price �2`.

8.3. If a node in Y has price �2`, a unit of excess is selected, and while some node y 2 Y has

p(y) = �2`,

� the selected unit moves from some w 2 Y with e

f

(w) = 1 to v 2 X with p(v) = �2`,

and then to y;

� y is relabeled so p(y) = �2`� 2.

Remark: The following loop is executed only if jX j > 2jY j.

8.4. For each node v 2 X with e

f

(v) = 1,

� v is relabeled so p(v) = max

�

�2`� 2;��n

	

.

8.5. For each node w 2 Y with e

f

(w) = 1,

� a unit of excess moves from w to v 2 X with p(v) = �2`;

� v is relabeled so p(v) = max

�

�2`� 2;��n

	

.

8.6. ` `+ 1.

9. Excesses move one-by-one from active nodes in X (which have price ��n) to s.

Figure 10. The Minimum Change Discharge execution on bad examples.

Theorem 10.1. For any function m(n) in the range n � m(n) < n

2

=4, there exists an in�-

nite family of instances of the assignment problem having �(n) nodes and �

�

m(n)

�

edges on

which the Minimum Change Discharge implementation of re�ne without global updates runs

in 


�

nm(n)

�

time.
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11. Conclusions and Open Questions

We have given algorithms that achieve the best time bounds known for bipartite matching,

namely O

�

p

nm

log(n

2

=m)

log n

�

, and for the assignment problem in the cost-scaling context, namely

O (

p

nm log(nC)). We have also given examples to show that without global updates, the

algorithms perform worse. Hence we conclude that global updates can be a useful tool in

theoretical development of algorithms.

We have shown a family of assignment instances on which re�ne without global updates

performs poorly, but the poor performance seems to hinge on details of the reduction so it

happens only in the �rst scaling iteration. An interesting open question is the existence of

a family of instances of the assignment problem on which re�ne uses 
(nm) time in every

scaling iteration.
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Appendix A. The First Scaling Iteration

Let G be the network produced by reducing an assignment problem instance to the minimum

cost circulation problem as in Section 8. When re�ne initializes by saturating all negative arcs

in this network, the only de�cit created will be at s by our assumption that the input costs

are nonnegative.

For a pseudo
ow f in G, de�ne E

t

(f) to be the amount of f 's excess that can reach s by

passing through t. E

t

(f) corresponds to the residual 
ow value in the unweighted case (see

Section 4).

The (��)-optimality of the initial 
ow and price function played an important rôle in the

proof of Lemma 9.4, speci�cally by lower-bounding the initial cost of any arc that currently

carries a unit of 
ow. In contrast, the �rst scaling iteration may have many arcs that carry


ow and have extremely negative costs relative to �, speci�cally those arcs of the form (s; v)

introduced by the reduction. But to counter this di�culty, the �rst iteration has an advantage

that later iterations lack: an upper bound (in terms of �) on the initial cost of every residual

arc in the network. Speci�cally, recall that the value of � in the �rst iteration is C=�, where

C is the largest cost of an edge in the given assignment instance. So for any arc a other than

the (v; s) arcs introduced by the reduction, c(a) � �� in the �rst scaling iteration.

Lemma A.1. At any point during the �rst execution of re�ne, E

t

� �

max

� n(2 + �).

Proof: Let f

0

, p

0

be the current pseudo
ow and price function, and as in the proof of

Lemma 9.4, let f , p be the pseudo
ow and price function at the most recent point when

�(f; p) = �

max

. As before, it is enough to prove the lemma for f , p; this will imply the claim

holds for f

0

, p

0

.

Let f

�

be a minimum cost circulation in G, and let f

0

= f

�

�f . Recall that the costs on the

(s; v) arcs are negative enough that f

�

must correspond to a matching of maximum cardinality.

Therefore, f

0

moves E

t

(f) units of f 's excess to s through t, and returns the remainder to s

without its passing through t. Now �f

0

is a pseudo
ow in G

f

�

, and can be decomposed into

cycles and paths according to Lemma 9.3; as in the proof of Lemma 4.4, let P denote the

induced decomposition of f

0

. Let Q � P be the set of paths that pass through t, and note that

E

t

(f) = jQj. Let e

t

f

(v) denote the number of paths of Q beginning at node v. The only de�cit

in f is at s, so e

t

f

(v) is precisely the amount of v's excess that reaches s by passing through t

if we imagine augmenting f along the paths of P. Of particular importance is that no path in

Q uses an arc of the form (s; v) or (v; s) for v 6= t.

Observe that

E

t

(f)� �

max

�

X

e

t

f

(v)>0

e

t

f

(v)�(v);
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so by the de�nition of �,

�� E

t

(f)� �

max

� �

X

e

t

f

(v)>0

e

t

f

(v)p(v):

Now note that for any path P from v to s, we have p(v) = c

p

(P ) � c(P ) because p(s) = 0.

Every arc used in the decomposition P appears in G

f

. By �-optimality of f , each of the n or

fewer arcs a inG

f

with negative reduced cost has c

p

(a) � �2�, so we have

P

P2Q

c

p

(P ) � �2n�.

Next, we use the upper bound on the initial costs to note that

P

P2Q

c(P ) � �n�, so

�� E

t

(f)� �

max

� �

X

e

t

f

(v)>0

e

t

f

(v)p(v) � 2n�+ �n� = n(2 + �)�;

and the lemma follows.

Lemma A.2. At any point during the �rst execution of re�ne, E � (�

max

� �n) � n(2 + �).

Proof: Essentially the same as the proof of Lemma A.1, except that if �

max

> �n, each path

from an excess to the de�cit at s will include one arc of the form (v; s), and each such arc has

original cost �nC = ��n�.

Lemmas A.1 and A.2 allow us to split the analysis of the �rst scaling iteration into four stages,

much as we did with the Minimum Distance Discharge algorithm for matching. Speci�cally,

the analysis of Section 9 holds up until the point where �

max

� �n, with Lemma A.1 taking the

place of Lemma 9.4. Straightforward extensions of the relevant lemmas show that the algorithm

does O(km+n

2

=k) work when �

max

2 [�n; �n+k], and when �

max

> �n+k, Lemma A.2 bounds

the algorithm's work by O(nm=k). The balancing works as before: choosing k = �(

p

n ) gives

a bound of O(

p

nm) time for the �rst scaling iteration.


